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Modelling techniques used in binary classification problems often result in a predicted

probability surface, which is then translated into a presence–absence classification map.

However, this translation requires a (possibly subjective) choice of threshold above which

the variable of interest is predicted to be present. The selection of this threshold value can

have dramatic effects on model accuracy as well as the predicted prevalence for the variable

(the overall proportion of locations where the variable is predicted to be present). The tradi-

tional default is to simply use a threshold of 0.5 as the cut-off, but this does not necessarily

preserve the observed prevalence or result in the highest prediction accuracy, especially for

data sets with very high or very low observed prevalence. Alternatively, the thresholds can

be chosen to optimize map accuracy, as judged by various criteria. Here we examine the

effect of 11 of these potential criteria on predicted prevalence, prediction accuracy, and the

resulting map output. Comparisons are made using output from presence–absence models

developed for 13 tree species in the northern mountains of Utah. We found that species

with poor model quality or low prevalence were most sensitive to the choice of threshold.

For these species, a 0.5 cut-off was unreliable, sometimes resulting in substantially lower

kappa and underestimated prevalence, with possible detrimental effects on a management

decision. If a management objective requires a map to portray unbiased estimates of species

prevalence, then the best results were obtained from thresholds deliberately chosen so that

the predicted prevalence equaled the observed prevalence, followed closely by thresholds

chosen to maximize kappa. These were also the two criteria with the highest mean kappa

from our independent test data. For particular management applications the special cases

of user specified required accuracy may be most appropriate. Ultimately, maps will typically
have multiple and somewhat conflicting management applications. Therefore, providing

users with a continuous probability surface may be the most versatile and powerful method,

allowing threshold choice to be matched with each maps intended use.

Published by Elsevier B.V.

. Introduction

inary classification mapping is a technique crucial to mul-
iple areas of study. Applications include mapping species

∗ Corresponding author. Tel.: +1 801 510 3765.
E-mail address: eafreeman@fs.fed.us (E.A. Freeman).

distribution, disturbance, wildlife habitat, insect and disease
outbreaks, fire risk, and climate change. Modelling techniques
often generate predictions that are analogous to a probability
of presence. A common practice is to translate this surface
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model (sensitivity and specificity both equal 1.0), the thresh-
e c o l o g i c a l m o d e l l i n

into a simple 0/1 classification map by a choice of threshold,
or cut-off probability, beyond which something is classified
as present. The selection of this threshold value can have
dramatic effects on model accuracy as well as the predicted
prevalence (the overall proportion of locations where the vari-
able is predicted to be present). The traditional default is to
simply use a threshold of 0.5 as the cut-off, but this does not
necessarily preserve the observed prevalence or result in the
highest prediction accuracy, especially for data sets with very
high or very low observed prevalence.

Alternatively, the thresholds can be chosen to optimize
map accuracy, as judged by one of several criteria. Because the
utility of maps for different management applications cannot
be captured in a single map accuracy number, several global
measures are commonly used to assess the predictive perfor-
mance of the models; these include percent correctly classified
(PCC), sensitivity, specificity, kappa, and receiver operating
curves (ROC plots), with their associated area under the curve
(AUC). In addition, in many applications, it is important that
the predicted prevalence reflects the observed prevalence, and
agreement between these two may also be used as a measure
of map accuracy. All of these numerous accuracy measures
have been used as in various ways to create criteria for thresh-
old optimization, as described below.

Beginning with the simplest of these measures, PCC is the
proportion of test observations that are correctly classified.
However this can be deceptive when prevalence is very low or
very high. For example, species with very low prevalence, it
is possible to maximize PCC simply by declaring the species
absent at all locations, resulting in a map with little useful-
ness. Although sometimes used to optimize threshold values,
the accuracy measure itself has little value in practice.

As a result, classification accuracy is commonly broken
down into two measures. Sensitivity, or proportion of correctly
predicted positive observations, reflects a model’s ability to
detect a presence, given a species actually occurs at a loca-
tion. Specificity, or proportion of correctly predicted negative
observations, reflects a model’s ability to predict an absence
where a species does not exist. Sensitivity and specificity can
be combined in various ways to assess model quality and opti-
mize thresholds. Fielding and Bell (1997) suggest choosing the
threshold where sensitivity equals sensitivity, in other words,
where positive and negative observations have equal chance
of being correctly predicted. Alternatively, Manel et al. (2001)
and Hernandez et al. (2006) maximize the sum of sensitivity
and specificity for threshold selection.

