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ABSTRACT

 

Current circumstances — that the majority of species distribution records exist
as presence-only data (e.g. from museums and herbaria), and that there is an estab-
lished need for predictions of species distributions — mean that scientists and
conservation managers seek to develop robust methods for using these data. Such
methods must, in particular, accommodate the difficulties caused by lack of reliable
information about sites where species are absent. Here we test two approaches for
overcoming these difficulties, analysing a range of data sets using the technique of
multivariate adaptive regression splines (MARS). MARS is closely related to regres-
sion techniques such as generalized additive models (GAMs) that are commonly and
successfully used in modelling species distributions, but has particular advantages in
its analytical speed and the ease of transfer of analysis results to other computational
environments such as a Geographic Information System. MARS also has the advan-
tage that it can model multiple responses, meaning that it can combine information
from a set of species to determine the dominant environmental drivers of variation
in species composition. We use data from 226 species from six regions of the world,
and demonstrate the use of MARS for distribution modelling using presence-only
data. We test whether (1) the type of data used to represent absence or background
and (2) the signal from multiple species affect predictive performance, by evaluating
predictions at completely independent sites where genuine presence–absence data
were recorded. Models developed with absences inferred from the total set of
presence-only sites for a biological group, and using simultaneous analysis of
multiple species to inform the choice of predictor variables, performed better than
models in which species were analysed singly, or in which pseudo-absences were
drawn randomly from the study area. The methods are fast, relatively simple to
understand, and useful for situations where data are limited. A tutorial is included.
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INTRODUCTION

 

Species, communities, and ecosystems are distributed across the

Earth in interesting and complex patterns. These stimulate scien-

tific research not only for their own sake (Whittaker, 1967; Levin,

1992; Graham 

 

et al

 

., 2004a) but also because widespread clearing

and other disturbances threaten the existence of many species

and ecosystems (Margules & Pressey, 2000). Species distribution

models are one of several methods for quantifying these patterns,

relying on the association between a species’ occurrence or abun-

dance and environmental or geographical predictors (see reviews

by Guisan & Zimmerman, 2000 and Araújo & Guisan, 2006).

Distribution models (also called ‘habitat models’) now have an

established place within conservation biology, where they inform

survey design, strategic reserve placement, biosecurity risk

assessment, and identification of suitable restoration sites (Funk

& Richardson, 2002; Goolsby, 2004; Edwards 

 

et al

 

., 2005).

While species data from planned surveys that describe species

presence–absence or abundance are ideal for modelling distribu-

tions (Cawsey 

 

et al

 

., 2002), records for most species of the world

are in a ‘presence-only’ form. These are usually derived from ad-hoc

compilations of observations that lack reliable records of species’

absence (Dennis & Hardy, 1999; Ferrier 

 

et al

 

., 2004; Graham

 

et al

 

., 2004b). Given both the prevalence of such data and the
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urgent need to manage and conserve biodiversity, there has been

an increasing focus on their use in conservation planning — not

only for estimating species’ ranges, patterns in richness, and

biodiversity hotspots, but also for making predictive maps of

species’ occurrence or richness (e.g. Robertson 

 

et al

 

., 2003;

Brotons 

 

et al

 

., 2004; Hortal 

 

et al

 

., 2004; Phillips 

 

et al

 

., 2004).

These maps are created at many different spatial scales that vari-

ously inform broad-scale issues including climate change and

nationwide inventory (Araújo 

 

et al

 

., 2004), and finer-grained

practices of land management and acquisition of land for

reserves (Ferrier, 2002). Early modelling attempts used methods

specifically designed to deal with presence-only data (e.g. climate

envelopes, multivariate measures — Busby, 1991; Carpenter

 

et al

 

., 1993), but more recent research has focused on adapting

presence–absence methods such as logistic regression to the

presence-only paradigm, because of their greater predictive

ability (Elith 

 

et al

 

., 2006; Pearce & Boyce, 2006).

A range of issues are relevant to modelling presence-only

records including identifying and ameliorating biases (Freitag

 

et al

 

., 1998; Dennis & Hardy, 1999; Hortal & Lobo, 2005), under-

standing and dealing with errors in identification and spatial

location (Wieczorek 

 

et al

 

., 2004; Frey, 2006), choosing appropriate

grain sizes for analysis (McPherson 

 

et al

 

., 2006; Guisan 

 

et al

 

.,

2007), selecting appropriate modelling methods (Elith 

 

et al

 

.,

2006; Pearce & Boyce, 2006), and dealing with sparse records and

lack of absences (Ferrier, 2002; Engler 

 

et al

 

