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Abstract Despite their economic and environ-

mental impacts, there have been relatively few

attempts to model the distribution of invasive ant

species. In this study, the potential distribution of

six invasive ant species in New Zealand are

modelled using three fundamentally different

methods (BIOCLIM, DOMAIN, MAXENT).

Species records were obtained from museum

collections in New Zealand. There was a signif-

icant relationship between the length of time an

exotic species had been present in New Zealand

and its geographic range. This is the first time

such a time lag has been described for exotic ant

species, and shows there is a considerable time lag

in their spread. For example, it has taken many

species several decades (40–60 years) to obtain a

distribution of 17–25% of New Zealand regions.

For all six species, BIOCLIM performed poorly

compared to the other two modelling methods.

BIOCLIM had lower AUC scores and higher

omission error, suggesting BIOCLIM models

under-predicted the potential distribution of each

species. Omission error was significantly higher

between models fitted with all 19 climate vari-

ables compared to those models with fewer

climate variables for BIOCLIM, but not DO-

MAIN or MAXENT. Widespread species had a

greater commission error. A number of regions in

New Zealand are predicted to be climatically

suitable for the six species modelled, particularly

coastal and lowland areas of both the North and

South Islands.

Keywords Invasive ants � BIOCLIM �
DOMAIN � MAXENT � Species distribution

modelling

Introduction

Invasive species are a global problem, affecting

agriculture, forestry, fisheries, human health and

natural ecosystems (Drake et al. 1989; Mooney

and Drake 1986; Sandland et al. 1999; Mack et al.

2000). A fundamental approach to understanding

and managing invasive species is to determine

their current and potential distribution. There has

been a number of recent papers providing an

overview to species distribution modelling, or a

comparison of modelling methods (Fielding and

Bell 1997; Guisan and Zimmermann 2000;

Zaniewski et al. 2002; Anderson et al. 2003; Segu-

rado and Araújo 2004; Guisan and Thuiller 2005;

Elith et al. 2006; Phillips et al. 2006). Essentially,

species distribution modelling aims to predict

areas that describe where environmental
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conditions are suitable for the survival of the

species. That is, the potential distribution or

fundamental niche (Anderson et al. 2003;

Peterson 2003; Guisan and Thuiller 2005).

In general, these modelling methods combine

species locality data (geo-referenced coordinates

of latitude and longitude from confirmed pres-

ence) with environmental variables to create a

model of a species requirements for the examined

variables (Anderson et al. 2003). The resulting

model is then projected onto a GIS map (termed

a habitat suitability map), of the study region

showing the potential geographic distribution of a

species. For invasive species management, habitat

suitability maps identify areas where (1) invasive

species may actually be present (but are as yet

undetected), and (2) where invasive species may

disperse to in the future, thus providing assistance

for planning and prioritising areas for surveil-

lance. Such information can also assist in deter-

mining the extent, cost and likelihood of success

of a control programme. Thus, predictive model-

ling of a species distribution represents an impor-

tant tool for invasive species management

(Anderson et al. 2003).

Invasive ant species are currently receiving

considerable attention from around the globe,

with increasing evidence of economic and agri-

cultural impacts, health effects on humans, and

disruption to natural ecosystems (Williams 1994;

Christian 2001; Holway et al. 2002; O’Dowd et al.

2003; Ward and Harris 2005). Although only a

handful of invasive ant species are well studied

(Holway et al. 2002), there are many other ant

species with the opportunity to become invasive.

For example, at least 150 species of ants have

been accidentally transported by humans to new

regions through global trade (McGlynn 1999).

However, this number is almost certainly an

underestimate (Suarez et al. 2005; Ward et al.

2006).

Climatic variables, especially temperature,

rainfall and humidity, play a large role in deter-

mining the distribution of ant species. Hölldobler

and Wilson (1990) state that every ant species

operates within a temperature-humidity enve-

lope. However, this climate envelope is more

apparent at large spatial scales, where at local

levels it is strongly shaped by species microhabitat

specialisation and strategies to avoid inter-specific

competition (Hölldobler and Wilson 1990). On

large spatial scales ant abundance is strongly

correlated with net primary productivity (a func-

tion of solar radiation and rainfall) (Kaspari et al.

