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a b s t r a c t

Species distribution models have often been developed based on ecological data. To develop reliable
data-driven models, however, a sound model training and evaluation procedures are needed. A cru-
cial step in these procedures is the assessment of the model performance, with as key component the
applied performance criterion. Therefore, we reviewed seven performance criteria commonly applied
in presence–absence modelling (the correctly classified instances, Kappa, sensitivity, specificity, the
normalised mutual information statistic, the true skill statistic and the odds ratio) and analysed their
application in both the model training and evaluation process. Although estimates of predictive perfor-
mance have been used widely to assess final model quality, a systematic overview was missing because
most analyses of performance criteria have been empirical and only focused on specific aspects of the
performance criteria. This paper provides such an overview showing that different performance criteria
evaluate a model differently and that this difference may be explained by the dependency of these cri-
teria on the prevalence of the validation set. We showed theoretically that these prevalence effects only
occur if the data are inseparable by an n-dimensional hyperplane, n being the number of input variables.
Given this inseparability, different performance criteria focus on different aspects of model performance
during model training, such as sensitivity, specificity or predictive accuracy. These findings have impor-
tant consequences for ecological modelling because ecological data are mostly inseparable due to data
noise and the complexity of the studied system. Consequently, it should be very clear which aspect of
the model performance is evaluated, and models should be evaluated consistently, that is, independent

of, or taking into account, species prevalence. The practical implications of these findings are clear. They

provide further insight into the evaluation of ecological presence/absence models and attempt to assist
modellers in their choice of suitable performance criteria.

© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

In past decades, species distribution models have increasingly
received attention due to their wide management applications
in the context of biogeography, conservation biology and climate
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Table 1
Measures of predictive accuracy calculated from the confusion matrix. The per-
centage of correctly classified instances (CCI) is the rate of correctly classified cells.
Sensitivity (Sn) is the probability that the model will correctly classify a presence.
Specificity (Sp) is the probability that the model will correctly classify an absence.
NMI quantifies the information included in the model predictions compared to that
included in the observations. The Kappa statistic and TSS normalise the overall accu-
racy by the accuracy that might have occurred by chance alone. The odds ratio is the
ratio of correctly assigned cased to the incorrectly assigned cases. In all formulae
n = a + b + c + d.

Measure Formula

CCI a+d
n

Sn a
a+c

Sp d
b+d

NMI 1 − −a ln(a)−b ln(b)−c ln(c)−d ln(d)+(a+b) ln(a+b)+(c+d) ln(c+d)
n ln(n)+(a+c) ln(a+c)+(b+d) ln(b+d)

Kappa ((a+d)/n)−((a+b)(a+c)+(c+d)(d+b)/n2)
1−((a+b)(a+c)+(c+d)(d+b)/n2)
996 A.M. Mouton et al. / Ecologica

hange studies (Guisan and Theurillat, 2000; Guisan and Thuiller,
005; Araújo and Rahbek, 2006; Kerr et al., 2007). Concurrent
ith numerous tests, new applications and reviews (Guisan and

immermann, 2000; Austin, 2007; Meynard and Quinn, 2007),
here has been careful attention to the algorithms and methods
sed, including comparisons of the relative performance of differ-
nt methods (Hirzel et al., 2001; Elith et al., 2006; Heikkinen et al.,
007; Meynard and Quinn, 2007; Peterson et al., 2007).

A crucial step in the model comparison procedure is the assess-
ent of the model performance (Fielding and Bell, 1997; Manel et

l., 1999; McPherson and Jetz, 2007). Most authors refer to this step
s model evaluation (Boyce et al., 2002; Anderson et al., 2003; Barry
nd Elith, 2006; Guisan et al., 2007), hereby situating the model
valuation procedure at the end of the modelling process. However,
odel performance is also assessed during the model development

rocess to compare trained models and select the best performing
odels (Hastie et al., 2001; Van Broekhoven et al., 2006; Mouton

t al., 2009b). To avoid misleading terminology in this paper, the
erm model evaluation will refer to performance assessment of the
nal model, whereas training performance assessment will refer to
odel performance assessment during model training.
The key component of model performance assessment is the

erformance criterion applied to quantify model performance.
ince Fielding and Bell (1997) reviewed the performance cri-
eria most commonly applied in conservation presence/absence

ethods, the performance assessment of models developed from
resence–absence data has been a recurrent focus (Pearce and
errier, 2000; Manel et al., 2001; Nielsen et al., 2005; Vaughan and
rmerod, 2005; Allouche et al., 2006). Estimates of predictive per-

ormance have been widely applied to assess final model quality,
specially in papers that compare the relative performance of dif-
erent methods (Hirzel et al., 2001; Elith et al., 2006; Heikkinen et
l., 2007; Meynard and Quinn, 2007; Peterson et al., 2007). Manel
t al. (2001) reviewed a sample (n = 87) of published ecological lit-
rature between 1989 and 1999, which revealed that many users
f presence–absence models made no evaluation at all, even in
eading ecological journals.