Allouche et al. (2006) subtract a constant of 1 from the sum
of sensitivity and specificity. This is equivalent to the true
positive rate (the proportion of observed presences correctly
predicted) minus the false positive rate (the proportion of
observed absences incorrectly predicted). They refer to this as
the true skill statistic (TSS), and recommend it for model eval-
uation and comparison, especially when comparing across
populations with differing prevalence. In the medical liter-
ature, TSS is referred to as Youden’s index, and is used in
the evaluation of diagnostic tests (Biggerstaff, 2000). However,
there is a difference between assessing model performance,

and selecting an optimal threshold, and while the true skill
statistic itself is independent of prevalence, Manel et al. (2001)
found that selecting a threshold to maximize the sum of sen-
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sitivity and specificity affects the predicted prevalence of the
map, causing the distribution of rare species to be overesti-
mated.

Another way to utilize sensitivity and specificity in thresh-
old selection is to deliberately pick a threshold that will
meet a given management requirement. Fielding and Bell
(1997) discuss the possibility that a user may have a prede-
termined required sensitivity or specificity. Perhaps to meet
management goals, it is determined that 15% is the mini-
mum acceptable error in the observed presences, and thus
a map is required that has a sensitivity of at least 0.85. In a
similar vein, Wilson et al. (2005) studied the effects of the var-
ious methods of utilizing a probability surface with the goal of
defining reserve networks to protect biodiversity. In this work,
they contrasted three methods of threshold selection, one of
which involved trading off sensitivity to meet a predetermined
specificity requirement. They also looked at two methods of
working directly from the probability surface, without first cre-
ating classification maps.

Another accuracy measure, the kappa statistic, measures
the proportion of correctly classified locations after account-
ing for the probability of chance agreement. While still
requiring a choice of threshold, kappa is more resistant to
prevalence than PCC, sensitivity and specificity, and was found
by Manel et al. (2001) to be well correlated with the area under
the curve of ROC plots. Caution is required when using the
kappa statistic to compare models across multiple popula-
tions. A particular value of kappa from one population is not
necessarily comparable to the same kappa value from a dif-
ferent species or location, if the prevalence differs between
the two populations (McPherson et al., 2004; Vaughan and
Ormerod, 2005; Allouche et al., 2006). Kappa has been used
extensively in map accuracy work (Congalton, 1991), and in
presence–absence mapping, a threshold can be deliberately
selected to maximize kappa (Guisan and Hofer, 2003; Hirzel et
al., 2006; Moisen et al., 2006).

While threshold-dependent accuracy measures such as
PCC, sensitivity, and specificity have a long history of use
in ecology, ROC plots are a technique that has recently
been introduced into ecology that provides a threshold-
independent method of evaluating the performance of
presence–absence models. In a ROC plot the true positive
rate (sensitivity) is plotted against the false positive rate
(1 − specificity) as the threshold varies from 0 to 1. A good
model will achieve a high true positive rate while the false
positive rate is still relatively small; thus the ROC plot will rise
steeply at the origin, and then level off at a value near the
maximum of 1. The ROC plot for a poor model (whose pre-
dictive ability is the equivalent of random assignment) will lie
near the diagonal, where the true positive rate equals the false
positive rate for all thresholds. Thus the area under the ROC
curve is a good measure of overall model performance, with
good models having an AUC near 1, while poor models have
an AUC near 0.5

ROC plots can also be used to select thresholds. As the
upper left corner of the ROC plot can be considered the ‘ideal’
old which minimizes the distance between the ROC plot and
this ‘ideal’ point can be used as an optimization criteria. In
the medical literature, Cantor et al. (1999) performed a review
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Table 1 – Number of plots occupied by and prevalence of each of the 13 most common tree species in Zone 16