2000). Temperature also plays an important role

in the abundance of ants by restricting foraging

activity and regulating seasonal productivity

(Kaspari et al. 2000). Environments with high

rainfall reduce the time spent foraging (Vega and

Rust 2001). Conversely, in xeric habitats, the lack

of water and soil moisture can also limit the

distribution of some species (Holway and Suarez

2006).

At the level of the colony, the location and

construction of nests play an important role in

regulating temperature and humidity (Hölldobler

and Wilson 1990). For example, nests can also

provide a thermal refuge in hot environments,

allowing workers to retreat to a cool nest in the

hottest part of the day. Temperature primarily

controls the development of the eggs, larvae and

pupae (Hartley and Lester 2003). Some ant

species are known to move brood vertically

within the nest to keep them at the optimum

temperature for development (Hölldobler and

Wilson 1990). Extremes of temperature are

known to severely limit, or stop, the production

of workers and reproductive castes, which can

ultimately kill the colony (Korzukhin et al. 2001).

Despite the importance of climate variables to

the survival and distribution of ants, there have

been relatively few attempts to model the distri-

bution of invasive ant species. Hartley and Lester

(2003) used climate station records and a degree-

day model for each life stage of the Argentine

ant, Linepithema humile, to examine its potential

distribution in New Zealand. Roura-Pascual et al.

(2004) also examined the potential distribution of

L. humile on a global distribution and under

climate change scenarios using a genetic algo-

rithm for rule-set prediction (GARP) model.

Pimm and Bartell (1980) provided one of the

first distribution models for the red imported fire

ant, Solenopsis invicta, an invasive species in the

south-eastern USA. They used a principal coor-

dinate analysis to model the distribution in Texas

on two environmental axes (temperature and

rainfall). However, they overestimated the extent
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of expansion under dry conditions (Korzukhin

et al. 2001). Stoker et al. (1994) used a complex

mechanistic model to simulate population and

colony growth of S. invicta at different tempera-

ture and rainfall regimes. More recently Korzuk-

hin et al. (2001) has provided a simulation model

for S. invicta based on colony growth as a function

of soil temperature. The production of female

alates (reproductives) of a colony was estimated

and this provided an assessment of whether S.

invicta could survive in different locations. The

model of Korzukhin et al. (2001) has also been

applied on a global scale by Morrison et al.

(2003). Sutherst and Maywald (2005) have also

modelled S. invicta at a global scale using colony

growth and stress parameters in the programme

CLIMEX.

These models have allowed the identification

of areas that are climatically suitable, as well as

providing insight into the factors that may limit

the expansion of these two invasive species. In

this study, the potential distribution of six inva-

sive ant species in New Zealand is modelled using

three fundamentally different methods. New

Zealand has a very small native ant fauna of 11

species (Ward 2005). As a consequence, the

establishment and subsequent spread of invasive

ant species is less likely to be determined by inter-

specific competition from native ant species.

Thus, climate variables are most likely to be the

primary factor in restricting the occurrence of

invasive ant species on a large-scale in New

Zealand.

Methods

Species records

Records of all exotic species established in New

Zealand were obtained from an online database

(Landcare Research 2006). The database repre-

sents records from a 90-year period (from the

early 1900s to 2004) of specimens held in muse-

ums throughout the country. Specimens are col-

lections made by professional scientists (from

Universities and government institutions), ama-

teur entomologists, and members of the public.

All records contained information of locality,

year of collection, and the majority (> 90%) of

records contained information on habitat, collec-

tor, and a map reference. The database consists of

over 2,000 species-locality records.

Spread since arrival

The geographical spread since the arrival of a

species was estimated by using the date of the first

recorded presence in New Zealand and the

number of coded regions (‘Crosby codes’) each

species has been recorded within. Crosby codes

are equal-sized regions throughout New Zealand

and are primarily used for the retrieval and

documentation of entomological specimens in

New Zealand collections (Crosby et al. 1998).

They are used here as a measure of distribution.

There are 29 Crosby regions for New Zealand.

Modelling potential distribution

Data sources

Not all exotic species in New Zealand were

modelled. Many species are known from very few

records or are very recent establishments. Six

invasive species were chosen to be modelled:

Iridomyrmex sp. (undescribed), Ochetellus glaber,

Paratrechina sp. (undescribed), Pheidole rugosu-

la, Technomyrmex albipes, and Tetramorium

grassii (Table 1). These species have been in

New Zealand for many decades, are among the

most geographically widespread and are increas-

ingly found in native ecosystems.