We aim to review the performance criteria most commonly
pplied in presence–absence modelling and to analyse their appli-
ation in both the model training and the model evaluation process.

e review the role of performance criteria in both processes and
nalyse the role of performance criteria in model training theo-
etically. Although we focus on presence–absence models, we will
lso discuss some concepts and problems that occur across ecolog-
cal modelling in general. Finally, we give recommendations on the
pplication of different performance criteria on model evaluation
nd training.

. Performance criteria in presence-absence modelling

The key component of the model training and validation pro-
edures is the performance criterion which evaluates the model
erformance. Performance criteria can deal with either continu-
us or discrete model outputs, or with both. If a model generates
iscrete predictions, these outputs can be summarised in a con-
usion matrix (Fielding and Bell, 1997; Manel et al., 2001) which
ompares the model predictions to the observations. Several per-
ormance criteria have been derived from this confusion matrix
nd are listed in Table 1, including overall predictive accuracy or
he percentage of correctly classified instances (CCI; Buckland and
lston, 1993; Fielding and Bell, 1997), sensitivity, specificity, the

ormalised mutual information statistic (NMI; Forbes, 1995), the
dds ratio (Fielding and Bell, 1997), Kappa (Cohen, 1960) and the
rue skill statistic (TSS; Allouche et al., 2006). An optimal odds ratio

ay reach positive infinity, whereas all other criteria are optimal
t their maximum, one.
Odds ratio ad
cb

TSS Sn + Sp − 1

The most popular measure for the accuracy of presence–absence
predictions is Cohen’s Kappa (Manel et al., 2001; Loiselle et al., 2003;
Petit et al., 2003; Berg et al., 2004; Parra et al., 2004; Pearson et al.,
2004; Rouget et al., 2004; Segurado and Araújo, 2004; Allouche
et al., 2006). This measure allows an assessment of the extent to
which models correctly predict occurrence at rates that are better
than chance expectation (Fielding and Bell, 1997). However, Kappa
has been criticised based on statistical theoretical grounds (Sprott,
2000). Several authors argued that Kappa may be less appropri-
ate for model evaluation due to its dependence on the proportion
of sites in the training dataset at which a species was recorded as
present, hereafter defined as prevalence (Fielding and Bell, 1997;
Manel et al., 2001; Allouche et al., 2006). Three performance criteria
were proposed to avoid this problem because they were assumed
to be independent of prevalence (Manel et al., 2001; Allouche et
al., 2006): the NMI (Forbes, 1995; Fielding and Bell, 1997), TSS
(Allouche et al., 2006) and AUC (Fielding and Bell, 1997; Manel et
al., 2001).

All performance criteria which were developed to evaluate dis-
crete model predictions can also handle continuous predictions
since the latter can be discretised using threshold values.

Although numerous threshold selection methods were sug-
gested (Manel et al., 1999, 2001; Liu et al., 2005; Jiménez-Valverde
and Lobo, 2007), the choice of an appropriate threshold often
remains difficult and arbitrary (Fielding and Bell, 1997; Manel et
al., 1999, 2001; Liu et al., 2005). Moreover, selection of a threshold
often depends on the conservationist’s preferences and can signif-
icantly affect reserve selection for conservation planning (Liu et
al., 2005; Wilson et al., 2005). Therefore, some criteria, such as the
average deviation (AD; Van Broekhoven et al., 2007), do not require
this arbitrary threshold to process continuous data.