Latin name Symbol Common name Test plots w/species
present

Total plots
w/species present

Abies concolor ABCO White fir 44 233
Abies lasiocarpa ABLA Subalpine fir 72 429
Acer grandidentatum ACGR3 Bigtooth maple 22 119
Cercocarpus ledifolius CELE3 Curlleaf mountain-mahogany 29 147
Juniperus osteosperma JUOS Utah juniper 103 473
Juniperus scopulorum JUSC2 Rocky Mountain juniper 45 230
Pinus contorta PICO Lodgepole pine 44 230
Pinus edulis PIED Common or twoneedle pinyon 92 405
Picea engelmannii PIEN Englemann spruce 53 357
Pinus ponderosa PIPO Ponderosa pine 38 173
Populus tremuloides POTR5 Quaking aspen 114 623
Pseudotsuga menziesii PSME Douglas-fir 87 417

prediction accuracy, and the resulting map output. Compar-

which 80% (1544 plots) were used for model training. This left
20% (386 plots) for threshold optimization and testing. Anal-
ysis was limited to the 13 tree species that were observed
present on at least 100 of the 1930 sample plots. Prevalence of
57 273

386 1930
2997

these 13 species varied from 0.06 to 0.32, while model quality,
as judged by AUC, varied from 0.72 to 0.97 (Table 2).

In this current paper we investigate predictions from one
of the modelling techniques (a variant on classification and
regression trees implemented in Rulequest’s©See5 package)
in further detail. We use the probability surface generated by
the See5 models for the 13 tree species to compare the utility
of different threshold optimization criteria for various map
applications.

2.2. Software
Analysis was conducted in the R language and environment
for statistical computing (R Development Core Team, 2006).
The R package ‘PresenceAbsence’ (Freeman, 2007) was used

Table 2 – Overall prevalence (from all 1930 plots), AUC
Quercus gambelii QUGA Gambel oak

Total number of forested plots
Total number of plots

of studies that used ROC curve analysis of diagnostic tests.
Reviewed studies included several criteria based on the ROC
plot, as well as criteria based on all three of the above sensitiv-
ity and specificity measures of accuracy. Greiner et al. (2000)
review the use of ROC plots in veterinary medicine and discus
the use of Youden’s index, user required sensitivity and speci-
ficity, and ROC plot-based criteria. Biggerstaff (2000), however,
demonstrated graphically that in certain circumstances, min-
imizing this distance can result in a threshold that is inferior
both in the probability that a positive prediction is observed
present, as well in the probability that a predicted negative is
observed absent.

Finally, in many applications, it is important that the
mapped prevalence reflects the true prevalence, and thus
prevalence itself, both predicted and observed has been used
as criteria for threshold selection (Cramer, 2003).

There are numerous criteria by which to choose a threshold
to convert a probability surface to a binary map. Here we exam-
ine the effect of 11 of these criteria on preserving prevalence,
(area under the curve from the ROC plot), and range of
kappa values for the 13 species

Species Total
prevalence

AUC Lowest
kappa

Highest
kappa

ABCO 0.12 0.86 0.26 0.48
ABLA 0.22 0.85 0.31 0.51
ACGR3 0.06 0.87 0.11 0.33
CELE3 0.08 0.82 0.19 0.40
JUOS 0.25 0.96 0.72 0.75
JUSC2 0.12 0.72 0.07 0.19
PICO 0.12 0.97 0.59 0.71
PIED 0.21 0.91 0.56 0.62
PIEN 0.18 0.94 0.46 0.67
PIPO 0.09 0.89 0.30 0.52
POTR5 0.32 0.90 0.57 0.66
PSME 0.22 0.81 0.20 0.43
QUGA 0.14 0.85 0.34 0.48

Area under the curve provides a threshold-independent measure
of model quality. The lowest and highest kappa values from the
isons are made using output from presence–absence models
developed for 13 tree species in the northern mountains of
Utah.

