
A Maximum Entropy Approach to Species Distribution Modeling

Steven J. Phillips PHILLIPS@RESEARCH.ATT.COM

AT&T Labs− Research, 180 Park Avenue, Florham Park, NJ 07932

Miroslav Dudı́k MDUDIK @CS.PRINCETON.EDU
Robert E. Schapire SCHAPIRE@CS.PRINCETON.EDU

Princeton University, Department of Computer Science, 35 Olden Street, Princeton, NJ 08544

Abstract
We study the problem of modeling species
geographic distributions, a critical problem in
conservation biology. We propose the use
of maximum-entropy techniques for this prob-
lem, specifically, sequential-update algorithms
that can handle a very large number of fea-
tures. We describe experiments comparing max-
ent with a standard distribution-modeling tool,
called GARP, on a dataset containing observation
data for North American breeding birds. We also
study how well maxent performs as a function
of the number of training examples and train-
ing time, analyze the use of regularization to
avoid overfitting when the number of examples
is small, and explore the interpretability of mod-
els constructed using maxent.

1. Introduction
We study the problem of modeling the geographic dis-

tribution of a given animal or plant species. This is a crit-
ical problem in conservation biology: to save a threatened
species, one first needs to know where the species prefers
to live, and what its requirements are for survival, i.e., its
ecological niche (Hutchinson, 1957).

The data available for this problem typically consists
of a list of georeferenced occurrence localities, i.e., a set
of geographic coordinates where the species has been ob-
served. In addition, there is data on a number of envi-
ronmental variables, such as average temperature, aver-
age rainfall, elevation, etc., which have been measured
or estimated across a geographic region of interest. The
goal is to predict which areas within the region satisfy
the requirements of the species’ ecological niche, and thus
form part of the species’potential distribution(Anderson
& Martı́nez-Meyer, 2004). The potential distribution de-
scribes where conditions are suitable for survival of the
species, and is thus of great importance for conservation.
It can also be used to estimate the species’realized distri-
bution, for example by removing areas where the species is

Appearing inProceedings of the21 st International Conference
on Machine Learning, Banff, Canada, 2004. Copyright 2004 by
the authors.

known to be absent because of deforestation or other habi-
tat destruction. Although a species’ realized distribution
may exhibit some spatial correlation, the potential distri-
bution does not, so considering spatial correlation is not
necessarily desirable during species distribution modeling.

It is often the case that onlypresencedata is available
indicating the occurrence of the species. Natural history
museum and herbarium collections constitute the richest
source of occurrence localities (Ponder et al., 2001; Stock-
well & Peterson, 2002). Their collections typically have no
information about thefailure to observe the species at any
given location; in addition, many locations have not been
surveyed. In the lingo of machine learning, this means that
we have only positive examples and no negative examples
from which to learn. Moreover, the number of sightings
(training examples) will often be very small by machine-
learning standards, say a hundred or less. Thus, the first
contribution of this paper is the introduction of a scientifi-
cally important problem as a challenging domain for study
by the machine learning community.

To address this problem, we propose the application of
maximum-entropy (maxent) techniques which have been
so effective in other domains, such as natural language pro-
cessing (Berger et al., 1996). Briefly, in maxent, one is
given a set of samples from a distribution over some space,
as well as a set of features (real-valued functions) on this
space. The idea of maxent is to estimate the target distribu-
tion by finding the distribution of maximum entropy (i.e.,
that is closest to uniform) subject to the constraint that the
expected value of each feature under this estimated distri-
bution matches its empirical average. This turns out to be
equivalent, under convex duality, to finding the maximum
likelihood Gibbs distribution (i.e., distribution that is expo-
nential in a linear combination of the features). For species
distribution modeling, the occurrence localities of the spe-
cies serve as the sample points, the geographical region of
interest is the space on which this distribution is defined,
and the features are the environmental variables (or func-
tions thereof). See Figure 1 for an example.

