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Abstract

Climate envelope models (CEMs) have been used to predict the distribution of species

under current, past, and future climatic conditions by inferring a species’ environmental

requirements from localities where it is currently known to occur. CEMs can be evaluated

for their ability to predict current species distributions but it is unclear whether models

that are successful in predicting current distributions are equally successful in predicting

distributions under different climates (i.e. different regions or time periods). We eval-

uated the ability of CEMs to predict species distributions under different climates by

comparing their predictions with those obtained with a mechanistic model (MM). In an

MM the distribution of a species is modeled based on knowledge of a species’ physiology.

The potential distributions of 100 plant species were modeled with an MM for current

conditions, a past climate reconstruction (21 000 years before present) and a future climate

projection (double preindustrial CO2 conditions). Point localities extracted from the

currently suitable area according to the MM were used to predict current, future, and

past distributions with four CEMs covering a broad range of statistical approaches:

Bioclim (percentile distributions), Domain (distance metric), GAM (general additive

modeling), and Maxent (maximum entropy). Domain performed very poorly, strongly

underestimating range sizes for past or future conditions. Maxent and GAM performed as

well under current climates as under past and future climates. Bioclim slightly under-

estimated range sizes but the predicted ranges overlapped more with the ranges predicted

with the MM than those predicted with GAM did. Ranges predicted with Maxent

overlapped most with those produced with the MMs, but compared with the ranges

predicted with GAM they were more variable and sometimes much too large. Our results

suggest that some CEMs can indeed be used to predict species distributions under climate

change, but individual modeling approaches should be validated for this purpose, and

model choice could be made dependent on the purpose of a particular study.
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Introduction

A number of species have been affected by recent

climatic change, with changes in phenology and ranges

expanding towards higher latitudes and altitudes (e.g.

Parmesan & Yohe, 2003; Root et al., 2003). Understand-

ing how species will respond to projected future climate

change is of fundamental importance for effective man-

agement and conservation of biodiversity (Hannah

et al., 2002). Likewise, insight into the distributions of

species during past climates can help to understand

current patterns of species distributions and genetic

variation (Hugall et al., 2002; Peterson et al., 2004;

Graham et al., 2006; Ruegg et al., 2006). Predicting

species ranges for different climates is commonly done

with ‘climate envelope models’ (CEMs) that use the

current geographic distribution of a species to infer its

environmental requirements. Based on these require-

ments, a species’ geographic distribution for the cur-

rent, or for past or future climates is predicted. A recent
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compilation of such studies on the effect of projected

climate change indicates that an alarming number of

species may lose a large part of their range and become

‘committed to extinction’ (Thomas et al., 2004).

There are some obvious cases of species that with

climate change should lose parts of their range, such as

mountain-top endemics, for which warming would

seem highly threatening (Theurillat & Guisan, 2001;

Williams et al., 2003). However, a general tendency of

species ranges to get smaller with climate warming is

counter-intuitive because there are more species in

warm areas than in cold areas. The predicted trend

towards reduction in range sizes that Thomas et al.

(2004) found may have been caused by a biased selection

of the species or regions studied. Another possibility is

that some CEMs are biased and tend to underestimate

range sizes under future climates. Thuiller et al. (2004)

pointed out the problem of strong variation between

CEM predictions of future distributions.

A persistent problem with CEMs is the difficulty in

evaluating predicted distributions under different cli-

mates (i.e. reconstructions of past climates or projections

of future climates). Whereas predictions under current

circumstances can be tested using independent model

training and testing datasets (Fielding & Bell, 1997), such

a direct assessment cannot be done for future climates, for

which there are no observed data. Using the fossil record,

such tests are in principle possible for past climates

(Martı́nez-Meyer et al., 2004), but the number of sites from

which fossils of a species are known for a given time

period is often very small, and the available climate

reconstructions are coarse and uncertain. Araújo et al.