2. Methods

2.1. Data description

Data for these analyses were taken from Moisen et al. (2006)
and more detailed information can be found in this paper.
In brief, presence of 13 tree species (Table 1) in the north-
ern mountains of Utah were modelled as functions of satellite
imagery and topographic information using three different
modelling techniques. Of the 3456 plots available in the study
area, only forested and single-condition plots were used in
these analyses. A total of 1930 sample plots remained, of
nine criteria (excluding the two user specified criteria) illustrate the
sensitivity of each species to choice of criteria. Species with higher
model quality (as judged by AUC) and with prevalence closer to 0.5
tend to be less sensitive to choice of criteria.
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to optimize thresholds and to produce graphics of the error
statistics. This package is available from the CRAN library
(http://cran.r-project.org/). Freeman and Moisen (2008) pro-
vides a case study and sample code, illustrating the use of
this software.

2.3. Threshold criteria

Here we compare 11 threshold optimization criteria for con-
verting a probability surface into a presence–absence map:

(1) Default: The traditional default method of setting ‘thresh-
old = 0.5’.

(2) Sens = Spec: The threshold where sensitivity equals speci-
ficity. In other words, find the threshold where positive
observations are just as likely to be wrong as negative
observations.

(3) MaxSens + Spec: The threshold that maximizes the sum
of sensitivity and specificity: Max(sensitivity + specificity).
In other words, it minimizes the mean of the error rate
for positive observations and the error rate for negative
observations. This is equivalent to finding the point on
the ROC curve whose tangent has a slope of one (Cantor
et al., 1999) This is also equivalent to maximizing (sen-
sitivity + specificity − 1), otherwise know as the Youden’s
index, or the true skill statistic.

(4) MaxKappa: The threshold that results in the maximum
value of kappa.

(5) MaxPCC: The threshold that results in the maximum per-
cent correctly classified.

(6) PredPrev = Obs: The threshold where the predicted preva-
lence is equal to the observed prevalence. In this case we
used the observed prevalence from the full data set (1930
plots).

(7) ObsPrev: Set the threshold to the observed prevalence.
Again, we used the observed prevalence from the full data
set (1930 plots).

(8) MeanProb: Set the threshold to the mean probability of
occurrence from the model predictions.

(9) MinROCdist: The threshold that minimizes the straight
line distance between the ROC plot and the upper left
corner of the unit square, minimizing:

(1 − sensitivity)2 + (specificity − 1)2

(10) ReqSens: The threshold that will give the highest possi-
ble specificity, while still meeting a user defined required
sensitivity. In other words, the user can decide that the
model must misidentify no more than, say, 15% of the
plots where the species is observed to be present. There-
fore it requires a sensitivity of at least 0.85. This method
is useful if, for example, the goal is to define a manage-
ment area for a rare species, and it is required that the
management area does not miss populations.

(11) ReqSpec: The threshold that will give the highest possi-
ble sensitivity, while still meeting a user defined required
specificity. In other words, the user can decide that the

model must misidentify no more than, say, 15% of the
plots where the species is observed to be absent. There-
fore it requires a specificity of at least 0.85. This method is
useful if, for example, the goal is to determine if a species
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is threatened, and it is required that the population is
not over-estimated due to true absences misidentified as
presences.

The behavior of these last two criteria depends on user
specified requirements, and thus these two criteria are not
compared directly to the others when assessing criteria. Note
that user requirements must be specified with care. If the
model is poor, and the requirement is too strict, it is possible
that the only way to meet it will be by declaring every single
plot to be present (for ReqSens) or absent (for ReqSpec), resulting
in a map with little practical value.

2.4. Criteria assessment

As the error structure can vary between a training data set and
independent test data, we used only the test set (386 plots) to
optimize the threshold criteria. In this paper we are comparing
threshold criteria, and thus require an additional test set to
carry out the comparison. Because of small sample size we
used cross-validation for this purpose.

For each of the 13 species, fivefold cross-validation was
applied to these 386 plots, where four-fifths of the plots were
used for threshold optimization by the 11 optimization crite-
ria, and the remaining one-fifth was used for evaluating the
resulting classification maps. Kappa and predicted prevalence
were used for the evaluation.

The kappa values resulting from the five cross-folds were
averaged. Next, star charts were produced for the criteria, with
each species represented by one ray on the stars. Criteria with
consistently high kappa within most species have stars with
a large surface area. Criteria that resulted in the lowest kappa
values within multiple species have stars with little surface
area.