The receiver operator characteristic (ROC; Fielding and Bell,
1997) approach is another alternative method for assessing the
accuracy of probabilistic output models. The area under the ROC
curve (AUC) is often used as a single threshold-independent mea-
sure for model performance (Manel et al., 2001; Thuiller et al., 2003,
2005; McPherson et al., 2004). AUC was shown to be independent
of the prevalence, and is an effective measure of discriminatory
ability for probabilistic models (Vaughan and Ormerod, 2005). Con-
sequently, some authors considered AUC to be the current best
practice for assessing model success for presence/absence data

(Pearce and Ferrier, 2000; Thuiller et al., 2003; Rushton et al.,
2004; Austin, 2007). However, the AUC approach cannot be applied
to dichotomous presence–absence model outputs (Allouche et al.,
2006). Moreover, it could be shown that models with the same
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Table 2
The number of validation criteria used in the model evaluation process. A sample of 385 papers on species distribution modelling listed in the Web of Science was evaluated,
of which 67% used data for model training or evaluation. The numbers in the table are percentages of this group (n = 257). The papers which applied 0 performance criteria
did not evaluate model performance.

Number of performance criteria applied in model evaluation Total

0 1 2 3 4 5

1998–2002 2 18 61 8 8 3 15
2003–2007 3 15 64 12 4 2 85

Total 3 15 64 11 5 2 100
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axonomic groups most frequently involved in presence–absence models were tre
9%), reptiles (4%) and amphibians (2%). Less frequent applications were related t
echniques such as GLM or GAM (84%), classification trees (17%), artificial neural ne

r very similar AUC values may predict very different distribution
atterns. Finally, Maggini et al. (2006) found that the AUC is sys-
ematically lower at extreme prevalence values (prevalence <0.05
r >0.70). The AUC appears to be independent of prevalence only in
ts middle range (Maggini et al., 2006; McPherson and Jetz, 2007).
onsequently, reliance on AUC as a sufficient test of model success
eeds to be re-examined (Termansen et al., 2006; Austin, 2007;
obo et al., 2008).

Several authors suggested some desirable properties of accu-
acy statistics for the assessment of species distribution model
erformance (Forbes, 1995; Fielding and Bell, 1997; Vaughan and
rmerod, 2005). For Vaughan and Ormerod (2005), the most impor-

ant is generality, defined as the ability to compare accuracy
eaningfully between the same model in different applications or

etween models developed for different species or with different
raining and test data. As a consequence of such definition, from the
valuation perspective, a suitable performance criterion should be
ndependent of the prevalence of the data to which the criterion
s applied. This limitation of generality attempts to avoid that two
dentical models which are evaluated on two different datasets,

ould show different model performance. Vaughan and Ormerod
2005) suggest that, if performance criteria values are affected by
revalence, the criteria could also be corrected for this prevalence
o assure generality.

Another desirable property of performance criteria is the ability
o weigh a consistent under- or overestimation of the species preva-
ence, which is also referred to as omission or commission error
Rondinini et al., 2006) or as false-negative or false-positive error
Loiselle et al., 2003), respectively. Several authors have addressed
his issue in ecological modelling and emphasised the significant
egative correlation between both errors (Fielding and Bell, 1997;
nderson et al., 2003; Rondinini et al., 2006; Lobo et al., 2010). Con-
equently, performance criteria should allow species distribution
odellers to choose between both errors. Knowledge on the data

sed to develop the model may substantially influence this choice
ecause these data contain either more commission or omission

rrors (Loiselle et al., 2003; Wilson et al., 2005; Austin, 2007). Other
esirable characteristics of performance criteria that are directly or

ndirectly related to the generality or to the ability to distinguish
etween omission and commission errors are listed in Table 8.

able 3
he performance criteria used for model evaluation in the same sample of papers as in
hich only applied CCI for model evaluation; Kappa = Cohen’s Kappa; AUC = area under th

ecause some papers used more than one performance criterion.

Performance criteria applied in model evaluation

No criterion CCI CCI only

1998–2002 2 98 18
2003–2007 3 97 15

Total 3 97 15
d other angiosperms (31%), birds (26%), invertebrates (21%), mammals (17%), fish
eria, plankton and fungi. Model and optimisation techniques included regression
s (14%), genetic algorithms (13%) and other methods (12%).

3. Application of performance criteria for model evaluation

The comparison of model performance is based on the assess-
ment of the performance of the final model which is obtained after
model training. Most authors refer to this step as model evaluation,
although the terms model testing and model validation are also
being used (Anderson et al., 2003; Vaughan and Ormerod, 2005).
Both latter terms are less appropriate to designate model perfor-
mance assessment because they may overlap with other steps in
the modelling process. In neural network applications for instance,
model testing is applied to stop the supervised learning proce-
dure and to avoid overfitting of the training data, which occurs
when idiosyncrasies in the training set are modelled in addition to
the underlying species-environment relationship (Lek and Guégan,
1999). Model validation implies the quantification of the model
performance on an independent dataset. Ideally, this dataset should
be completely independent from the data used to train or calibrate
the model, e.g. collected on other areas (Fielding and Bell, 1997;
Hastie et al., 2001).