(2005a, b) used recent changes in the distribution of

breeding birds in Britain and found reasonable agreement

between observed and predicted changes over a period

of 20 years. Such studies are useful but may be hampered

by the confounding effect of changes in species’ ranges for

reasons unrelated to climate change (e.g. anthropogenic

land cover change). Finally, some support for the use of

CEMs for climate change studies can be drawn from

successes in predicting a species range from data from

one continent to another, as has been done for introduced

invasive species (Peterson, 2003; Thuiller et al., 2005).

There are a number of reasons why a prediction of a

species’ distribution after climate change could be less

accurate than such a prediction for current climatic

circumstances (Davis et al., 1998; Guisan & Thuiller,

2005). CEMs are ‘statistical’ models that do not attempt

to describe ‘cause and effect’ between model parameters

and response (Guisan & Zimmermann, 2000; Pearson &

Dawson, 2003; Kearney & Porter, 2004). For example, the

inferred environmental requirements are dependent on

the climatic conditions that are currently available on the

landscape. A species may be well adapted to a combina-

tion of rainfall and temperature that currently does

not exist in the region where it occurs. If new combina-

tions of climatic variables appear in the future, or if

entirely new conditions occur (e.g. higher rainfall than

currently observed anywhere), a statistical model may

incorrectly classify such environments as unsuitable.

The degree to which different statistical models may

be affected by these problems has proved difficult to

determine, but large variability among different CEM

approaches used to predict species distributions under a

projected future climate have been reported (Thuiller,

2003, 2004; Pearson et al., 2006).

Here, we present a new framework for evaluating the

ability of CEMs to predict species distributions under a

different climate. In this framework, the results ob-

tained with CEMs are compared with those obtained

with a mechanistic model for individual species (MM).

In an MM, the distribution of a species is defined by a

set of functions based on knowledge of the physiology

of that species. Results obtained with an MM are

independent of current climate because the model

parameters are not derived from the current distribu-

tion of a species. MMs are considered superior for

understanding the relationship between climate and

the distribution of species (Woodward & Rochefort,

1991; Malanson et al., 1992; Prentice et al., 1992; also

see the discussion in Guisan & Zimmermann, 2000) and

have been used to study the distribution of a lizard in

Australia (Kearney & Porter, 2004) and effects of climate

change on crop production (Rosenzweig & Parry, 1994;

Hijmans, 2003). A drawback of MMs is that physiolo-

gical data required to parameterize the model are not

available for most species. Another problem with the

use of MMs of individual species is that they tend to be

based on a species eco-physiology but do not account

for nonclimatic influences on species distribution such

as biotic interactions or dispersal limitations (Pearson &

Dawson, 2003). CEMs do not directly model such non-

climatic influences either, but they may do so indirectly

if limits to species distributions caused by factors such

as competition occur on an environmental gradient and

are therefore correlated with environmental variables.

MMs may, thus, be of limited value in comparison with

CEMs for accurately predicting current distributions of

species. However, MMs are uniquely suitable for under-

standing the effect of different climates on species

distributions, when assuming universal dispersal and

the absence of competition, that is, MMs can be used to

evaluate the intrinsic ability of CEMs to accurately

predict spatial distributions of species under different

climates. In this paper, we used an MM to predict the

potential distributions of 100 plant species for current

conditions, and for a future (warmer) and past (colder)

climate. By comparing the MM results with those
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obtained using four different CEMs, we evaluate the

ability of each CEM to predict a species range under

different climates.