., 2004). In this paper

we focus on the interplay between a relatively new regression

method for predicting species distributions, i.e. Multivariate

Adaptive Regression Splines (MARS, Friedman, 1991; Hastie

 

et al

 

., 1994, 2001; Leathwick 

 

et al

 

., 2005), and two methods for

selecting absences. MARS is interesting because it gives comparable

predictive performance to other nonlinear regression methods

— such as generalized additive models (GAMs) — that have

been shown to be useful for modelling ecological data, yet MARS

is much faster than GAMS (Moisen & Frescino, 2002; Leathwick

 

et al

 

., 2005). In addition, results are easily transferred into a

Geographic Information System (GIS) for mapping. Perhaps

most importantly, the data from multiple species can be used to

inform model development for a target species, a feature

achieved with a ‘multiresponse’ model (Hastie 

 

et al

 

., 1994), that

is potentially useful for species with few records.

In a recent large international trial, MARS multiresponse

 

1

 

models performed particularly well for predicting occurrence

patterns in independent data sets (Elith 

 

et al

 

., 2006). Here, we

investigate what drives the improvement in performance over

related single-species models. There are two possibilities. The

first is choice of absences. Regression-based implementations

of single-species models often use random pseudo-absences —

i.e. random samples of the region in geographical space (e.g.

Zaniewski 

 

et al

 

., 2002). However, in constructing a MARS multi-

response model with presence-only records, if a site is visited

and a species is not recorded there, then analytically this site is

treated as an ‘inventory pseudo-absence’ for that species. Although

this approach to absence selection is uncommon (but see Lütolf

 

et al

 

., 2006; Ferrier 

 

et al

 

., 2007), consideration of the nature of

presence-only samples indicates that it may have strong practical

advantages. Second, the improvement provided by MARS multi-

response models may be driven by effects on variable selection.

Models that use simultaneously the signal from several to many

species in selecting predictor variables may be more robust for

prediction because data-rich species can help to inform models

for data-poor species (Ferrier & Guisan, 2006). That is, relevant

predictors are included because of their strong signal across

all species, whereas that signal might be insufficient to trigger

inclusion in single-species models (Leathwick 

 

et al

 

., 2005). Multi-

response models are effective for presence–absence data (Olden,

2003; Leathwick 

 

et al

 

., 2006) and conceptually are likely to be

useful for presence-only data, in which some species may be

poorly represented.

Our goal here is to assess the predictive performance of models

for 226 species from six study areas, assessed with independent

and separately collected presence–absence (PA) data sets in the

same regions from which the presence-only data were compiled.

This indicates whether the resulting predictive maps are accurate

enough to be useful in conservation planning at regional scales, and

gives insights into questions relevant to modelling presence-only

data with regression-based methods.

 

METHODS

Data for modelling and evaluation

 

Presence-only data for model fitting were collated for 226 species

from six regions of the world — birds and plants of the Australian

Wet Tropics (AWT); birds of Ontario, Canada (CAN); plants,

birds, mammals and reptiles of north-east New South Wales,

Australia (NSW); plants of New Zealand (NZ); plants from five

countries of South America (SA); and plants of Switzerland

(SWI). Species data were mostly drawn from natural history

collections, in which numbers of records per species varied from

few (tens to hundreds of presence records) to many (tens of

thousands of records; Table 1). MARS, in common with many

other methods, requires data akin to absences for modelling

species distributions, and for these we took a random sample of

10,000 sites to characterize the ‘background’. These are our

‘random pseudo-absences’ and we compare them with ‘inventory

pseudo-absences’ that are based only on sites that have been visited

but at which the target species does not occur. The designation of

the latter was partly dictated by the needs of the MARS multi-

response analysis, which requires a site by species matrix for fitting

models. For this, we compiled the presence records for all species

in a given biological group (e.g. ‘plants’ or ‘birds’), and reduced

them to the set of unique sites. These form the rows of the

matrix, and each column represents a species, assigned a value of

‘one’ if the species was recorded at that site, and ‘zero’ otherwise.

The zeros are therefore the ‘inventory pseudo-absences’. The

environmental data used for each region were selected for their

relevance to the species being modelled, as selected by the data

provider (Table 1, and see Elith 

 

et al

 

., 2006 for more detail).