In recent years, model evaluation has increasingly received
attention in species distribution modelling. The aforementioned
sample of ecological literature between 1989 and 1999 (Manel et
al., 2001), revealed that only 52% of the modellers (n = 87) evalu-
ated model performance. In this paper, we evaluated a sample of
ecological literature on presence-absence or presence-only models
listed in the Web of Science (n = 385). This not only indicated that
the number of papers on species distribution modelling increased
significantly, but also that 97% of the model users evaluates model
performance (Table 2). Araújo et al. (2005) found similar results
for a sample of species-climate envelope models under climate
change between 1995 and 2004 (n = 29), of which 93% was eval-
uated. Although 82% of the modellers applied two or more criteria,
the percentage of papers applying at least two performance criteria
has only increased slowly. Table 3 summarizes the performance cri-
teria used in the evaluated sample of ecological literature (n = 385),
if any. Almost all papers use CCI, but the application of Kappa and

AUC is increasing, with AUC being the second most applied per-
formance criterion for model evaluation, after CCI. In recent years,
some papers introduced other performance criteria into species
distribution modelling, such as the odds ratio, the TSS and the NMI

Table 2 (n = 257). CCI = percentage correctly classified instances; CCI only = papers
e curve; Sn = sensitivity; Sp = specificity. The percentages do not cumulate to 100%

Sp Other

Kappa AUC Sn

26 53 16 16 1
33 61 8 7 3

32 60 9 8 2
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Table 4
The different scenarios, their corresponding elements of the confusion matrices and the values of the 7 different performance criteria for the 4 scenarios, assuming that
0 ln(0) = 0. To calculate the odds ratio, a continuity correction was performed by adding 0.5 to each of the cells in the confusion matrix (Forbes, 1995; Vaughan and Ormerod,
2005). These assumptions have no effect on the characteristics of the presented criteria.

Scenario Element of the confusion matrix Criterion

a b c d CCI Sn Sp NMI Kappa TSS Odds ratio
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a change �a as described in the confusion matrix in Table 5 is equal
to:

�CCI = �a − �d

N
(2)

Table 5
The confusion matrix after a change of the model parameters which results in an
increase �a of the true-positive predictions a. The table cross-tabulates observed
values against predicted values: true-positives, a; false-positives, b; false-negatives,
c; true-negative values, d.

Observed
1 2 0 0 2 1
2 0 2 2 0 0
3 2 1 0 1 0.75
4 1 0 1 2 0.75

tatistic. Current practice in species distribution modelling is to
pply at least two different performance criteria for model evalua-
ion. However, this approach does not avoid that misleadingly high
erformance criteria values could be obtained if strongly correlated
riteria are being chosen.

To assess whether performance criteria for model evaluation
re able to distinguish between omission and commission errors,
different scenarios were defined, of which the confusion matrix

s given in Table 4. In the first scenario, all instances are classi-
ed correctly, whereas in the second scenario, all instances are
lassified erroneously. The third scenario is characterised by slight
verprediction, whereas in the fourth scenario, the model is under-
redicting the observed data. Previous research demonstrated that
verprediction does not necessarily imply a model error, in contrast
o underprediction (Mouton et al., 2008, 2009a). In line with this
ssumption, an ecologically relevant performance criterion would
lassify scenario 1 as the best scenario and scenario 2 as the worst,
hile scenario 3 may be considered ecologically more sound than

cenario 4 due to the false-negative predictions in the latter sce-
ario. Table 4 shows the values of seven different performance
riteria (CCI; Cohen’s Kappa, TSS; NMI, Sn, Sp and odds ratio) for
he 4 scenarios. The performance criteria CCI, NMI, Kappa, TSS, and
dds ratio do not distinguish between scenarios 3 and 4, whereas Sn
nd Sp allow differentiation between these two scenarios. However,
n and Sp do not distinguish between scenario 1, and scenarios 3
nd 4, respectively. Consequently, no performance criterion clearly
istinguishes between the four different scenarios.