Materials and methods

Climate data

We used monthly precipitation and minimum and

maximum temperature data for three periods: ‘current’,

‘future’, and ‘past’. For current conditions, we used the

WorldClim database (Hijmans et al., 2005a). This dataset

has a spatial resolution of approximately 1 km and was

created by interpolation using a thin-plate smoothing

spline of observed climate at weather stations, with

latitude, longitude, and elevation as independent vari-

ables (Hutchinson, 1995, 2004). Projected future climate

data were from Duffy et al. (2003) and Govindasamy

et al. (2003). They ran the CCM3 global climate model

(GCM) at approximately 50 km spatial resolution to

simulate conditions at doubled atmospheric levels of

CO2 (2�CO2) as compared with preindustrial condi-

tions. To our knowledge, these data are at the highest

spatial resolution currently available for projected fu-

ture global climate data. Past climate data used were

GCM reconstructions for the last glacial maximum

(LGM; 21 000 BP). These data were generated with the

ECHAM3 model (DKRZ, 1992; Lorenz et al., 1996), are

at an approximately 312 km spatial resolution and are

available at http://www.lsce.cea.fr/pmip/

For both GCMs there were also ‘control runs’ for the

current conditions available. We calculated the differ-

ence (absolute for temperature and relative for precipi-

tation) between the modeled current and past or future

conditions and statistically downscaled these to a 1 km

spatial resolution, using bilinear interpolation in Arc/

Info (ESRI, Redlands, CA, USA). The projected future or

past climate was then calculated from the current

climate (WorldClim database) and the downscaled

model differences. This approach was taken to assure

consistency of the climate layers across time slices and

that the downscaled climate realistically reflected the

higher resolution topography.

We limited our area of study to the Americas, and

projected all data to the Lambert Equal Area projection

(latitude 5 01 and longitude 5�801) to obtain grid cells

of equal area and allow for easy calculations of range

sizes. We aggregated the data to cells of 10 km spatial

resolution using bilinear interpolation. Mean annual

temperature for this dataset was 4.8 1C for current,

0.7 1C for past, and 6.8 1C for future conditions. Mean

annual precipitation was 1045 mm for current, 1128 mm

for future, and 1015 mm for past conditions. Predicted

past and future temperature changes were much larger

at high latitudes than in the tropics. Precipitation chan-

ged in different directions in different places, and this

was particularly pronounced comparing current with

LGM conditions, that is, the model suggests that it was

much dryer than today in some places, but much wetter

in other places, resulting in similar mean precipitation

across the whole study area.

In the CEMs, we used the following six bioclimatic

variables (Nix, 1986): annual mean temperature, mean

diurnal temperature range, mean annual temperature

range, annual precipitation, precipitation seasonality

(coefficient of variation), and precipitation of the driest

quarter. We chose these variables because they repre-

sent general trends (means), variation (seasonality), and

limiting variables (i.e. minimum and maximum tem-

peratures). To evaluate the effect of the number of

variables included on model performance, we also run

the models using 19 variables: the above six and max-

imum temperature of the warmest month, minimum

temperature of the coldest month, isothermality

(monthly/annual temperature range), temperature sea-

sonality (standard deviation across months), mean tem-

perature of wettest quarter, mean temperature of driest

quarter, mean temperature of warmest quarter, mean

temperature of coldest quarter, precipitation of wettest

month, precipitation of driest month, precipitation of

wettest quarter, precipitation of warmest quarter, and

precipitation of coldest quarter.

MM

We used the MM that is implemented in DIVA-GIS 5.1

(Hijmans et al., 2005b). This is a ‘Plantgro’ type model

(Hackett & Vanclay, 1998) in which requirements for

plant growth are described as plateau-shaped curves

that indicate plant response (expressed as 0–1) to

monthly precipitation and minimum and mean tempera-

ture. Response is zero below a minimum and above a

maximum threshold, and one between a minimum and a

maximum optimal value (Hijmans et al., 2005b; cf. Hack-

ett, 1991; Austin, 1992). Overall response across environ-

mental variables follows the Sprengel–Liebig Law of the

Minimum (Hackett, 1991; Van der Ploeg et al., 1999), that

is, the most limiting factor determines the overall re-

sponse. Interaction between temperature and rainfall is

not considered. Model scores are calculated for 24 pos-

sible growing periods, starting at the first or the 15th day

of each month, the highest score is retained. The length

of the growing period is specified as a number of days.