 

1

 

Previously we have called these ‘community’ models but now prefer the 
term ‘multiresponse’, as used in the statistical literature (Hastie 

 

et al

 

., 1994).
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Eleven to 13 predictors were supplied per region but these were

reduced where necessary according to pairwise correlations (see

later). Grid cell sizes ranged from about 100 m 

 

×

 

 100 m (AWT,

NSW, NZ, SWI) to 1000 m 

 

×

 

 1000 m (CAN, SA), and these have

been demonstrated elsewhere to be appropriate for modelling

these data (Guisan 

 

et al

 

., 2007). For several regions previous

research informed the development of ecologically relevant pre-

dictors (NSW, NZ, SWI). For other regions, variables typically

used in distribution modelling were utilized, with emphasis on

climatic data (CAN, SA, AWT).

 

Model fitting

 

MARS is a method of flexible nonparametric regression model-

ling (Friedman, 1991). It can model complex, nonlinear relation-

ships between response and explanatory variables with similar

levels of complexity to that of a GAM (Hastie, 1991). The MARS

approach to fitting nonlinear functions is to fit linear segments

— also called piecewise linear basis functions — to the data. MARS

breaks the range of each predictor variable into subsets of the full

range using ‘knots’, and allows the slope of the fitted linear seg-

ments between pairs of knots to vary while ensuring that the full

fitted function is without breaks or sudden steps. In other words,

a nonlinear MARS function consists of a series of connected

straight line segments, rather than the smooth curve of a GAM.

Model fitting is achieved with a very fast procedure that starts

with forward steps that identify many knots, followed by a backward

pruning routine to simplify the model. Additions and deletions

are evaluated in terms of changes in residual squared errors using

generalized cross-validation (GCV). As the available algorithms

for MARS only accommodate normal error terms, we followed

Friedman (1991) in adapting the model for presence–absence

responses by fitting the MARS model, extracting its basis functions,

and fitting these as predictor variables within a generalized linear

model (GLM) with a binomial error distribution (Leathwick

 

et al

 

., 2005). This ensured that the predictions were constrained

between 0 and 1, but otherwise equated to a MARS model. All

models were constructed using the free statistical software, 

 



 

,

version 2.1.1 (R Development Core Team, 2004), with the 

 

mda

 

library and additional custom code by the authors (code and

brief tutorial available online). Further statistical details are avail-

able in Friedman (1991), Hastie 

 

et al

 

. (2001), and Leathwick 

 

et al

 

.

(2005). While MARS is also capable of automatically fitting

interactions between predictors, we did not test that capability

here. Our previous testing has failed to demonstrate that this

provides any significant increase in predictive performance

(Leathwick 

 

et al

 

., 2005; Elith 

 

et al

 

., 2006), though this feature may be

useful in specific circumstances (Mark Lethbridge, pers. comm.).

Table 1 Summary of data available for modelling and evaluation (adapted from Elith et al., 2006).

Region

Species records

Predictor variables offered in 

MARS modelling 

Biological groups 

(number of species)

PO: mean number (range);

number of unique sites

PA: number sites;

mean no. of pres Broad class

Cell size (m) and 

Extent (km2 × 106)

Australian Wet Tropics (AWT) Birds (20) 155 (32–265); 714 340; 97 5 climate 80 m × 80 m

3 topography 0.024

Plants (20) 35 (9–74); 379 102; 30

Ontario, Canada (CAN) Birds (20) 255 (16–749); 3298 14571; 1282 2 climate 1 km × 1 km

3 topography 1.088

1 distance 

New South Wales, Australia (NSW) Birds (10) 162 (48–426); 1351 Mean 920; 74 4 climate 100 m × 100 m 

2 soil 0.089

1 moisture 

3 topography 

1 disturbance 

Plants (29) 22 (2–69); 569 Mean 1333; 214

Mammals (7) 27 (6–49); 147 570; 76

Reptiles (8) 84 (34–168); 530 1008; 62

New Zealand (NZ) Plants (52) 59 (18–211); 2503 19120; 1801 7 climate 100 m × 100 m 

2 substrate 0.265

2 topography 

South America* (SA) Plants (30) 74 (17–216); 1221 152; 12 8 climate 1 km × 1 km

14.654

Switzerland (SWI) Plants (30) 1170 (36–5822); 10013; 810 6 climate 100 m × 100 m

11429 2 substrate 0.041

2 topography 

2 vegetation

PO is the presence-only modelling data and PA, the presence–absence evaluation data.

*Five countries: continental Brazil, Ecuador, Colombia, Bolivia, and Peru.
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The MARS single-species models with random pseudo-absences

were fitted with the 10,000 background absences weighted so that

the total weight for presences equalled the total weight for absences.

The weighting allowed the use of many pseudo-absences that

sample the environmental space of the region thoroughly, while

avoiding ‘swamping’ the model with so much absence data that

trends in presence were hard to detect.