In Section 2, we describe the basics of maxent in greater
detail. Iterative scaling and its variants (Darroch & Ratcliff,
1972; Della Pietra et al., 1997) are standard algorithms
for computing the maximum entropy distribution. We use
our own variant which iteratively updates the weights on



Figure 1.Left to right: Yellow-throated Vireo training localities from the first random partition, an example environmental variable
(annual average temperature, higher values in red), maxentprediction using linear, quadratic and product features, and GARP prediction.
Prediction strength is shown as white (weakest) to red (strongest); reds could be interpreted as suitable conditions for the species.

features sequentially (one by one) rather than in paral-
lel (all at once), along the lines of Collins, Schapire and
Singer (2002). This sequential approach is analogous to
AdaBoost which modifies the weight of a single “feature”
(usually called a base or weak classifier in that context) on
each round. As in boosting, this approach allows us to use
very large feature spaces.

One would intuitively expect an oversize feature space
to be a problem for generalization since it increases the pos-
sibility of overfitting, leading others to use feature selection
for maxent (Berger et al., 1996). We instead use a regular-
ization approach, introduced in a companion theoretical pa-
per (Dudı́k et al., 2004), which allows one to prove bounds
on the performance of maxent using finite data, even when
the number of features is very large or even uncountably
infinite. Here we investigate in detail the practical efficacy
of the technique for species distribution modeling. We also
describe a numerical acceleration method that speeds up
learning.

In Section 3, we describe an extensive set of experi-
ments we conducted comparing maxent to a widely used
existing distribution modeling algorithm; results of the ex-
periments are described in Section 4. Quite a number of ap-
proaches have been suggested for species distribution mod-
eling including neural nets, genetic algorithms, generalized
linear models, generalized additive models, bioclimatic en-
velopes and more; see Elith (2002) for a comparison. From
these, we selected the Genetic Algorithm for Ruleset Pre-
diction (GARP) (Stockwell & Noble, 1992; Stockwell &
Peters, 1999), because it has seen widespread recent use
to study diverse topics such as global warming (Thomas
et al., 2004), infectious diseases (Peterson & Shaw, 2003)
and invasive species (Peterson & Robins, 2003); many fur-
ther applications are cited in these references. GARP was
also selected because it is one of the few methods available
that does not require absence data (negative examples).

We compare GARP and maxent using data de-
rived from the North American Breeding Bird Survey
(BBS) (Sauer et al., 2001), an extensive dataset consisting
of thousands of occurrence localities for North American
birds and used previously for species distribution model-
ing, in particular for evaluating GARP (Peterson, 2001).
The comparison suggests that maxent methods hold great
promise for species distribution modeling, often achiev-
ing substantially superior performance in controlled ex-
periments relative to GARP. In addition to comparisons
with GARP, we performed experiments testing: (1) the per-

formance of maxent as a function of the number of sam-
ple points available, so as to determine the all important
question of how much data is enough; (2) the effective-
ness of regularization to avoid overfitting on small sample
sizes; and (3) the effectiveness of our numerical accelera-
tion methods.

Lastly, it is desirable for a species distribution model to
allow interpretation to deduce the most important limiting
factors for the species. A noted limitation of GARP is the
difficulty of interpreting its models (Elith, 2002). We show
how the models generated by maxent can be put into a form
that is easily understandable and interpretable by humans.

2. The Maximum Entropy Approach
In this section, we describe our approach to modeling

species distributions. As explained above, we are given a
spaceX representing some geographic region of interest.
Typically, X is a set of discrete grid cells; here we only
assume thatX is finite. We also are given a set of points
x1, . . . , xm in X , each representing a locality where the
species has been observed and recorded. Finally, we are
provided with a set of environmental variables defined on
X , such as precipitation, elevation, etc.

Given these ingredients, our goal is to estimate the
range of the given species. In this paper, we formalize
this rather vague goal within a probabilistic framework.
Although this will inevitably involve simplifying assump-
tions, what we gain will be a language for defining the
problem with mathematical precision as well as a sensible
approach for applying machine learning.