Environmental data was obtained from

WORLDCLIM (version 1.3, http://www.worldc-

lim.org) which is explained in detail in Hijmans

et al. 2005). WORLDCLIM contains climate data

(monthly precipitation and monthly mean, mini-

mum and maximum temperature) at a spatial

resolution of 30 arc seconds (~1 · 1 km resolu-

tion) obtained by interpolation of climate station

records from 1950–2000. From this climate data,

19 climate variables are derived: annual mean

temperature [1], mean monthly temperature

range [2], isothermality [3], temperature season-

ality [4], maximum temperature of warmest

month [5], minimum temperature of coldest
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month [6], temperature annual range [7], mean

temperature of wettest quarter [8], mean temper-

ature of driest quarter [9], mean temperature of

warmest quarter [10], mean temperature of cold-

est quarter [11], annual precipitation [12], precip-

itation of wettest month [13], precipitation of

driest month [14], precipitation seasonality [15],

precipitation of wettest quarter [16], precipitation

of driest quarter [17], precipitation of warmest

quarter [18], and precipitation of coldest quarter

[19]. For further detail see (http://www.worldc-

lim.org, or Hijmans et al. 2005). The same climate

variables were used in each modelling method.

The climate variables represent a combination of

annual trends, seasonality and extreme environ-

mental conditions.

Modelling methods

Three different modelling methods were used.

First, BIOCLIM (Nix 1986), uses a climate

envelope (a rectilinear volume in environmental

space) to summarise the climate at locations

where a species has been recorded. BIOCLIM

predicts suitable conditions for a species where

values of the climate variables fit within the

extreme values determined by the set of known

locations. Locations where the values lie within

the 5–95th percentile of the climate envelope are

traditionally classified as ‘core’ regions of suit-

ability. The second method, DOMAIN (Carpen-

ter et al. 1993), uses a distance-based method (the

Gower metric) to assess new sites in terms of their

environmental similarity to sites of known pres-

ence. DOMAIN produces an index of habitat

suitability on a continuous scale (0–100), where

higher scores (e.g. > 90) are considered highly

suitable. Both BIOCLIM and DOMAIN model-

ling methods were implemented in DIVA-GIS

software (version 5.2, http://www.diva-gis.org).

The third method is maximum entropy species

distribution modelling (MAXENT, version 2.2), a

general-purpose machine learning method (Phil-

lips et al. 2004). Entropy in the context of

probability theory and statistics measures the

amount of information that is contained in a

random variable or unknown quantity. The idea

of MAXENT is to estimate the target probability

distribution by finding the probability distribution

of maximum entropy, that is, the closest to

uniform. This is equivalent to finding the maxi-

mum likelihood Gibbs distribution. MAXENT

software and further information on this method

are available from http://www.cs.princeton.edu/

~schapire/maxent (or see Phillips et al. 2006).

The three modelling methods differ in their

theoretical assumptions, modelling procedures,

novelty and performance. BIOCLIM is an estab-

lished method and has been widely used for

species distribution modelling (Téllez-Valdés and

Dávila-Aranda 2003; Meynecke 2004; Beaumont

et al. 2005), DOMAIN has not been widely used

(Loiselle et al. 2003), and MAXENT has only

recently been applied to modelling species distri-

butions (Phillips et al. 2006). Despite using three

very different modelling methods, all use the

Species Training records PCA 1 PCA 2 PCA 3 Selected variablesa Crosby Regions

Iridomyrmex sp. 143 40.5 75.4 87.2 1, 3, 5, 12 8
Ochetellus glaber 125 43.1 76.7 87.1 1, 2, 3, 12 11
Paratrechina sp. 180 42.6 75.8 85.8 1, 2, 3, 7, 12 10
Pheidole rugosula 58 52.0 77.8 86.1 1, 2, 3, 5, 10, 14,16 9
Technomyrmex albipes 122 40.3 73.7 84.5 1, 2, 3, 4, 12 16
Tetramorium grassii 94 81.9 98.4 99.4 1, 4, 12, 16 7

a Annual mean temperature [1], mean monthly temperature range [2], isothermality [3], temperature seasonality [4],
maximum temperature of warmest month [5], temperature annual range [7], mean temperature of warmest quarter [10],
annual precipitation [12], precipitation of driest month [14], precipitation of wettest quarter [16]