The rays representing kappa values were rescaled within
individual species, so that the criteria with the highest kappa
value for a species has a ray for that species of length one,
while the criteria with the lowest kappa value has a ray for that
species of length zero. By rescaling the range of kappa values
independently within each species, we avoided the issues that
can be associated with comparing raw kappa values across
populations of differing prevalence.

The prevalence bias was calculated by subtracting the
observed prevalence for each species (from the 386 test
plots) from the average predicted prevalence of the five
cross-folds. We examined the prevalence bias by plotting the
observed prevalence verses the predicted prevalence from the
13 species for each criteria.

To examine in greater detail the effects of species preva-
lence and model quality on the threshold criteria, we produced
several types of presence absence assessment plots for three
species with similar prevalence but varying model quality:
JUSC2, ABCO, PICO, and three species with similar model
quality, but varying prevalence: PIPO, PIED, POTR5. For final
classification mapping (after model validation), Fielding and

Bell (1997) recommend maximizing sample size. Thus these
final maps and graphs were produced with thresholds opti-
mized on the entire test set (386 plots) rather than on the
individual cross-validations.

http://cran.r-project.org/


52 e c o l o g i c a l m o d e l l i n

Finally, to show the spatial effects of threshold criteria, we

produced maps comparing the observed presence and pre-
dicted presence resulting from selected criteria for the species
JUSC2.

3. Results

3.1. Criteria assessment in terms of kappa

The threshold criteria that resulted in the highest average
kappa for the most species were as follows: Default, MaxKappa,
PredPrev = Obs, and MaxPCC. However, Default and MaxPCC also
resulted in low kappa for many species. In contrast MaxKappa
and PredPrev = Obs rarely resulted in the lowest kappa (Fig. 1).
MaxKappa was amongst the top three criteria for all but one
species, and never ranked below 5. PredPrev = Obs was in the
top four criteria for 10 of the 13 species. In addition, when
MaxKappa and PredPrev = Obs did not have the highest ranking
kappa values, it was often in species such as PIED and JUOS
where there was little variation in the optimized thresholds
amongst the criteria (Table 2). In contrast, the Default thresh-
old was inconsistent, sometimes resulting in high kappa, but
in other species performing poorly, leading to low kappa.

In species with low model quality (as judged by AUC) or
with low prevalence, the difference between the criteria was
the most marked, with some criteria performing well, result-
ing in high kappa, while other criteria resulted in low kappa.
On the other hand, as model quality improved, or preva-
lence approached 50%, the criteria tend to converge, resulting
in similar optimized thresholds and thus similar kappa. For
example, species such as PIED (AUC = 0.91, prevalence = 0.21)
and JUOS (AUC = 0.96, prevalence = 0.25) have much less vari-
ation in their mean kappa than the species with lower model
quality or lower prevalence (Table 2).

3.2. Criteria assessment in terms of preserving
prevalence

The threshold criteria with the lowest bias in the predicted
prevalence were PredPrev = Obs and MaxKappa. These were fol-
lowed by Default and MaxPCC, both of which slightly under
predicted the observed prevalence for most species. The
remaining threshold criteria all over predicted the observed
prevalence for all 13 species. Note that all 13 species had rel-
atively low prevalence, with the highest being POTR5 with a
prevalence of 0.32. If there had been species with prevalence’s
greater than 0.5, these threshold criteria may have reversed
their bias, and under predicted the observed prevalence. Also,
the bias of ReqSens and ReqSpec will vary depending on the user
specified requirements (Fig. 2).

3.3. Effects of criteria choice on particular species

We begin by examining a histogram of the predicted probabili-
ties, with ‘absent’ plots represented by light gray and ‘present’

plots by dark gray (Fig. 3, row 1). For ABCO and PICO the zero
bar was truncated (marked by diagonal cross-hatching, with
the total given above the shortened bar) to allow the detail on
the rest of the plot to be discerned. Notice the double humped
g 2 1 7 ( 2 0 0 8 ) 48–58

histogram for PICO, the species with the highest AUC. An ideal
model will result in such a histogram, with all the absent plots
on the left, and all the present plots on the right, with no
overlap.