. Application of performance criteria for model training

Although numerous papers on performance criteria assessment
ocus on the application of these criteria in model evaluation
Fielding and Bell, 1997; Manel et al., 2001; Vaughan and Ormerod,
005; Allouche et al., 2006), few authors describe the impact of
erformance criteria on model training. From the aforementioned
roup of papers which used data in the modelling process, 99%
pplied a training performance criterion which assesses the pre-
ictive accuracy of the model, such as CCI, Pearson’s correlation
oefficient, or the root mean squared error. The application of these
riteria for model training is based on the assumption that, pro-
ided the “true” model is nested within the model specification,
he model estimated using predictive accuracy techniques will con-
erge to the true model as the sample size increases (Welsh, 1996).
owever, the true model is rarely nested within the model speci-
cation due to various reasons (Tyre et al., 2001; Barry and Elith,
006). Moreover, it could be shown theoretically that none of the
riteria assessing predictive accuracy distinguishes between omis-
ion and commission errors. Less than 1% of the evaluated papers
pplied different performance criteria for model training and com-

ared the results.

The impact of the dependency between the performance crite-
ion and the prevalence differs between model training and model
valuation. During the first process, the prevalence is constant
ecause only one training dataset is used, whereas during model
1 0 1 1 25
0 0 −1 −1 0
0.5 0.23 0.5 0.5 5
1 0.23 0.5 0.5 5

evaluation, prevalence may vary due to the use of different eval-
uation datasets. Despite the constant prevalence during model
training, effects of species prevalence on model training results
have been reported (Hirzel et al., 2001; Syphard and Franklin, 2009).
We suggest that the impact of the species prevalence on the model
training results is related to the performance criterion used for
model training.

The purpose of this section is to analyse the impact of the per-
formance criteria used for model training on the final model which
is obtained after training. This impact is based on the two afore-
mentioned characteristics of performance criteria: the dependency
on prevalence and the distinction between omission and commis-
sion errors. These characteristics are assumed to be independent
of each other in model evaluation, whereas the following analy-
ses show that both characteristics are related in model training.
This section attempts to analyse this relation between prevalence
dependency and omission–commission distinction of performance
criteria during the model training process.

Three of the most commonly used performance criteria are anal-
ysed theoretically: CCI, Kappa and TSS. More specifically, the effect
of an increase of the true-positive predictions (a) in the confusion
matrix (�a) on the performance criterion value is assessed. We
assumed that the ecological data are linearly inseparable. Conse-
quently, the change of the model parameters which results in a
change of the true-positive predictions �a, leads to a decrease of
the true-negative predictions, −�d. If the data would be linearly
separable, �d would equal zero. Since prevalence remains con-
stant during model training (a + c = a* + c*), the confusion matrix will
change as described in Table 5.

The impact of prevalence on the effect of an adjustment of the
model parameters which results in �a will be discussed. The preva-
lence P is described as:

P = a + c

N
(1)

4.1. Analysis of CCI

It can be shown that the change in CCI, �CCI, which results from
Present Absent

Predicted
Present a + �a b + �d
Absent c − �a d − �d
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Table 6
The effect of the prevalence P and the proportions in the confusion matrix on the
likelihood that �Kappa will exceed zero at a fixed increase of the true-positive pre-
dictions, �a. ‘High’ indicates that this relative likelihood is high, while ‘low’ indicates
that this likelihood is low.

Prevalence a < b a > b c < d c > d

ing on the resulting model, and thus on the decisions supported by
this model. At the start of the model development process, mod-
ellers should clearly define the goals of the model and then choose
a performance criterion which reflects these model purposes.

Table 7
The relation between �TSS, �a and �d as a function of prevalence. The possible
relation between �a and �d given is the relation at which �TSS could exceed 0.

Prevalence a+c
b+d

Possible relations Stimulation of
A.M. Mouton et al. / Ecologica

If �CCI exceeds zero, the adjustment of the model parameters
ill result in a better model and the optimisation algorithm will

ontinue with this adjusted model. At low prevalences, �a tends
o be considerably smaller than �d, whereas at high prevalences,
lmost all changes of a model parameter will result in a �a which
s greater than �d. Consequently, the likelihood that �CCI will be
reater than zero if the prevalence is high is higher than the likeli-
ood if the prevalence is low. This will result in a high number of
resent model predictions at high prevalences and a high number
f absent predictions at low prevalences. At high prevalences, opti-
isation based on CCI will thus lead to high overprediction errors,
hereas at low prevalences, optimisation based on CCI will result

n high underprediction errors.