For each location (grid cell) the model calculates the

suitability for a species using a score from 0 (not suitable)

to 100 (highly suitable). Based on comparison with

known distributions of some species, we considered only

areas with scores above 90 as suitable for a species.
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MM parameters for 100 randomly selected plant

species (out of 1710 species for which parameters were

available) were taken from the ECOCROP database

(FAO, 1999), which includes killing (minimum) tem-

perature, and minimum, maximum, and range of opti-

mal temperatures; the minimum and maximum length

of the growing season; and minimum, maximum and

range of optimal amount of rainfall for each species.

The species included are all of economic importance,

including annuals and perennials that are used for (e.g.

food, fuel or fodder). We ran the MM to predict the

potential distribution of the plant species, using the

monthly temperature and rainfall data for current,

future, and past conditions.

A similar modeling approach has been used to study

the effect of climate change on species distributions by

Booth et al. (1999) and Miles et al. (2004). Here, we are

not concerned about the quality of the predictions made

per se. What is important for our purpose is to have a

model that provides a plausible prediction of the area

that is suitable for a species, based on parameters that

were not directly derived from its current known geo-

graphic distribution.

CEMs

We employed four CEMs: Bioclim, Domain, GAM, and

Maxent. We chose these because they are well-known

models that represent a variety of different statistical

approaches. We used Bioclim (Nix, 1986; Busby, 1991)

as implemented in DIVA-GIS. This model treats the

environmental data values at the locations of species

occurrence as multiple one-tailed percentile distribu-

tions, that is, it creates a percentile distribution for each

variable so that, for example, the fifth percentile is

treated the same as the 95th percentile. For each grid

cell, the values of each environmental variable are

assessed to determine their position in this percentile

distribution. The lowest score across environmental

values for a grid cell is mapped and can be ‘null’

(outside the observed range of values) or range from

zero (low) to the theoretical maximum of 50 (very high).

In the Domain model (Carpenter et al., 1993), the

Gower distance statistic is calculated between the va-

lues of the environmental variables of each cell and of

each occurrence point. The distance between point A

and grid cell B for a single climate variable k is calcu-

lated as the absolute difference between A and B

divided by the range of k across all points. The Gower

distance (G) is the mean of the distances for all climate

variables and the Domain similarity statistic is calcu-

lated as 100� (1�G). The maximum similarity between

a grid cell and any point is mapped. The maximum

value is 100 (all cells in which presences occurred will

have this score); a high number (e.g. 495) implies a

high likelihood of the species being present. We used

the Domain model as implemented in DIVA-GIS.

We used the general additive modeling (GAM)

technique as implemented in GRASP version 0.4-3

(Lehmann et al., 2002) within the R statistical package.

GAMs use nonparametric smoothers to model non-

linear trends between dependent (species presence or

absence) and independent (environment) variables. We

used stepwise selection of the variables and the ANOVA

criterion to select the best model.

We used Maxent version 1.9.1 (available from http://

www.cs.princeton.edu/�schapire/maxent/). This model

is an application of a machine learning technique called

‘maximum-entropy.’ Maxent estimates the likelihood of a

species being present by finding the distribution of max-

imum entropy (i.e. that is closest to uniform) subject to the

constraint that the expected value of each environmental

variable under this estimated distribution matches

its empirical average (Phillips et al., 2006). Maxent uses

the ‘background’ data of the environmental layers in the

modeling process. The output of both Maxent and GAM

are values between 0 (low) and 1 (high).

Model runs

For each species, we selected random points from

the area predicted by the MM as currently suitable.

The number of points selected was the square root of

the number of cells currently deemed suitable. Sam-

pling was done for computational efficiency and to

better resemble the (sparse) data typically used in

CEM. The point distributions were then used to create

predictions with the CEM for current, future, and past

conditions (Fig. 1). All CEMs were run using the default

settings. Absence data used in GAM were the cells that

were unsuitable for a species (according to the MM), but

that were suitable for any of the other species, in

addition to a set of random background points that

covered areas currently unsuitable for all the species

considered (parts of the Arctic in Canada and Green-

land, and the Atacama desert in Chile).