One feature of the 

 



 

 version of MARS that has been rarely

investigated is its ability to use data from multiple species (but

see Leathwick 

 

et al

 

., 2005, 2006). Multiresponse models are

built and pruned in exactly the same way as a single-response

MARS model, except that the residual squared errors are averaged

across all response variables (here, all species), with individual

basis functions selected that give the best average improvement

in performance (Hastie 

 

et al

 

., 1994). The final multiresponse

model uses a common set of basis functions for all species, but

estimates a different set of coefficients for each species, so that the

shapes of the fitted functions can differ between species. As

explained above, the nature of a multiresponse model requires

the use of inventory pseudo-absences, and therefore no multi-

response models were fitted with random pseudo-absences. We

investigate here whether the multiresponse models have a better

predictive performance than MARS models developed individu-

ally for each species on the same (inventory-based) data.

In summary, we ran three sets of models: (1) single-species

MARS models fitted on presence records and using random

pseudo-absences; (2) single-species MARS models fitted on

presence records and inventory pseudo-absences, with the latter

constructed using data for the biological groups listed in Table 1;

and (3) multiresponse MARS models fitted on presence records

and inventory pseudo-absences. Note that these multiresponse

models differ from those presented in Elith 

 

et al

 

. (2006) due to

the latter’s use of both inventory pseudo-absences as used here,

and random pseudo-absences added to the site by species matrix

to achieve consistency with other analyses in that study.

In all cases we reduced the candidate predictor variables to

those with pairwise Pearson correlations of less than 0.85 (Elith

 

et al

 

., 2006). Categorical predictors were excluded because the

Windows 

 



 

 implementation of MARS does not allow for them,

although subsequently we have written code to fit them. Plots of

fitted functions and estimates of the contribution of each variable

to model fit based on changes in deviance were produced using

custom-written functions available online (and see Leathwick

 

et al

 

., 2005, 2006).

 

Model evaluation

 

The predictive performance of models was evaluated with inde-

pendent presence–absence (PA) data. We accessed the most accurate

and well-planned collections available for each region, and these

contained anywhere from a few hundred to tens of thousands of

records from sites that were comprehensively surveyed (Table 1).

To compare the predictions to the observations of presence and

absence, we use two statistics: the area under the receiver operat-

ing characteristic curve, AUC (Hanley & McNeil, 1982; Fielding

& Bell, 1997), and the deviance. AUC has been used extensively in

evaluating species’ distribution models, and measures the ability of

a model to discriminate between sites where a species is present,

vs. those where it is absent. A score of 0.5 indicates that a model

has no discriminatory ability, while a score of 1 indicates that

presences and absences are perfectly discriminated. AUC values

can be interpreted as indicating the probability that, when a presence

site and an absence site are drawn at random from the popula-

tion, the first will have a higher predicted value than the second.

It is a rank-based statistic — the prediction at the presence site

can be higher than the prediction at the absence site by a small or

a large amount, and the value of the statistic will be the same.

Deviance complements AUC because it expresses the magnitude

of the deviations of the fitted values from the observations, and

was estimated as the mean deviance per observation. As it was

calculated on independent evaluation data, we refer to it hereafter

as ‘predictive deviance’. Deviance has only a limited applicability for

presence-only evaluation, because it is affected by the calibration

of the models (i.e. how accurately predictions match the response,

Pearce & Ferrier, 2000) and we do not expect presence-only

models to be properly calibrated due to the lack of true absence

data. It should therefore not be used independently of other

measures for presence-only models because results could be

misleading. Furthermore, it needs to be interpreted with refer-

ence to the calibration of the models. Both AUC and deviance

deliberately use the full information in the predictions (i.e. using

the predicted relative likelihoods that range from 0 to 1), rather than

converting the predictions to a presence/absence estimate with a

threshold (Liu 

 

et al

 

., 2005). This is based on our understanding

that the full information is useful in conservation planning.

Nevertheless, elsewhere related data have been analysed with

kappa statistics derived from the confusion matrix (Elith 

 

et al

 

.,

2006), and the results are consistent with those based on AUC.

Variation in AUC and predictive deviance across all models

was summarized using Generalized Linear Mixed Models

(GLMMs), with the measure of predictive performance (AUC or

predictive deviance) as the response. 