.2. Analysis of Kappa

To assess the effect of a change �a as described in the confusion
atrix in Table 5 on Kappa, �Kappa can be described as a function

f the prevalence P, the sensitivity Sn and the specificity Sp:

Kappa = 2(Sn + �Sn + Sp + �Sp − 1)P(1 − P)
1 + 2(Sn + �Sn + Sp + �Sp − 1)P(1 − P) − P(Sn + �Sn) −

ith

Sn = �a

a + c
(4)

nd

Sp = �d

b + d
(5)

2) can be rewritten as:

Kappa = P(1 − P)
(

2(TSS) + 2(�Sn + �Sp)
U

− 2TSS

V

)
(6)

ith

U = 1 + 2(Sn + �Sn + Sp + �Sp − 1)P(1 − P) − P(Sn + �Sn) − (1 −
= 1 + 2(TSS + �Sn + �Sp)P(1 − P) − P(Sn + �Sn) − (1 − P)(Sp +

nd

V = 1 + 2(Sn + Sp − 1)P(1 − P) − PSn − (1 − P)Sp
= 1 + 2TSSP(1 − P) − PSn − (1 − P)Sp

(8)

It can be further shown that

Kappa = 2
UVN2

(�a((1 − P)b + Pd) − �d((1 − P)a + Pc)) (9)

It can be shown that U and V are strictly positive and thus (4)
hows that

Kappa > 0 ⇔ �a

((1 − P)a + Pc)
>

�d

((1 − P)b + Pd)
. (10)

If �Kappa exceeds zero, the adjustment of the model parame-
ers will result in a better model and the optimisation algorithm
ill continue with this adjusted model. Whether a change in the

onfusion matrix �a will lead to a positive �Kappa, depends on the
revalence P and on the proportions in the confusion matrix. For

nstance, if P exceeds 0.5 and c � d, a small change �a will lead to
positive �Kappa, even at high �d values. This relation between
Kappa, P and the proportions in the confusion matrix is shown in

able 6.

.3. Analysis of TSS
The change in TSS, �TSS, resulting from a change �a as described
n the confusion matrix is equal to:

TSS = �a

a + c
− �d

b + d
(11)
P)(Sp + �Sp)
− 2(Sn + Sp − 1)P(1 − P)

1 + 2(Sn + Sp − 1)P(1 − P) − PSn − (1 − P)Sp
(3)

p + �Sp)

p)
(7)

P < 0.5 Low High Low High
P = 0.5 See ‘Analysis of TSS’
P > 0.5 High Low High Low

Consequently,

�TSS > 0 ⇔ �a >
�d(a + c)

b + d
(12)

If �TSS exceeds zero, the adjustment of the model parameters
will result in a better model and the optimisation algorithm will
continue with this adjusted model. If prevalence is greater than
0.5, the difference �a − �d should be greater than when preva-
lence is smaller than 0.5. In the latter case, �TSS could even exceed

zero for some situations in which �a < �d. Consequently, a change
�a in the confusion matrix will more easily lead to adjusted model
parameters if prevalence <0.5 and overprediction (b) will be stimu-
lated in this situation. At prevalences higher than 0.5, a change �a
in the confusion matrix will only result in a change of the model
parameters if �a substantially exceeds �d. The optimisation algo-
rithm will thus stimulate underprediction (c) (Table 7). Notice that
TSS is a special case of Kappa, when P equals 0.5 (Allouche et al.,
2006). Furthermore, the stimulation of either underprediction or
overprediction is more complex with Kappa than with TSS, which is

reflected by the more complex denominators in Eq. (10) compared
to Eq. (12).

Table 7 shows that the result of model optimisation based
on TSS depends on the prevalence of the training data set. This
emphasises the difference between model training and evaluation.
Although several authors proved that TSS is independent of preva-
lence when it is used for model evaluation (Allouche et al., 2006),
this performance criterion clearly depends on prevalence when it is
applied in model training. Specifically, model training based on TSS
attempts to compensate for the prevalence of the training data: if
this prevalence is high, underprediction is stimulated, whereas low
prevalences correspond to the stimulation of overprediction. This
issue is of key importance in ecological modelling studies because it
shows the effect of the performance criterion used for model train-
between �a and �d
such that �TSS > 0

P > 0.5 >1 �a � �d Underprediction
P = 0.5 =1 �a > �d –
P < 0.5 <1 �a < �d or �a > �d Overprediction
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Table 8
Characteristics of the most frequently applied performance criteria for model training and evaluation. NMI = normalised mutual information statistic; TSS = true skill statistic;
AUC = area under the curve; CCI = correctly classified instances; Sn = sensitivity; Sp = specificity; v = the characteristic fully applies to the performance criterion; (−) = the
characteristic does not apply to the performance criterion; (?) = the characteristic may apply to the performance criterion; n.a. = not applicable.