Model evaluation

The output of CEMs are continuous values indicating the

suitability of any site for the species being modeled. To

transform these values to presence/absence data we

determined species specific thresholds above which a

species was considered present. For each model we chose

the value that produced a relative range size Eqn (1) that

was closest to zero (median across all species). This

calibration was done for the current climate, and these

thresholds were maintained throughout the modeling
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exercise and experimental climate shifts, as is the general

practice in climate change modeling studies. We used

range size to calibrate because of the importance of range

size in assessing risks of extinction (Thomas et al., 2004).

To evaluate how well the ranges predicted with the

CEMs corresponded to those of the MM we calculated,

for each species, time slice and CEM, the following four

indices: relative range size [RRS; Eqn (1)], overlap index

[OI; Eqn (2)], false positive rate [FPR; Eqn (3)], and false

negative rate [FNR; Eqn (4)]:

if m � c RRS ¼ c=m� 1;

else RRS ¼ �1�ðm=c� 1Þ;

(
ð1Þ

OI ¼ o=m; ð2Þ

FPR ¼ ðc� oÞ=m; ð3Þ

FNR ¼ ðm� oÞ=m; ð4Þ

where m is (the size of) the area where the MM predicts

a species to be present, c is the area where the CEM

predicts presence and o is the area where they overlap,

that is, both MM and CEM predict presence.

RRS compares the predicted range size of a CEM with

that of the MM. It was calculated according to Eqn (1)

because c/m is biased, with RRS deviating much more

from 1 when c4m than when moc (e.g. 1/4 vs. 4). Note,

however, that a score of 3 implies that the range size

predicted by the CEM was four times as big as that of the

MM, and that a score of �3 implies that it was four times

as small. OI measures the degree of overlap of the CEM

with the MM. FPR is a measure of model overprediction

(‘error of commission’) and FNR a measure of under-

prediction (‘error of omission’). In our analysis, an ideal

CEM would have RRS 5 0, OI 5 1, FPR 5 0, and FNR 5 0.

RRS and OI were also calculated to assess the effect of

climate change on the predictions made with the MM. In

this case, m refers to the prediction for current conditions,

and c to either future or past conditions. For each CEM

and the four indices we determined the statistical sig-

nificance of the differences between the predictions for

the current climate and for the other climates. To this end,

we used the Wilcoxon test (Mann–Whitney U-test), as

implemented in the R package.

Results

MM

Compared with the current situation, the MMs showed

considerable changes in range size for past conditions

but less so for future conditions. For future conditions,

RRS was �0.07 and OI was 0.54, indicating that median

Current
climate

Future
or past 
climate

Mechanistic model Climate envelope model

(a)

(b) (e)

(c) (d)

Extracted 
points

Compare

Fig. 1 Approach used to evaluate the ability of climate envelope models to predict species distributions under different climates. A

mechanistic model is used to predict the potential distribution for a species under current (a) and future (or past) (b) conditions (light

gray 5 not suitable, dark gray 5 suitable). Points are extracted randomly from the area deemed currently suitable for the species (c).

These points are used in the climate envelope model for current (d) and future (e) conditions. The statistical model is evaluated through

a comparison of (b) and (e). These maps show results for Berrya cordifolia (Willd.) for the Bioclim model.
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range size decreased slightly while the location of the

ranges shifted considerably, with only half the currently

suitable range also suitable under the future climate. For

past conditions, RRS was �0.50 and OI was 0.14. Hence,

for the last glacial maximum, modeled range sizes were

considerably smaller than for the current period with

past and current ranges overlapping only slightly.

Climate envelope model, current conditions

For all CEMs, we identified a threshold that produced

range sizes similar to current potential ranges as mod-

eled with the MM (RRS � 0; Table 1). However, there

was variation in how well CEMs reproduced the spatial

extent of the ranges modeled with the MM at this

threshold (Fig. 2). Maxent had the highest OI, with a

median value of 0.91 (when using six environmental

variables), which was marginally higher than Bioclim

(0.90). OI for GAM was 0.84, while Domain had the

lowest score (0.77). Maxent and Bioclim also had the

lowest median FPR and FNR, again with Domain hav-

ing the poorest score. Results were similar for the

predictions made when using 16 variables.