Table 1 The six exotic ants species modelled and the
number of training records used in each partition. PCA 1–
3 refers to the contribution of the first, second and third
PCA axis in explaining the cumulative percentage varia-
tion in climate variables. The selected climate variables

refers to variables used in comparison to ‘all variables’,
numbered variables are given in the methods. The number
of Crosby regions is a measure of the extent of a species
distribution in New Zealand (maximum 29)
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same basic set of information to model the

distribution of a species. That is, a set of samples

(species presence) is available from a geograph-

ical region, which is linked to a set of features

(e.g. climatic variables).

Model building and evaluation

For each species, 10 random partitions were made

of species records by bootstrapping. Each parti-

tion was created by randomly selecting 75% of

the species records as training data. The remain-

ing 25% of species records were set aside for

testing the resulting models. This is a split-sample

approach (Guisan and Zimmerman 2000). Ten

partitions were made to assess the variability of

each method and to allow statistical testing of

differences in performance (see Phillips et al.

2006). Data was ‘cleaned’ in DIVA-GIS where

duplicates records were deleted and only one

species occurrence record per grid cell was

allowed. Coordinates for species records in the

online database are listed as New Zealand map

grid references, these were converted to decimal

latitude and longitude in DIVA-GIS.

Species records consist of individual point-

locality data, that is, presence-only data. How-

ever, in order to evaluate models on the basis of

error rates, absence data is needed. To overcome

the lack of absence data, ‘pseudo-absence’ data is

generated which uses random points throughout

the study area as assumed absences (Zaniewski

et al. 2002). For BIOCLIM and DOMAIN

pseudo-absence were generated at random in a

1:1 ratio with the number of presence records.

MAXENT uses 10,000 random background

points in the study area to define the probability

distribution and evaluate model predictions.

In presence/absence models there are two

types of prediction errors (Fielding and Bell

1997). False negatives (omission error, under-

prediction) result in areas being classified as

climatically unsuitable when they are not. Con-

versely, false positives (commission error, over-

prediction) result in areas being classified as

climatically suitable when they are not. For

invasive species it is more important to minimise

false negatives. That is, it is better to predict that

an invasive species will occur in a area (but it

never happens) than to predict an invasive will

not occur in an area, when it actually could.

Models that have a high proportion of presences

correctly predicted (i.e. model sensitivity) and a

low omission error (false negative rate) should be

preferred. Commission error are likely to result

from the species not yet having colonised all

climatically suitable locations and dispersal limi-

tations (Guisan and Thuiller 2005), and for

presence-only modelling apparent commission

error will exist, where the species is present in

an area but surveys have not been undertaken to

confirm this (Anderson et al. 2003).

Omission error was determined through a

confusion matrix (Fielding and Bell 1997). A

threshold was applied to each modelling method

because an upper limit is needed to determine

what values represent true presence and true

absences (BIOCLIM = 25, DOMAIN = 90,

MAXENT = 1, see Phillips et al. 2006). Optimal

models were defined as ‘omission error < 0.05’ by

the criteria of (Anderson et al. 2003). The area

under the Receiver Operating Characteristic

curve (AUC) was also used to examine model

performance. AUC measures the ability of a

model to discriminate between sites where a

species is present versus those where it is absent

(Fielding and Bell 1997; Elith et al. 2006). It

provides a single measure of overall accuracy that

is not dependent upon a particular threshold

(Fielding and Bell 1997). AUC ranges from 0 to 1,

where a score of 1 indicates perfect discrimina-

tion, a score of 0.5 implies discrimination that is

no better than random. A value of 0.8 for the

AUC means that there is a 80% probability that a

random selection from the presence records will

have a model score greater than a random

selection from the absence records.