Performance criterion Kappa NMI Odds ratio TSS AUC CCI Sn, Sp

Characteristic
Quantifies the extent to which models correctly predict occurrence better
than chance expectation

v v v v v − −

Depends on prevalence v ? ? ? ? v v
Takes into account the complete information included in the confusion
matrix

v v v v n.a. − −

Does distinguish between omission and commission errors − − − − − − −
Compensates for extreme prevalence values when applied on model training v − − − − − −
Requires discretisation of model predictions by applying threshold values v v v v − v v
Allows zero values in the confusion matrix v − −a v n.a. v vb

Is proportional (the same performance is found if all elements of the
confusion matrix are divided by the same constant)

v − − v n.a. v v

Can be applied for model training v − v v v v v
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a Cannot be applied directly when both the number of false-positive prediction
onfusion matrix changes the relative value of the odds ratio.

b Cannot be applied if the prevalence of the evaluation or training set is 0.

. Towards adaptive model evaluation

Our analysis of model evaluation showed that different perfor-
ance criteria evaluate a model (or its resulting confusion matrix)

ifferently. Several authors attributed this difference to the rela-
ion between the performance criteria and the prevalence of the
alidation set (Manel et al., 1999, 2001; McPherson et al., 2004;
llouche et al., 2006). Specifically, if models derived from differ-
nt datasets are being compared, the prevalence of these datasets
ay affect the value of the performance criteria and consequently

nfluence the results of the comparison. Similar problems rise when
he performances of a model on a training set and a validation set
ith different prevalences are compared (Allouche et al., 2006).

ome authors suggested that this problem would be avoided if
alidation sets would be collected such that prevalence would be
round 50% (Lantz and Nebenzahl, 1996; Hoehler, 2000; McPherson
t al., 2004). However, various authors agree that this recom-
endation is of questionable practicability in species distribution
odelling, particularly for rare species for which a small number of

resence data is available (Maclure and Willett, 1987; Mackenzie
nd Royle, 2005; Allouche et al., 2006). Moreover, an appropri-
te performance criterion is meant to be a tool for communication
Maclure and Willett, 1987). Consequently, it should be very clear
hich aspect of the model performance is evaluated, and models

hould be evaluated consistently, that is, independent of, or taking
nto account, species prevalence. Given the questionable value of
appa for distribution modelling (McPherson et al., 2004; Allouche
t al., 2006), Vaughan and Ormerod (2005) agreed that mea-
ures other than Kappa may thus be preferable to evaluate model
redictions.

The presented results highlight the relative importance that the
erformance criteria give to omission and commission errors, as a
ossible explanation for the differing evaluation scores among per-
ormance criteria for the same model. Theoretical analysis revealed
hat performance criteria may value a perfect model equally, but
et focus on very different aspects of model performance. An exam-
le is the assessment of model discriminatory ability: although
ll performance criteria will attain their optimum for a model
ith excellent discrimination, not all criteria adequately quan-

ify the discriminatory ability of a model (Vaughan and Ormerod,
005). Consequently, model developers should carefully choose an

ppropriate performance criterion for model evaluation which cor-
esponds to the ecological objectives of the optimised model. The
cological literature has recognised these problems and the ROC
echnique in particular has received considerable attention (Elith
t al., 2006; Meynard and Quinn, 2007).
false-negative predictions is zero; adding a constant value to each element of the

Concerning the model training process, we showed that the
effect of the performance criterion on the optimal model depends
on the separability of the training data. Training sets which are
linearly separable could lead to perfect predictions for all per-
formance criteria, as shown in scenario 1. Jimenez-Valverde et
al. (2009) even showed that prevalence effects may be limited
if data separability is stimulated by avoiding false absences or
non-explanatory variables. However, in ecological case studies,
an increase of the true-positive predictions a often results in
a decrease of the true-negative predictions d and vice versa
because the training data are rarely linearly separable. Our analysis
indicated that the balance between a and d is affected by the
performance criterion which was used to train the model. Like
for model evaluation, model developers should thus also carefully
choose an appropriate training performance criterion which
reflects the ecological model purpose (Segurado and Araújo, 2004).
To assist modellers in this choice, Table 8 provides an overview
of the most important characteristics and restrictions of the most
frequently applied performance criteria.