 

Model

 

 (the three combina-

tions of data and model construct) was fitted as a fixed effect, and

 

species

 

 and an interaction between 

 

model

 

 and 

 

region-group

 

 were

fitted as random effects, the interaction term allowing for differing

performance of models across region-groups. GLMM analyses

were performed using 

 



 

 (Spiegelhalter 

 

et al

 

., 2003a),

which fits a Bayesian model. We assumed uninformative priors

for all parameters, resulting in a GLMM that is equivalent to one

fitted using maximum likelihood. Comparisons of the three

models were based on 50,000 Monte Carlo iterations after a

burn-in period of 10,000. The performance of 

 

model

 

 was sum-

marized as the median and 2.5% and 97.5% credible intervals of

the posterior distributions. The importance of each term in the

GLMM was assessed by change in the Deviance Information

Criterion (DIC, Spiegelhalter 

 

et al

 

., 2003b) for the full GLMM

compared with subsets where each term was excluded from the

GLMM. The DIC is the Bayesian equivalent of Akaike’s Informa-

tion Criterion, and rules of thumb suggest that changes in DIC of

more than 10 units indicate that the excluded term had an

important effect (Burnham & Anderson, 2002; McCarthy &

Masters, 2005).
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RESULTS

Comparative performance of models — broad trends

 

Results clearly indicate that all three modelling methods are

capable of producing predictions that accord well with in-

dependent data. The overall mean of AUC across all models was

0.72, but for approximately 47% of these models, the AUC

exceeded 0.75. Individual models constructed using random

pseudo-absences provided the lowest predictive performance

(Table 2). The use of inventory pseudo-absences gave a substantial

gain in predictive performance, both in their ability to rank sites

well (AUC) and in their ability to predict patterns of occurrence

in the evaluation data as indicated by deviance. While there was a

consistent trend for multiresponse models to improve prediction

further, the changes relative to those for change in pseudo-absences

were smaller, and the credible intervals showed more overlap

(Table 2).

 

Comparative performance of models between region-
groups

 

Closer examination of the comparative performance of models

indicated that the effect of changing model type and data construct

varied between regions and biological groups, as evidenced by

the trends in predictive performance (Fig. 1) and the magnitude

of the interaction effect in the GLMM (Table 3). We present the

results for the distinct biological groups 

 

−

 

10 in all — because in

the two regions with more than one group, the groups behaved

differently. The change in data construct from random pseudo-

absences to inventory pseudo-absences resulted in an increase in

mean AUC for eight groups (Fig. 1a), and a decrease in two (NZ

and AWT plants). The pattern was similar (but opposite direction,

as expected, Fig. 1b) for predictive deviance. While there was a

consistent continuation of the trends in predictive deviance

when moving from single to multiresponse models for all

groups, the changes in AUC were slightly more variable (Fig. 1).

Five regions were consistent with the overall trend — i.e. mean

AUC increased with use of a multiresponse model, though in

many cases the increase was relatively small. The exception —

NSW — showed varying behaviour among groups. For one NSW

group, plants, the mean AUC increased from 0.691 to 0.732 with

use of multiresponse models, whereas for the other three groups

(mammals, birds, and reptiles) AUC decreased slightly (Fig. 1a).

Examination of the geographical distribution of random

pseudo-absences for the different regions indicated the potential

for 

 

random pseudo-absences

 

 and 

 

inventory pseudo-absences

 

 to

Table 2 Predictive performance for the three combinations of model type and data.

Model/Data Single/random Single/inventory Community/inventory

Predictive deviance (per observation) 1.701 (1.357, 2.069) 0.935 (0.580, 1.300) 0.841 (0.480, 1.200)

AUC 0.684 (0.650, 0.717) 0.724 (0.691, 0.757) 0.737 (0.702, 0.771)

Values are modelled medians from the Generalized Linear Mixed Model, with lower and upper credible intervals (2.5% and 97.5%) in brackets.

Figure 1 Changes in predictive performance 
as measured by AUC (a) and predictive 
deviance for 10 region-groups (b), for three 
data/model constructs. (1 = single-species 
model, random pseudo-absences, 
2 = single-species model, inventory 
pseudo-absences, 3 = multiresponse model, 
inventory pseudo-absences). Data set codes as 
in main text.

Table 3 Results from a Generalized Linear Mixed Model analysis of 
the importance of factors affecting predictive performance of models 
fitted to presence-only data as measured by AUC.

Model DIC ∆DIC

Full model:

AUC ∼ method + method*group + species −1395

Without method −1298 97

Without interaction (method*group) −1341 54

Without species −750 645

Changes of greater than 10 in the Deviance Information Criterion (DIC) 

are indicated as important.
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sample different parts of the overall geographical/environmental

space. For example, the plant sites for NSW were relatively well

distributed over the whole region (left panel, Fig. 2) and mim-

icked a random sample, whereas those for NZ left large tracts of

dry, lowland land, much of which is now cleared, very sparsely

sampled, and the difference between these and a random sample

was more marked. Comparable figures for all regions and groups

are available online (see Figure S1 in Supplementary Material).