Another issue in the modelling of species

distributions is the number of climatic variables

used in modelling (Kriticos and Randell 2001;

Beaumont et al. 2005). Using too few, or too

many climatic variables may result in incorrect

predictions. To examine the influence on the

number of climate variables on model perfor-

mance climate data was generated for each

species record in DIVA-GIS. Principle co-ordi-

nate analysis (PCA) within PRIMER v5.0
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software (Clarke and Warwick 2005) was used to

examine the similarity between the climate vari-

ables. Collinearity was examined through a Pear-

son correlation matrix and subsets of variables

with a high average correlation (> 90%) were

reduced to a single variable (recommended by

Clarke and Warwick 2005). To assist in the

interpretation of results the same variables were

retained for each species from the PCA. The

Wilcoxon signed-rank test was used to examine

differences in omission error between models

generated from all 19 climate variables (e.g.

BIOLCIM-all) and between models with only a

‘select’ number of climate variables (e.g. BIOC-

LIM-select).

Thus, 360 models were created, using six

species, three modelling methods, 10 partitions,

and two options (number of climatic variables).

Results

Exotic ant species in New Zealand

There are twenty-eight exotic ant species present

in New Zealand (Ward 2005). Exotic species are

predominantly found in the northern regions of

the North Island, and to a lesser extent in the

coastal lowland regions of the North Island and

the northern region of the South Island (Fig. 1).

These areas generally represent the warmer areas

of New Zealand. The greatest number of exotic

species are concentrated in the cities with a large

port: Auckland, Tauranga and Napier (Fig. 1).

There has been a relatively constant arrival of

exotic species to New Zealand from the late 1800s

to the present (Fig. 2). The oldest records of

exotic species date from before the 1870s and are

thought to have been associated with soil ballast

of ships arriving during the early days of Euro-

pean settlement (Brown 1958). The presence of

four new species in the last 5 years also serves to

highlight the relatively regular establishment of

ant species in New Zealand. There was a signif-

icant correlation (r2 = 0.436, P < 0.01) between

the length of time an exotic species has been

present in New Zealand and the extent of its

current distribution (Fig. 2).

The six species (which are being modelled in

the following section) have been in New Zealand

an average of 65.5 years (SE ± 6.2; range 42–84),

and occupy an average of 10.2 Crosby regions

(SE ± 1.3; range 7–16), for an average spread of

6.8 years for every Crosby region occupied

(SE ± 0.9; range 5–11).

Fig. 1 The current distribution of exotic species in New
Zealand (mapped on 20 · 20 km scale). Points off the
main islands represent small offshore islands
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Fig. 2 Relationship between the length of time an exotic
species has been present in New Zealand and its current
distribution (measured by the number of Crosby regions;
each point represents one species, y = –0.1x + 201.66, r2 =
0.436, P < 0.01)
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Potential distribution

Selection of climatic variables

The first three PCA axes consistently explained

~90% of the variation within climate data for

each species (Table 1). The first PCA axis always

represented temperature variables and the second

precipitation variables. The number of variables

selected was relatively consistent for each species,

reduced from the original 19, to approximately

four variables (range 4–7, Table 1). Across all

species, the climate variables selected were:

annual mean temperature, mean monthly tem-

perature range, isothermality, temperature sea-

sonality, maximum temperature of warmest

month, temperature annual range, mean temper-

ature of warmest quarter, annual precipitation,

precipitation of driest month, precipitation of

wettest quarter. However, it should be remem-

bered, where high average collinearity existed

within a groups of variables, the same variable for

each species was consistently selected to repre-

sent this group.

For each modelling method the omission error

from models of ‘all variables’ was compared to

‘selected variables’ derived from the PCA. For

DOMAIN and MAXENT methods there was no

significant differences between the average omis-

sion error of models with ‘all variables’ compared

to ‘selected variables’ (Wilcoxon signed rank test,

all species, P > 0.125). For BIOCLIM, omission

error was significantly higher for models fitted

with all 19 climate variables compared to those

with fewer climates variables. This was consistent

for all species; Ochetellus glaber and Pheidole

rugosula (P < 0.05), Iridomyrmex sp., Paratrechi-

na sp., Technomyrmex albipes, Tetramorium gras-

sii (P < 0.01).

Model performance

From a plot of omission versus commission error,

the performance of methods and each model

(n = 360) can be compared (Fig. 3). BIOCLIM

models generally cluster in the upper left, repre-

sented by high omission and low commission,

suggesting that these models are under-predicting

species distributions. DOMAIN and MAXENT

models mix together, and 91% of these models

have an omission error less than 0.10.