Thresholds optimized by three criteria (Default, MaxKappa,
and PredPrev = Obs) are marked on each plot. As described
earlier, species whose models had low AUC (such as JUSC2)
have considerable variation between the criteria, however for
species with high quality model (such as PICO) the thresholds
from each criteria tend to converge.

In Fig. 3 (row 2) the error statistics kappa, sensitivity, and
specificity are graphed as a function of threshold. The species
with higher model quality (as judged by AUC), maximum
kappa increases, and the kappa line flattens resulting in higher
kappa values becoming less sensitive to threshold choice. Sim-
ilarly, for the high quality models, sensitivity and specificity
become flatter and higher for a greater range of thresholds,
resulting in higher accuracy for both measures at the point
where they cross. Finally, as seen in the histograms, as model
quality increases, the criteria converge, resulting in greater
similarity between the optimal thresholds.

Fig. 3 (row 3) shows the ROC plots. As model quality
increases the ROC plot approaches the upper left corner. Not
only do the optimized thresholds themselves converge, but
the points along the ROC plot that represent these thresholds
also converge. This may seem obvious, but the distance along
the ROC curve is not uniform. For example, the length of curve
between thresholds of 0.1 and 0.2 is not necessarily the same
as the length between 0.8 and 0.9.

In Fig. 4, the observed presence–absence data is mapped for
species JUSC2. The predicted presence–absence data is also
mapped, for thresholds optimized by three criteria: Default,
MaxKappa, and PredPrev = Obs. JUSC2 is a species with low
prevalence (0.12 prevalence) and moderate to low model qual-
ity (0.72 AUC). The default criteria (where the threshold is set
to 0.5) works particularly poorly for species with low preva-
lence, drastically underestimating the true occurrence, and
producing many false negatives. As one would expect, max-
imizing kappa provides the highest individual plot accuracy
(as judged by kappa), though in JUSC2 it slightly overesti-
mates the true prevalence, producing false positives. Choosing
the threshold so that the predicted prevalence equals the
observed prevalence will inherently preserve the true occur-
rence, but results in a slightly lower individual plot accuracy
(as judged by kappa). Thus the number of false positives bal-
ances the number of false negatives, but the kappa accuracy
is slightly lower.

Finally, we look at the special cases of user required accu-
racy (ReqSens and ReqSpec), again examining the three species
with similar prevalence but increasing model quality. When
using the threshold criteria based on user specified accuracy
requirements, an optimized threshold is chosen to meet the
given requirement (for either sensitivity or specificity), while
simultaneously giving the best possible value of the opposing
error statistic.

Note that with a very poor model or a very strict require-

ment, the only way to meet the user requirements may be to
set the threshold to 0 or to 1, and declare the species to be
present everywhere or nowhere, resulting in maps with little
practical value. With good models or low requirements, where
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Fig. 1 – Star chart of kappa values of 13 species for each of nine optimization criteria (excluding the two user specified
criteria). The star rays are scaled within each species, so that the criteria with the highest kappa for that species has a ray of
length 1 and the criteria with the lowest kappa has a ray of length 0. The unit star on the bottom indicates relative positions
of species rays in the preceding stars. The criteria MaxKappa con

ul
species PredPrev = Obs also resulted in high kappa values. Defa
some species, but low kappa for other species.

the sensitivity and specificity lines cross at accuracy greater
than the user requirements, the unspecified error statistic will
have a higher accuracy than the one that was specified in the
requirement, and map makers may wish to consider raising
their requirements.

We also examined the effects of varying the required speci-
ficity within a single species. Fig. 5 shows the histogram, error
statistics and ROC plots for JUSC2 with thresholds from four
different user required specificities. Fig. 6 shows the resulting

predicted presence–absence maps. Specificity is the propor-
tion of observed absences that have been correctly predicted.
As the specificity requirement becomes stricter, the thresh-
sistently resulted in the high kappa values. For most
t performed inconsistently, resulting in the high kappa for

old rises resulting in fewer plots predicted as presences. Thus,
the predicted range of the species also decreases and the num-
ber of false positives (observed absences incorrectly predicted
as present) decreases. However, the number of false negatives
(observed presences incorrectly predicted as absent) rises, and
thus the sensitivity decreases.
4. Discussion