Climate envelope model, past, and future conditions

The results for past and future conditions varied strongly

between models (Fig. 2; Table 2). Domain substantially

underpredicted species ranges, particularly for past

climate conditions. It had a strong and statistically

significant (P � 0.01) decrease in RRS, OI, and FPR and

an increase in FNR under both past and future climates.

Bioclim performed much better than Domain across all

evaluation measures but it tended to underpredict, espe-

cially when using 18 variables (Fig. 2). Bioclim stood out

for a very low FPR but, in accordance with its low RRS,

it had a relatively high FNR, especially when running

the model with 18 climate variables. The FPR for current

conditions was not significantly different from that

for future or past conditions. Under future and past

climates, GAM predicted range sizes that were similar

to those predicted with the MM (RRS � 0) and its OI

was better than, or comparable with that of Bioclim.

RRS for Maxent was close to zero, but not as close

as for GAM. Maxent was the only model that had

a median RRS40, that is, it predicted larger range

sizes than the MM. The relatively high RRS is accom-

panied by a relatively high OI (i.e. most of the areas

predicted suitable are correctly classified). A high RRS

could come at the expense of a high FPR. However, the

median FPR for Maxent was not always higher than for

Table 1 Thresholds used to assign presence or absence to

grid cells for the four statistical models used, for the runs with

six and 18 environmental variables

6 variables 18 variables

Bioclim 0.07 0

Domain 93 93

GAM 0.67 0.56

Maxent 7 6

GAM, General Additive Modeling.

Fig. 2 Relative range size (RRS), overlap index (OI), false posi-

tive rate (FPR), and false negative rate (FNR) for a comparison

between the results obtained with four climate envelope models,

Bioclim (BIO), Domain (DOM), General Additive Modeling

(GAM), and Maxent (MAX) and the results obtained with a

mechanistic model. Six (upper panel) or 18 (lower panel) climatic

variables were used in the modeling of 100 plant species for

current (C), future (F; 2�CO2 conditions), and past (P; Last glacial

maximum, 21 000 BP) conditions. Median values are shown, with a

line between the 10th and 90th percentile. For legibility, some lines

have been truncated, but in those cases the values of the

10th or 90th percentile are provided at the point of truncation.
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GAM, albeit that it was highly variable for Maxent,

indicating that while its performance is good overall,

predictions for a few species may be quite poor.

For Domain and Bioclim there was a clear effect of the

number of environmental variables used on RRS and OI

with the results becoming worse when more variables

were used (Fig. 2). The results obtained with GAM were

less affected, but GAM performed better when only six

instead of 18 climatic variables were used (Table 2). For

Maxent the results obtained with six and with 18

variables were similar.

Discussion

The output of the MMs allowed us to evaluate the

ability of CEMs to predict species distributions across

time (climate regimes), independently of nonclimatic

factors that influence true species distributions and that

can make model results difficult to evaluate. MMs

predicted marked range reductions for the colder cli-

mate and shifted locations for both colder and warmer

climates than today. We found considerable variation

between CEMs in their ability to reproduce these pre-

dictions, as was to be expected given previously re-

ported variation in such predictions (Thuiller, 2003,

2004; Pearson et al., 2006). Maxent and GAM provided

reasonably good estimates of potential range shifts with

climate change. Domain strongly underestimated range

sizes. This model should not be used to predict the

effects of climate change on species distributions. Bio-

clim performed better than Domain, but not as well as

the other two models, because Bioclim systematically

underpredicts range sizes.

Of the four climate envelope modeling methods ex-

amined here, GAM might be the most appropriate if the

objective is to predict the likelihood of species extinc-

tion because it predicted relative range size most faith-

fully. Maxent had high spatial concordance with MMs

(high OI) and low false negative rates, which came at a

cost of a slight increase in RRS (41), relative to GAM.