Unlike others who have studied this problem, we adopt
the view that the localitiesx1, . . . , xm were selected inde-
pendently fromX according to some unknown probability
distributionπ, and that our goal is to estimateπ. At the
foundation of our approach is the premise that the distribu-
tion π (or a thresholded version of it) coincides with the
biologists’ concept of the species’ potential distribution.
Superficially, this is not unreasonable, although it does ig-
nore the fact that some localities are more likely to have
been visited than others. The distributionπ may therefore
exhibit sampling bias, and will be weighted towards areas
and environmental conditions that have been better sam-
pled, for example because they are more accessible.

That being said, the problem becomes one ofdensity
estimation: givenx1, . . . , xm chosen independently from
some unknown distributionπ, we must construct a distri-
butionπ̂ that approximatesπ.



Common name Abbreviation # examples
Gray Vireo GV 78
Hutton’s Vireo HV 198
Plumbeous Vireo PV 256
Philadelphia Vireo PhV 325
Bell’s Vireo BV 419
Cassin’s Vireo CV 424
Blue-headed Vireo BhV 973
White-eyed Vireo WeV 1271
Yellow-throated Vireo YV 1611
Loggerhead Shrike LS 1850
Warbling Vireo WV 2526
Red-eyed Vireo RV 2773

Table 1.Studied species, with number of presence records

In constructinĝπ, we also make use of a given set of
featuresf1, . . . , fn wherefj : X → �

. These features
might consist of the raw environmental variables, or they
might be higher level features derived from them (see Sec-
tion 3.3). Letf denote the vector of alln features.

For any functionf : X → �
, let π[f ] denote its expec-

tation underπ. Let π̃ denote theempirical distribution, i.e.,
π̃(x) = |{1 ≤ i ≤ m : xi = x}|/m. In general,̃π may be
quite distant, under any reasonable measure, fromπ. On
the other hand, for a given functionf , we do expect̃π[f ],
the empirical average off , to be rather close to its true
expectationπ[f ]. It is natural, therefore, to seek an approx-
imationπ̂ under whichfj ’s expectation is equal (or at least
very close) toπ̃[fj ] for everyfj. There will typically be
many distributions satisfying these constraints. Themaxi-
mum entropy principlesuggests that, from among all distri-
butions satisfying these constraints, we choose the one of
maximum entropy, i.e., the one that is closest to uniform.
Here, as usual, the entropy of a distributionp on X is de-
fined to beH(p) = −∑

x∈X p(x) ln p(x).
Thus, the idea is to estimateπ by the distribu-

tion π̂ of maximum entropy subject to the condition
that π̂[fj ] = π̃[fj] for all featuresfj . Alternatively,
we can consider allGibbs distributionsof the form
q�(x) = e

�·� (x)/Z� where Z� =
∑

x∈X e
�·� (x) is

a normalizing constant, andλ ∈ �n. Then, follow-
ing Della Pietra, Della Pietra and Lafferty (1997), it can
be proved that the maxent distribution described above is
the same as the maximum likelihood Gibbs distribution,
i.e., the distributionq� that minimizesRE(π̃ ‖ q�) where
RE(p ‖ q) =

∑

x∈X p(x) ln(p(x)/q(x)) denotesrelative
entropyor Kullback-Leibler divergence. Note that the neg-
ative log likelihoodπ̃[− ln(q�)] (also called log loss) only
differs fromRE(π̃ ‖ q� ) by the constantH(π̃); we there-
fore use the two interchangeably as objective functions.

2.1. A sequential-update algorithm
There are a number of algorithms for finding the max-

ent distribution, especially iterative scaling and its vari-
ants (Darroch & Ratcliff, 1972; Della Pietra et al., 1997)
as well as the gradient and second-order descent meth-
ods (Malouf, 2002; Salakhutdinov et al., 2003). In this
paper, we used a sequential-update algorithm that modifies
one weightλj at a time, as explored by Collins, Schapire
and Singer (2002) in a similar setting. We chose this

coordinate-wise descent procedure since it is easily appli-
cable when the number of features is very large (or infinite).