Of models with an omission error of less than

0.05, there were significantly fewer BIOCLIM

models (n = 2) represented compared to DO-

MAIN (n = 76) and MAXENT (n = 96) models

(v2 = 85.31, d.f. = 5, P < 0.001). Further exami-

nation of these models revealed that species were

not spread evenly across the range of observed

commission error (Fig. 4). This is a consequence

of widespread species having greater commission

error (Anderson et al. 2003). The average com-

mission error of these species (for models with

omission error of less than 0.05) is highly corre-

lated with the number of Crosby regions

(r2 = 0.865), a measure of New Zealand wide

distribution, but not with the number of training

records (r2 = 0.467).

For each species, MAXENT and DOMAIN

consistently performed better than BIOCLIM,

with higher average AUC scores (Fig. 5a). AUC

scores were not significantly correlated with the

number of training records for any modelling

method (all methods, P > 0.50). Omission errors

parallel AUC values, with BIOCLIM having

higher average omission error than either DO-

MAIN or MAXENT (Fig. 5b). Omission error

was not significantly correlated with the number

of training records for BIOCLIM for MAXENT

methods, but it was for DOMAIN (r2 = 0.783,

P < 0.05).

Habitat suitability maps

For each species a single model was selected to

create a habitat suitability map of the predicted

geographic distribution (Fig. 6). Habitat suitabil-

ity maps with presence-only data do not predict

the probability of presence, but provide relative

index of suitability (Anderson et al. 2003). The

criteria of selecting ‘optimal models’ from Ander-

son et al. (2003) was used, that is, the model

which was closest to the average commission (of

all models with omission error of less than 0.05).

For each species, a DOMAIN model was closest

to these criteria. However, it should be noted that

there were a number of DOMAIN and MAX-

ENT models that could have been used, and the
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selection of this single model is not meant to

imply that DOMAIN out-performed MAXENT.

The number of Crosby regions occupied was

counted for the current distribution and was

compared to predicted potential distribution for

each species. On average, the current distribution

was 47.9% of potential distribution, which was

consistent for each species Iridomyrmex sp.

Fig. 3 Omission versus
commission error for
modelling methods.
Climate variable options
(all vs. select) are not
distinguished

Fig. 4 The range of
commission error for each
species from optimal
models (omission error
less than 0.05)
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(50.0%), Ochetellus glaber (47.8%), Paratrechina

sp. (45.5%), Pheidole rugosula (40.9%), Techno-

myrmex albipes (59.3%), Tetramorium grassii

(43.8%).

Discussion

Presence-only modelling

Museum records have great potential for ecolog-

ical research, conservation issues, and in the study

of invasive species (Loiselle et al. 2003; Suarez

and Tsutsui 2004). Several recent studies on the

invasive Argentine ant, Linepithema humile, have

relied on museum collections to track its dispersal

and model the potential distribution across local,

regional and global scales (Suarez et al. 2001;

Roura-Pascual et al. 2004; Ward et al. 2005).

Museum records are particularly useful because

the records consist of individual point-locality

information, which are readily transferable as

input data for species distribution modelling

methods. However, museum records represent

presence-only data. There is almost always no

information on where a species is absent. This

represents several drawbacks for modelling

(Zaniewski et al. 2002); absence data is a

Fig. 5 (a) Average AUC values (± SD) and (b) average
omission error (±SD) for each species and modelling
method. Codes for species are: Iri = Iridomyrmex sp.,
Och = Ochetellus glaber, Par = Paratrechina sp.,
Phe = Pheidole rugosula, Tec = Technomyrmex albipes,
Tet = Tetramorium grassii

Fig. 6 The potential
geographic distribution of
six invasive species in
New Zealand. Top, from
left to right: Iridomyrmex
sp, Ochetellus glaber,
Paratrechina sp. Bottom,
from left to right:
Pheidole rugosula,
Technomyrmex albipes,
Tetramorium grassii. Each
habitat suitability map is
based on a DOMAIN
model and score. Species
presence points are
marked by white dots
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necessary component of many modelling meth-

ods, there may be unknown biases associated with

ad hoc or non-systematic data samples, and rare

species are often disproportionably present in

presence-only records. These generally make

presence-only data more difficult to model than

systematically gathered presence–absence data

(Zaniewski et al. 2002).