In analysing variation in the predictive gains with progression

from 

 

single-species models

 

 to 

 

multiresponse models

 

 (both on

inventory-based absences), we found varying degrees of relation-

ship between performance improvement and properties of the

modelling or evaluation data. The changes in AUC were most

interesting in their variation between region-groups. There was

no consistent trend in predictive gain with number of modelling

records or prevalence of the species as measured in the PA

data (Fig. 3). However, there was a strong positive correlation

(Pearson 

 

r

 

 = 0.76) between the number of species in a group and

the frequency with which the AUC for the multiresponse model

was higher than the AUC for the comparable single-species

model (Fig. 4) — i.e. the advantages of using multiresponse

models increased with increasing numbers of species in a biological

group. This was partially reflected in the complexity of the selected

models — biggest gains from use of multiresponse models gen-

erally occurred where a larger number of variables and basis

functions were selected (compare the mean number of variables

with the last column in Table 4). In contrast, there was no clear

trend in model complexity with change in data construct (i.e.

Table 4 Numbers of variables and basis functions fitted in MARS (multivariate adaptive regression splines) models [means and standard errors 
(SE)], compared with their predictive performance.

Number of variables ± SE No. of coefficients ± SE Frequencies for AUC results 

Model 1* Model 2* Model 3* Model 1* Model 2* Model 3* Mod 2 > Mod 1 Mod 3 > Mod 2

AWT birds 5.8 ± 0.9 4.7 ± 1.2 4 ± 0 12.0 ± 2.1 8.3 ± 2.1 9 ± 0 0.70 0.50

AWT plants 1.9 ± 0.9 2.2 ± 0.9 1 ± 0 3.7 ± 1.5 3.7 ± 1.2 2 ± 0 0.30 0.65

CAN 3.9 ± 1.0 3.6 ± 1.0 3 ± 0 10.9 ± 3.3 8.0 ± 2.8 9 ± 0 0.70 0.60

NSW birds 6.5 ± 1.4 5.5 ± 1.4 5 ± 0 11.5 ± 3.5 9.7 ± 2.6 10 ± 0 0.86 0.43

NSW mammals 4.3 ± 2.1 4.9 ± 1.6 2 ± 0 8.2 ± 3.5 7.7 ± 2.3 4 ± 0 1.00 0.30

NSW plants 2.4 ± 1.2 3.3 ± 1.4 3 ± 0 4.4 ± 2.5 5.7 ± 2.5 7 ± 0 0.55 0.72

NSW reptiles 6.4 ± 1.8 4.9 ± 0.8 3 ± 0  11 ± 3.5 7.8 ± 2.3 5 ± 0 0.63 0.25

NZ 4.0 ± 1.8 4.7 ± 1.8 6 ± 0 7.1 ± 3.5 8.0 ± 3.1 9 ± 0 0.44 0.73

SA 3.4 ± 1.3 4.6 ± 1.6 6 ± 0 7.2 ± 2.9 8.9 ± 2.8 9 ± 0 0.50 0.53

SWI 8.7 ± 1.5 8.0 ± 1.8 11 ± 0 17.9 ± 2.7 15.1 ± 3.5 23 ± 0 0.83 0.83

*Model 1 = single/random; model 2 = single/inventory; model 3 = multiresponse/inventory.

Figure 2 Distribution of community sites 
(grey) and evaluation sites (black) for NSW 
plants (left) and New Zealand.
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from single-species models based on random pseudo-absences

to single-species models based on inventory pseudo-absences)

(Table 4). We investigate the variables selected and provide

detailed examples for two species in the Supplementary Material

(see Appendix S1).

 

DISCUSSION

Predictive performance with presence-only data

 

Our results indicate that models fitted with presence-only data

can be sufficiently accurate to be useful. The best models used

inventory pseudo-absences and multiresponse models, and gave

a mean predictive AUC of 0.74, sufficient for a useful contribution

to conservation planning applications (Pearce & Ferrier, 2000).

This is the most reliable quantitative test we can offer of model

ability to produce predictive maps that indicate the current dis-

tribution of the species. The marked variation in results across

regions and groups, and among species, provides a reminder that

the fitting of reliable models is not always possible, and it is

important to evaluate the output as rigorously and comprehen-

sively as possible. Differences between regions and species are

discussed elsewhere (Elith 

 

et al

 

., 2006).

 

Comparison of data constructs

 

Inventory pseudo-absences strongly outperformed the random

pseudo-absences that are more traditionally used in analyses of

presence-only data. Several explanations are possible. In conceptual

terms, any set of constructed absence records provides a contrast

against which the presences are modelled. If the presence records

are restricted to only a part of the environmental or geographical

space in a region, the most sensible option may be to also restrict

the universe from which absences are selected to the same space.