For many applications, the benefit of having a more

accurate spatial representation of species distribution

patterns under different climates would offset the cost

of an increase of RRS. However, Maxent did show high

variation in RRS and FPR, with occasional very strong

overprediction, something that GAM and particularly

Bioclim were much less prone to. Bioclim can be used as

a conservative approach, for example, in the context of

reserve planning. It will likely underestimate future

ranges, but there is a high probability that areas identi-

fied as suitable for a species will be correctly identified.

Examining the mathematical properties of the climate

envelope modeling methods can help explain the dif-

ferences in their performance. Domain uses the Gower

distance metric to calculate suitability for a grid cell by

calculating a mean (over climate variables) weighted

distance of a grid cell to the nearest (in climate space)

occurrence point. All occurrence points are treated

separately and, unlike in the other models, there is no

generalization (creation of response functions). With a

change in climate, the average environmental distance

of the sites (grid cells) to the occurrence points is much

more likely to increase than to decrease. In other words,

Domain is probably very sensitive to the occurrence of

new combinations of the environmental variables and

this negatively affects its ability to predict a species’

Table 2 Statistical significance of differences between performance under future and past climate conditions of four climate

envelope models relative to their performance under current conditions

Bioclim Domain GAM Maxent

Future Past Future Past Future Past Future Past

6 variables

RRS o0.01 o0.01 o0.01 o0.01 0.50 0.19 0.05 0.01

OI o0.01 o0.01 o0.01 o0.01 0.27 0.01 0.31 0.25

FPR 0.34 0.80 0.01 o0.01 0.12 0.92 0.01 o0.01

FNR o0.01 o0.01 o0.01 o0.01 0.64 0.01 0.85 0.15

18 variables

RRS o0.01 o0.01 o0.01 o0.01 0.61 o0.01 0.25 o0.01

OI o0.01 o0.01 o0.01 o0.01 o0.01 o0.01 0.32 0.22

FPR 0.68 0.13 o0.01 o0.01 0.16 0.60 0.01 o0.01

FNR o0.01 o0.01 o0.01 o0.01 0.01 o0.01 0.85 0.02

Calculated using the Wilcoxon test (5Mann–Whitney U-test) for four indices (see text): relative range size (RRS), overlap index (OI),

false positive rate (FPR), and false negative rate (FNR), with n 5 100 plant species, and for models run with six or 18 environmental

variables.

GAM, General Additive Modeling.
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response to climate change. Bioclim uses independent

percentile distributions and is, therefore, less likely to

be very sensitive to the occurrence of new combinations

of environmental variables. However, if one or more

environmental variables are outside what was observed

in the current climate, even if this is not truly a limiting

factor, then Bioclim will underpredict (Fig. 3). GAM and

Maxent both use presence and absence (or random

background) data. This likely makes them able to

correctly identify as suitable at least some of the ‘new’

environmental space if the conditions are closer to the

conditions under which the species is currently present

than to the conditions under which it is absent. Accord-

ingly, Maxent and GAM both seemed to be able to

predict species distributions under novel combinations

of climate space.

The number of environmental variables used for

modeling strongly influenced the results with both

Domain and Bioclim. This contrasts with the results of

Beaumont et al. (2005), who found that Bioclim was

insensitive to the number of variables used. The extent

to which the number of variables influences the results

should be related to how correlated they are, and

perhaps that explains the differences between our re-

sults and those of Beaumont et al. (2005). GAM and

Maxent were much less influenced by the number of

variables used than either Bioclim or Domain. GAM

and Maxent use variable selection (stepwise variable

selection in the GRASP implementation of GAM) or

weighting and should thus be inherently less sensitive

to possible model overfitting. In some cases, Maxent

may have removed too many variables, leading it to

occasionally strongly overpredict range sizes.