However, results from a recent comprehensive

comparison of modelling methods found that,

although presence-absence data generally outper-

form presence-only methods, models with pres-

ence-only were sufficiently accurate for modelling

potential species’ distributions and thus for

applied use (Elith et al. 2006). Furthermore, there

can also be problems with obtaining accurate

absence data, especially when the study species is

mobile or cryptic (Guisan and Thuiller 2005).

These issues are particularly important for ant

species, which may frequently move nesting sites

and are often very cryptic, with nests under-

ground or under logs. In addition, many ant

species in temperate regions show a strong

seasonal activity pattern, with less (or no) work-

ers actively foraging in colder periods. Sampling

effort also plays an important role in determining

whether or not a absence is accurate. In this

study, a 1 · 1 km grid was used to classify either

presence or absence of a species, however, ant

sampling is typically undertaken over a much

smaller area (e.g. a 20 · 20 m grid). Thus, insuf-

ficient effort or inappropriate sampling can rela-

tively easily result in a false absence.

There are also theoretical reasons for the

justification of using presence-only modelling.

Presence-only modelling is strongly linked with

the fundamental niche of a species (Guisan and

Zimmerman 2000; Phillips et al. 2006). Presence-

only modelling determines potential habitat suit-

ability, the inclusion of absence data will restrict

habitat suitability as the result of historical

restrictions, dispersal limitations, extinction and

biological interactions (Anderson et al. 2003).

Absence data is more useful in determining the

realised niche (Guisan and Zimmerman 2000;

Anderson et al. 2003; Phillips et al. 2006). Mod-

elling the fundamental niche is more appropriate

for invasive species, which may be less restricted

by biotic interactions, and because pest manage-

ment authorities are interested in determining the

‘maximum’ potential distribution of an invasive

species. Furthermore, in New Zealand, determin-

ing the fundamental niche of invasive ant species

may equate closely to the realised niche. This is a

consequence of New Zealand having very few

native ant species (Ward 2005), and thus invasive

ant species are unlikely to be limited by compe-

tition with native species.

Model performance and climatic variables

In this study, two measurements of model per-

formance were examined. For each species,

MAXENT and DOMAIN consistently perform

better than BIOCLIM, with higher average AUC

scores and lower omission error. Although AUC

scores provide a single measure of performance

that is independent of a classification threshold,

for invasive species omission error also needs to

be given significant consideration. For invasive

species, high omission errors are considered to be

a serious flaw (Guisan and Thuliier 2005), as they

result in areas being classified as climatically

unsuitable when they are not. Hence, the impor-

tance given to omission error in this study.

There are several recent studies which have

compared modelling methods involving BIOC-

LIM, DOMAIN or MAXENT. Loiselle et al.

(2003) compared five methods, including BIOC-

LIM and DOMAIN, to assess the conservation of

11 bird species in Brazil. DOMAIN models were

amongst the best performing models, with the

highest kappa values, low false-positives and

included the greatest number of key areas in

reserve designs. In contrast, BIOCLIM per-

formed relatively poorly (Loiselle et al. 2003).

In a major comparison of modelling methods,

regions and taxa, Elith et al. (2006) reported a

general progression of performance (poor to best)

from BIOCLIM to DOMAIN to MAXENT

(Elith et al. 2006). MAXENT was consistently

one of the best performing models.

In this study, BIOCLIM under-predicted the

potential distribution of invasive ant species in

New Zealand. BIOCLIM had substantially higher

omission error than DOMAIN and MAXENT,

even when a number of different thresholds were

examined within BIOCLIM. A major criticism of
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BIOCLIM is how locality records and climatic

variables are characterised into an ‘environmental

envelope’ in Euclidean space (Carpenter et al.

1993; Kriticos and Randell 2001). As more

climatic variables are added, a progressively

smaller potential distribution occurs. Conse-

quently, BIOCLIM may tend to under-predict

the potential distribution species. In this study,

the inclusion of fewer variables led to a larger

potential distribution area and thus improved the

omission error of models (as more actual pres-

ence records were encompassed). Therefore, the

number of climate variables included in a model

is an important consideration because using too

few, or too many may result in incorrect predic-

tions (Beaumont et al. 2005).