We showed theoretically that training data prevalence may
significantly affect the over- or underprediction rate of a model.
Several authors agree that the relative importance of omission and
commission errors may vary among applications (Loiselle et al.,
2003; Vaughan and Ormerod, 2005; Wilson et al., 2005; Prates-
Clark et al., 2008; Vaclavik and Meentemeyer, 2009). Applying
a general performance criterion in model training ignores these
subtle but significant differences between different applications.
Consequently, an appropriate performance criterion should allow
modellers to implement this relative importance in the model
training process, for example by including a parameter which can
be adjusted to the specific situation (Mouton et al., 2008, 2009a,c).

Although an optimal parameter value could be found by apply-
ing sensitivity analysis, a more important problem with these
flexible performance criteria could be the difficulty of identifying
which models are better (Vaughan and Ormerod, 2005). Differences
in species’ dispersal patterns and associated gene flow may lead
to subtle variations in habitat preferences of some species due to
local adaptations (Holt, 2003; McPherson and Jetz, 2007). Even in
the absence of genetically driven differences in habitat use, species
could express different realised niches (Hutchinson, 1957) as a
result of spatial variation in predators, competitors or other biotic

factors (Hutchinson, 1957; Osborne and Suarez-Seoane, 2002; Holt,
2003; Peterson and Holt, 2003; Hernandez et al., 2006; McPherson
and Jetz, 2007). Consequently, conservationists should consider not
only statistical but also ecological factors that are actually affect-
ing the reliability of a given distribution model (Jiménez-Valverde
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nd Lobo, 2006; McPherson and Jetz, 2007; Chefaoui and Lobo,
008).

Given the complexity of the modelled ecological relations, the
ost robust modelling approaches are likely to be those in which

are is taken to match the model with knowledge in ecology. These
odels should be constrained to be congruent with ecological

nowledge, with successive improvement in model performance
hat is driven by increasing knowledge of the ecology of the sys-
em (Barry and Elith, 2006; Elith and Leathwick, 2009). Uncertainty
n model predictions can thus be viewed from two perspectives:
ncertainty as an obstacle that needs to be reduced or removed,
r uncertainty as a fact of life (Barry and Elith, 2006). The first
pproach attempts to change the model structure by seeking more
owerful modelling techniques or to improve the data by collect-

ng more samples, removing errors or selecting variables, whereas
he second approach tries to understand, characterise and anal-
se uncertainty by sensitivity analysis, explorations of error or the
pplication of decision strategies that aim to be robust to likely
rrors (Burgman et al., 2001). Both perspectives are valid and
ot necessarily mutually exclusive (Barry and Elith, 2006). Finally,
election of the best model will always depend on the preferences
f modellers since no model can excel on all aspects of model per-
ormance. This could be shown theoretically and is referred to as
he “no free lunch theorem” (Wolpert and Macready, 1997). Conse-
uently, meta-modelling techniques may be applied to overcome
he shortcomings of different algorithms and performance crite-
ia. By providing further insight into the behaviour of performance
riteria, this paper may contribute to the development of such
eta-modelling approaches.

. Conclusions

Performance criteria are the key element of the pres-
nce/absence model evaluation process and assess the perfor-
ance of both the final model and the model during training.
lthough numerous studies on species distribution modelling focus
n the role of performance criteria for evaluation of the final model,
ew authors have addressed the effect of these criteria on model
raining. We provide a theoretical analysis of the impact of the per-
ormance criteria applied for model training on the final model.
he results show that, like criteria for evaluation of the final model,
he appropriate performance criteria for model training should be
hosen carefully and that this choice is dictated by the end-use
f the model. For both model training and evaluation, we suggest
hat prevalence-independent measures should be preferred, and
hat at least some of these measures should allow modellers to dis-
inguish between omission and commission errors. The practical
mplications of this paper are clear. It provides further insight in the
valuation of ecological presence–absence models and attempts to
ssist modellers in their choice of suitable performance criteria. As
uch, it may be an important step towards more reliable species
istribution models.
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