We can only speculate whether the results reported

by Thomas et al. (2004) are affected by the modeling

artifacts uncovered here, but it certainly is a possibility

that some of the modeling approach used in that study

suffered from this problem. Of the nine data sets

considered by Thomas et al., two had been analyzed

with Bioclim, and one with an approach that appears to

combine aspects of Domain and Bioclim. For example,

Bioclim was used to model the effect of climate change

on Australian butterflies. This work was reported ex-

tensively by Beaumont et al. (2005) who used Bioclim to

model the distribution of 25 species in various ways

and found that in 91% of 300 cases the species declined

in range. Our findings suggest that these results might

be an artifact of the Bioclim model, and that this may

have biased the results obtained by Thomas et al. (2004).

Our results also suggest that that some CEMs can

indeed be useful to predict the effect of climate change

on species distributions. CEMs were also reasonably

good at predicting the distributions of British birds

under recent climate change (Araújo et al., 2005a, b);

and were able to predict changes in range sizes that are

similar to those predicted from molecular data (Ruegg

et al., 2006). While these results are encouraging, several

caveats need consideration. In our experimental design,

we purposefully eliminated nonclimatic effects on spe-

cies distributions, a basic assumption that is always

made when using CEMs to assess the effect of climate

change (Pearson & Dawson, 2003). In reality, species

distributions may be limited by both biotic and abiotic

factors such as species interactions and dispersal limita-

tion (Davis et al., 1998; Kearney & Porter, 2004; Araújo &

Pearson, 2005; Guisan & Thuiller, 2005), some of which

are anthropogenic (La Sorte, 2006). Further, most data

used for CEMs are from natural history collections and

may have inaccurate georeferences (Wieczorek et al.,

2004), and are biased in geographic space (Hijmans

et al., 2000) which can lead to biased distributions in

environmental space (Kadmon et al., 2004). While sig-

nificant progress in increasing the accuracy of CEMs

has been made, model accuracy is still low for some

regions and species (Elith et al., 2006). Moreover, the

best models for predicting current distributions might

‘overfit’ the data and such loss of generality could make

them less suitable to predict future distributions (Ran-

din et al., 2006).

In conclusion, we believe that progress in using CEMs

to predict the effect of climate change on species dis-

Fig. 3 Schematic description of predicting the distribution of a

species under different climates using two climate envelope

models, Bioclim, and Domain. There are 15 sites, with different

climates in the two time periods. The true requirements of the

species are constant and indicated with an ellipsoid. The inferred

requirements do not fully overlap with the true requirements

because there are insufficient sites where the species has been

observed and/or because parts of the true niche are currently not

present on the landscape, and because the model methods are

imperfect. Under future conditions, model performance is di-

minished because some sites are incorrectly classified as not

having the species (false negatives).
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tributions can be made through a number of comple-

mentary approaches, including (1) improving data and

modeling methods for predicting current distributions

(Graham et al., 2004; Guisan & Thuiller, 2005; Elith et al.,

2006); (2) evaluating the ability of CEMs to provide

accurate estimates of the effect of climate change by

comparing them with mechanistic approaches, as was

done in this paper; (3) increasing understanding of the

drivers of species distributions, and the extent to which

these are directly related to individual climatic variables

(Kearney & Porter, 2004; Gavin & Hu, 2006), and how

responses to climate change are affected by genetic

variability (Harte et al., 2004); (4) comparing predicted

past distributions with insights from fossil, pollen,

and molecular data (Hugall et al., 2002; Martı́nez-Meyer

et al., 2004; Ruegg et al., 2006); and (5) integrating

CEM and mechanistic modeling approaches (Midgley

& Thuiller, 2005).
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Araújo MB, Pearson RG, Thuiller W et al. (2005a) Validation of

species–climate impact models under climate change. Global

Change Biology, 11, 1504–1513.
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Pearson RG, Thuiller W, Araújo MB et al. (2006) Model-based

uncertainty in species range prediction. Journal of Biogeography,

33, 1704–1711.

Peterson AT (2003) Predicting the geography of species’ inva-

sions via ecological niche modeling. The Quarterly Review of

Biology, 78, 419–433.

Peterson AT, Martinez-Meyer E, González-Salazar C (2004) Re-
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