Choosing the right climate variables based on

the biology of the study species also plays an

important role in robust modelling (Beaumont

et al. 2005; Guisan and Thuiller 2005). Although

the number of environmental variables currently

available as digital environmental layers is rela-

tively few, they provide many of the variables that

are strongly thought to commonly influence species

macro-distributions (Anderson et al. 2003). Sev-

eral climate variables are known to play a key role

in the biology of ant species (Kaspari et al. 2000;

Vega and Rust 2001; Holway and Suarez 2006). At

large spatial scales, the tolerances of ant species are

generally correlated with climate and major hab-

itat (Hölldobler and Wilson 1990). Microhabitat

specialisation and inter-specific competition play

an increasing role at finer scales.

Distribution of exotic ants in New Zealand

Detailed studies of newly arrived exotic species

and their subsequent spread are greatly lacking in

the invasion biology literature (Puth and Post

2005). The continued study of these early intro-

ductions may prove useful insights into the process

of invasion for ant species. This is the first time such

a time lag has been described for exotic ant species,

and suggests there is a considerable time lag in their

spread. For example, it has taken many species

several decades (40–60 years) to obtain a distribu-

tion of 5–8 Crosby regions (17–25% of all regions).

Even after 100 years, the number of Crosby

regions occupied is ~50% of maximum.

There are several caveats to this approach;

primarily, the reliability of the year of introduc-

tion, the completeness of distribution records, and

whether all species would reach the maximum

number of Crosby regions. It is also likely that

some species will spread faster than others, as a

consequence of human-mediated spread. The

Argentine ant (point x, y; 1990, 11; Fig. 2) is

one such species (Ward et al. 2005). A recent

analysis of weeds (exotic plants) in New Zealand

has also shown a linear increase in distribution

with the number of years since the species

naturalised (Williams and Cameron 2006). Such

data suggests that it takes most naturalised plants

more than a century after naturalisation to appear

in all environmentally suitable regions (Williams

and Cameron 2006).

The six ant species modelled are predicted to

be ubiquitous in the northern regions of the

North Island, although areas with large stands of

Kauri forest appear not to be suitable. Coastal

lowland regions of the North Island are highly

suitable for all species, although Technomyrmex

albipes and Ochetellus glaber have the potential

to extend inland and inhabit considerable areas

of the middle and lower North Island. The

suitability of the South Island is low for Irido-

myrmex sp. and Tetramorium grassii, and these

species should remain restricted to the very upper

regions of the South Island. However, the other

four species have the potential to inhabit sizeable

areas of the South Island, particularly the eastern

lowland (drier) areas of Canterbury. These dis-

tributions correspond very well to an intolerance

of cooler mountainous regions. The distribution

of these species in the South Island is more

problematic because there are fewer occurrence

records and there is greater uncertainty whether

these records are permanent self-sustaining pop-

ulations.

Comparing the number of Crosby regions of

current and predicted distribution suggests that

each species is currently distributed in only half

the number of regions is could potentially inhabit.

Thus, it will take many more decades before these

species have reached an equilibrium in their

regional-scale distribution (assuming these

species are not already present in these areas

but are undetected).
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Conclusions

Exotic ant species are potentially a significant

threat to the New Zealand biota, which has

evolved in the absence of a large and dominant

native ant fauna. Thus, the continued study of

exotic ants in New Zealand is warranted, partic-

ularly the potential distribution of species and

their ecological impacts. At present there is no

information regarding the ecological impact of

exotic ant species in New Zealand and scant

information on other aspects of their biology.

Several avenues exist to improve the accuracy

and value of habitat suitability maps for exotic ant

species in New Zealand. The inclusion of soil

moisture and temperature information are likely

to be particularly useful as this has been an

important variable in Solenopsis invicta modelling

(Korzukhin et al. 2001), but such information is

still being developed for New Zealand. Overlays

of other environmental data could also prove

useful to improve predictions, particularly vege-

tation coverage. However, there is also the need

for widespread surveys for the presence of exotic

ant species in several areas of the country. Such

information will help evaluate modelling perfor-

mance and also reduce apparent commission

error, areas where there are no records but the

species is actually present. Colony level informa-

tion on the development of different life stages

and nesting behaviour would also greatly assist in

determining the environmental tolerances of

exotic ant species.
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