This prevents the selection of absences from combinations of

environment where the species has never been searched for.

This restriction of the searched space may represent one of two

things. First, presence records might exist within a subset of the

space because other parts of that space have been severely modi-

fied (e.g. by clearing) or do not support relevant habitat. For

example, the NZ plant presence records (Fig. 2) were drawn from

a constrained geographical and environmental subset, because

the vast majority of dry lowland landscapes have been largely

cleared and now support agriculture.

Second, collection of records might be biased to more accessible

areas, meaning that important parts of potentially good habitat

Figure 3 Relationship between multiresponse advantage (as 
measured by difference in AUC) and characteristics of the modelling 
and evaluation data. Prevalence was estimated from frequencies in 
the evaluation data.

Figure 4 Relationship between number of species in a group and 
multiresponse advantage as measured by the frequency with which 
the multiresponse AUC was higher than the single-species AUC 
within that group. All models fitted on inventory pseudo-absences.
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remain unsampled — e.g. CAN data were severely biased to

southern parts of the sampling area, and species’ ranges were only

partially represented (Figure S1 in Supplementary Material). In

this case inventory pseudo-absences were still appropriate

because they remained within the sampled portion of the region,

but, as a consequence of this bias, predictions outside the

sampled space may be unreliable. In our study most of the

evaluation data sets had reasonably complete environmental and

geographical coverage (Elith 

 

et al

 

., 2006; see Figure S1), enabling

prediction to the full region to be adequately tested. The one

exception was the CAN evaluation data, which had similar biases

to the modelling data, and did not give a comprehensive test of

predictive performance outside the areas sampled by the presence-

only data. The move from random to inventory pseudo-absences

had the most marked effect in CAN, but this was a test largely

restricted to that part of the region sampled by the presence-only

data. Clearly the risk in using any type of pseudo-absence is that

the models will not extrapolate to all areas in the region, but this

is true wherever substantial parts of the environmental space are

unsampled (see Araújo 

 

et al

 

., 2005; Randin 

 

et al

 

., 2006; for dis-

cussion of extrapolating predictions). This suggests that where

samples are severely biased, areas falling well outside the sampled

space should be masked out to prevent the use of unreliable

predictions. Alternatively, some indication of the reliability of

predictions should be provided either by analysis of variation

in sample intensity or by mapping environmental distance

between a site of interest and the closest available sampling (e.g.

Leathwick, 2001).

The interplay between the modelling and evaluation data also

affects other, possibly anomalous, results in this study. For example,

the AWT plants showed opposite trends to most groups, with

random pseudo-absences giving better predictive performance

than inventory pseudo-absences. The AWT presence-only data

(and therefore the inventory pseudo-absences) were biased to the

northern part of the region, whereas the evaluation data were a

small sample, well distributed across the entire geographical

region (see Figure S1 in Supplementary Material). None of the

models would be well informed about good habitat in the south

because there were few presence-only sites there (i.e. the region

appears not to be covered comprehensively with herbarium

collections), so all are likely to lack some realism — the extent to

which this was a problem depended on the geographical distribu-

tion of the important environmental drivers of distribution.

The NSW data provided an opportunity to compare biological

groups within one region. Inventory pseudo-absence models

were superior for the three fauna groups, but held no advantage

for plants. Collection and survey effort for plants tended to be

distributed evenly across the landscape, while fauna surveys were

biased towards larger patches of forest. The biased distribution of

fauna sites was not reflected in a random sample of absences,

and a more marked improvement in model performance

occurred when the bias was accounted for by the use of inventory

pseudo-absences. In NSW the evaluation data tended to follow

the same forest-biased distribution as the modelling data and

so the prediction to less frequently sampled areas was not

extensively tested.

Comparison of model constructs

A change in model construct, from single-species to community

models, gave variable results, with overlap of the credible intervals

for both AUC and deviance (Fig. 1 and Table 2). The multi-

response models were useful in some regions — for example, in

NZ they gave a mean increase in AUC from 0.71 to 0.75 and a

small decrease in mean predictive deviance (0.84–0.82). Six of

the 11 candidate variables were selected in the multiresponse

model (Table 4 and Table S1 in Supplementary Material),

whereas fewer tended to be fitted in the single-species models

(mean 4.7 variables). Presumably, there was enough consensus

in the broad trends across the species for a single set of variables

to suit most species. Modelling all species simultaneously in the

multiresponse model may improve the stability of variable selec-

tion, which is especially important where there are limited data

to parameterize the model (NZ had an average of 59 records

per species in the presence-only data, with a range of 18–

211).