Modelling techniques often result in a predicted probability
surface, which is then translated into a presence–absence
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Fig. 2 – Predicted prevalence as a function of observed prevalence. The average predicted prevalence for the five cross-folds
is plotted on the x-axis and the observed prevalence from the 386 test plots is plotted on the y-axis. Threshold criteria with
unbiased prevalence have graphs that are symmetric about the diagonal. Criteria that tend to under predict prevalence have
graphs with most of the species above the diagonal. Criteria that tend to over predict prevalence have graphs below the

en
diagonal. Note that the graphs for the user specified requirem
user specifications.

classification map. However, this translation not only requires
a (possibly subjective) choice of threshold, it also reduces
the information available to the map user. Model quality
can be evaluated in terms of both discriminatory ability, and
model calibration. Discriminatory ability consists of a mod-

els ability to correctly predict presences and absences. Model
calibration, on the other hand, concerns the accuracy of the
predicted probabilities, in other words, do 40% of the loca-
tions assigned a probability of 0.4 actually have the species
ts (ReqSens and ReqSpec) will vary based on the particular

present. Discrimination and calibration both have ecologi-
cal implications, and their relative importance depends on
the intended use of the model. Pearce and Ferrier (2000)
and Vaughan and Ormerod (2005) discuss the implications of
model calibration and methods of evaluation model calibra-

tion in greater detail. Once the probability surface is translated
to a classification map, it is only possible to evaluate it in
terms of discrimination, limiting the possible insight into the
model.
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Fig. 3 – Histogram, accuracy measures, and ROC plots for three species with similar prevalence, but increasing model
quality. Histogram bars are broken into plots that were observed present (dark gray) and plots that were observed absent
(light gray). For ABCO and PICO, the zero bars are truncated to fit on plot (indicated by cross-hatching) and the actual height
g t
p d

e
c
c
p
a

m
o
m
t
f
o

iven above the bar. Optimized thresholds are marked for the
redicted prevalence from the cross-validation. The standard

In addition, one of the most powerful techniques for
valuating discriminatory ability is ROC plots with their asso-
iated AUC, which requires the full probability surface to
alculate. ROC plots are independent of both threshold and
revalence, allowing the comparison of model discriminatory
bility across species and locations.

Results from these analyses have implications for species
apping efforts. Threshold cut-offs should be chosen in light

f the intended use of the species distribution maps. In most

apping applications for forest management, 0.5 is chosen as

he default threshold cut-off. Yet, analyses here illustrate that
or species with low prevalence or low model quality, a 0.5 cut-
ff is unreliable, sometimes resulting in substantially lower
wo criteria with the highest kappa and the most accurate
efault threshold of 0.5 is also indicated.

kappa, with possible detrimental effects on a management
decision.

If one’s goal is to accurately predict the overall prevalence
of rare species, be aware that many of the threshold criteria
proposed in the literature also resulted in maps that substan-
tially overestimate the range of low prevalence species. While
the AUC and ROC plots are prevalence-independent, thresh-
old choices based on them are not, nor are choices based
on other criteria that optimize statistics based on sensitiv-

ity and specificity. These include MinROCdist, Sens = Spec, and
MaxSens + Spec. Thresholds set in this manner tend to overesti-
mate the prevalence of rare species while underestimating the
prevalence of common species. This fact was noted by Manel
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Fig. 4 – Observed presence absence data for species JUSC2, from 386 test plots in zone 16, and presence absence predictions
for the same plots with thresholds chosen by three different criteria: the traditional default criteria of 0.5 (Default), the

e
threshold that maximizes kappa accuracy (MaxKappa), and th
(PredPrev = Obs).

et al. (2001), and our analyses support it. Therefore, for map
making, if preserving prevalence is important to the map’s
intended use, we found selecting a threshold to maximize
kappa to be preferable to maximizing the sum of sensitivity
and specificity.

The Default threshold of 0.5 is known to under predict the
prevalence of rare species, and we found this to be true for
our data, particularly when low prevalence was accompanied
by low model quality. It has been suggested that choosing a
threshold to equal prevalence (ObsPrev), or to equal the mean
predicted probability (MeanProb) may be a preferable alterna-
tive to using the Default threshold of 0.5 when dealing with
species with low prevalence (Cramer, 2003). However we found
that replacing the Default criteria of 0.5 with ObsPrev or Mean-

Prob did not improve kappa, and, in effect, merely exchanged
over predictions for under predictions.