The advantage of multiresponse models was strongly corre-

lated with the number of species in the biological group, i.e.

multiresponse models are likely to be particularly advantageous

for large collections of data with many species in a group. A

further advantage is the reduced time taken when fitting and

making predictions from only one multiresponse model.

Further considerations

Our results can be linked to those from the growing literature on

the measurement of biases in presence-only data (Freitag et al.,

1998; Griffiths et al., 1999; Reddy & Dávalos, 2003) and how to

design surveys to provide better coverage when existing data are

inadequate (Dennis & Hardy, 1999; Hortal & Lobo, 2005; Ferrier

et al., in press). Geographical biases are most commonly

measured, and these may be directly relevant to species models

where distributions are significantly affected by factors operating

primarily in geographical space, e.g. historical disturbances, or

physical barriers to dispersal (Leathwick, 1998), or where they

are at a scale that causes spatial autocorrelation in the records

(Legendre, 1993). However, most models are constructed in

environmental space, so biases in the environmental distribution

of records will be most critical for distribution models. These

might, of course, coincide with geographical biases (Kadmon

et al., 2004). The impact of biases on environmental space will

vary according to what response is being modelled. For regres-

sion models of species’ occurrence (i.e. response = presence or

absence), survey effort at a site will produce a reliable presence

record unless there are locational and taxonomic uncertainties.

Selection of absences is most problematic, as demonstrated by

our results here. Analyses of survey biases in environmental space

could help to identify the best sampled areas, and be used to

guide placement or weighting of pseudo-absences. Where species

richness is the modelled response, biases are likely to be more

critical, and analyses of survey effort (e.g. Soberón & Llorente,

1993; Reddy & Dávalos, 2003) should inform inclusion or

weighting of records and to define unsampled areas.
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While we have demonstrated useful predictive performance

from presence-only species data, it is important to also recognize

their limitations. Because presence-only data give no reliable

information on the prevalence (frequency of occurrence) of species

in the region, and we have used them in a standard regression

model, predictions are not probabilities of occurrence but indicate

relative likelihoods of species presence. This means that the pre-

dictions can inform ranking of sites with respect to an individual

species, but cannot be used to make statements about relative

differences in occurrence between species. It is likely that the

results for change in data construct are related to this issue. The

models based on random absence samples have no information

at all on prevalence, and in this application we simply weighted

the random samples so their total weight equalled that of the

presence records. This will give poor calibration — i.e. the pre-

dicted probabilities will not accurately match the true probabilities,

and this will be reflected in the predictive deviance but not in the

rank-based AUC. Calibration of the models will change with the

change in data construct unless weights are used in the same way.

Using inventory pseudo-absences is likely to provide some infor-

mation on prevalence, because few records of the species among

all sites may give some indication of its true prevalence in the

landscape, though this could be confounded by sampling biases

towards rare and unusual species, and away from those that are

difficult to detect or collect. Nevertheless, there appears to be

enough useful information in these data to improve the calibration

of the models, resulting in a generally lower predictive deviance.

A more statistically rigorous approach to modelling with

pseudo-absences would be to make adjustments to the regression

method, rather than using techniques designed for true presence-

absence data. Case-control regression that takes account of con-

taminated zeros is one example of this (Keating & Cherry, 2004;

Pearce & Boyce, 2006), and relevant software for dealing with

typical ecological applications is in development (Simon Barry,

Gill Ward, pers.comm.).

Final comments

Testing of MARS models over 226 species has demonstrated that

data from multiple species are useful both for the signal in the

species data and for inventory information. The advantage of

multiresponse models was variable across regions, and was

strongly correlated with the number of species in the biological

group. The particular trade-offs of multiresponse methods

under a range of circumstances require further research. Our

results confirm the sensitivity of model outcomes to the methods

used for selection of absences. Random pseudo-absences sample

the background environmental space in proportion to its fre-

quency in geographical space. Inventory pseudo-absences focus

on the sampled space, and avoid placement of absences in

unsampled areas. Other strategies have been suggested (Pearce &

Boyce, 2006), including making models of sampling intensity

and using these as inclusion probabilities for absence samples

(Zaniewski et al., 2002), and sampling in areas known or esti-

mated to be unsuitable for the species (Engler et al., 2004; Lobo

et al., 2006). These are motivated by different philosophies about

samples and models, and different purposes for the modelled

output. A more comprehensive theoretical and practical comparison

of strategies for selecting pseudo-absence and of their implications

for a range of modelling methods is clearly warranted.
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