If a management objective above all requires a map to por-
tray unbiased estimates of species prevalence, then the best

Fig. 5 – Accuracy measures for species JUSC2, using the user sp
specificity.
threshold that best preserves the prevalence of the species

results were obtained from thresholds deliberately chosen so
that the predicted prevalence equaled the observed preva-
lence (PredPrev = Obs), followed closely by thresholds chosen to
maximize kappa (MaxKappa). Fortunately, these were also the
two criteria with the highest mean kappa on the independent
test data.

It may seem self-evident that a threshold chosen to max-
imize kappa will result in the highest kappa, and a threshold
chosen to preserve prevalence will result in the most accurate
prevalence; however, more importantly, we also found the cri-
teria that maximized kappa was the second best at preserving
prevalence, and the criteria that preserved prevalence was the
second best at maximizing kappa.

We also found that species with poor model quality, or low

prevalence were most sensitive to the choice of threshold.
If a species has a good quality model, and prevalence near
50%, then any optimization criteria, including the traditional
default method of 0.5, may result in equally useful maps.

ecified ReqSpec criteria, for four different required levels of
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Fig. 6 – Predicted presence absence data for JUSC2 using the user specified ReqSpec criteria, for four different required levels
ng
ion

Cramer, J.S., 2003. Logit Models from Economics and Other Fields.
Cambridge University Press, pp. 66–72.
of specificity. As the specificity requirement rises, the resulti
between false positive predictions and false negative predict

However, for species with poor model quality or low preva-
lence, matching the threshold criteria to the maps intended
use becomes more important.

For particular management applications the special cases
of user specified required accuracy (ReqSens and ReqSpec) may
be most appropriate. For example, if the goal is to determine
if a species is threatened, and it is important to avoid over-
inflating the population by misclassifying true absences as
predicted presences, then a user-defined required specificity
(ReqSpec) may be best. In this case, the user may decide that it
is unacceptable to classify more than, for example, 5% of the
true absences as present, and thus they require a map with a
specificity of 0.95.

Conversely, if a map is to be used as a pre-stratification to
narrow the search window for a particular species in a sam-
pling effort, and it is imperative that the field survey include
all potential habitats, then a user-defined required sensitivity
(ReqSens) may be the best approach. In this case, the user may
decide that it unacceptable to miss more than, for example,
1% of the true locations, and thus they require a map with a
sensitivity of 0.99.

If a map has a high specificity (and thus a low sensitivity)
one can be very confident that anywhere mapped as present
actually does have the species. However, one has much less
confidence in the areas that have been mapped as absent.
They may be true absences, but there is a substantial chance
that they may be true presences that have been misclassified.
The converse is true for a map with high sensitivity.

Ultimately, maps will typically have multiple and some-
what conflicting management applications and thus providing
users with a continuous probability surface may be the most
versatile method, not only allowing threshold choice to be
matched with map use, but also allowing the users to dis-
tinguish between a map’s discrimination and its calibration.
Model evaluation can be carried out on this probability sur-
face, rather than on particular classification maps. The AUC,

which requires the full probability surface to calculate, pro-
vides an objective measure of a model’s discrimination ability,
not dependent on threshold choice or the prevalence of the
sensitivity decreases. In other words, there is a trade-off
s.

population. In addition, providing users with the probabil-
ity surface allows the examination of the models calibration,
which can be critical to some ecological applications, and is
impossible to determine from a classification map. Finally,
threshold choice can be matched to each map’s use, allow-
ing the maps to become a more powerful management
tool.

The authors thus suggest that mapmakers produce contin-
uous probability maps rather than binary species distribution
maps enabling the map user to choose appropriate threshold
cut-off values in light of the intended map use. This is partic-
ularly critical for low prevalence species, or for models with
lower discriminatory ability, where the choice of optimization
criteria has a more dramatic effect on threshold. Hopefully this
paper has presented a set of tools to help map users work with
probability surfaces, and create classification maps to meet
their particular management needs.
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