Specifically, our very simple algorithm works as fol-
lows. Assume without loss of generality that each fea-
ture fj is bounded in[0, 1]. On each of a sequence of
rounds, we choose the featurefj to update for which
RE(π̃[fj ] ‖ q� [fj ]) is maximized, whereλ is the current
weight vector (and whereRE(p ‖ q), for p, q ∈ �

, is bi-
nary relative entropy). We next updateλj ← λj +α where

α = ln

(

π̃[fj ](1− q� [fj])

(1− π̃[fj ])q� [fj]

)

. (1)

The output distribution̂π is the one defined by the com-
puted weights, i.e.,q� . Essentially, this algorithm works
by altering one weightλj at a time so as to greedily max-
imize the likelihood (or an approximation thereof). This
procedure is guaranteed to converge to the optimal maxi-
mum entropy distribution. The derivation of this algorithm,
along with its proof of convergence are given in a compan-
ion paper (Dudı́k et al., 2004) and are based on techniques
explained by Della Pietra, Della Pietra and Lafferty (1997)
as well as Collins, Schapire and Singer (2002).

To accelerate convergence, we do a line search in each
iteration: evaluate the log loss whenλj is incremented by
2iα for i = 0, 1, . . . in turn, and choose the lasti before the
log loss decreases. This is similar to line search methods
described in (Minka, 2001).

2.2. Regularization
The basic approach described above computes the max-

imum entropy distribution̂π for which π̂[fj ] = π̃[fj ].
However, we do not expect̃π[fj ] to beequalto π[fj ] but
only close to it. Therefore, in keeping with our motivation,
we can soften these constraints to have the form

|π̂[fj ]− π̃[fj]| ≤ βj (2)

whereβj is an estimate of how closẽπ[fj], being an em-
pirical average, must be to its true expectationπ[fj ]. Maxi-
mizing entropy subject to Eq. (2) turns out to be equivalent
to finding the Gibbs distribution̂π = q� which minimizes

RE(π̃ ‖ q�) +
∑

j βj |λj |. (3)

In other words, this approach is equivalent to maximizing
the likelihood of the sought after Gibbs distribution with
(weighted)`1-regularization. This form of regularization
also makes sense because the number of training exam-
ples needed to approximate the “best” Gibbs distribution
can be bounded when the`1-norm of the weight vectorλ
is bounded. (See (Dudı́k et al., 2004) for details.) In a
Bayesian framework, Eq. (3) corresponds to a negative log
posterior given a Laplace prior. Other priors studied for
maxent are Gaussian (Chen & Rosenfeld, 2000) and expo-
nential (Goodman, 2003). Laplace priors have been studied
in the context of neural networks by Williams (1995).

The regularized formulation can be solved using a sim-
ple modification of the above algorithm. On each round,
a featurefj and valueα are chosen so as to maximize the
change in (an approximation of) the regularized objective
function in Eq. (3). This works out to be

−απ̃[fj ] + ln(1 + (eα − 1)q� [fj ]) + βj(|λj + α| − |λj |).



GARP threshold = 1 GARP threshold = 10
Bird Area L LQ LQP T GARP Area L LQ LQP T GARP
GV 0.307 0.000 0.000 0.000 0.003 0.000 0.144 0.046 0.079 0.018 0.079 0.085
HV 0.595 0.028 0.003 0.004 0.000 0.000 0.314 0.139 0.019 0.030 0.015 0.034
PV 0.428 0.004 0.005 0.002 0.006 0.003 0.149 0.063 0.030 0.036 0.027 0.067
PhV 0.545 0.096 0.000 0.000 0.004 0.000 0.199 0.423 0.036 0.034 0.055 0.069
BV 0.668 0.000 0.000 0.000 0.000 0.000 0.301 0.036 0.010 0.004 0.012 0.048
CV 0.430 0.060 0.018 0.008 0.015 0.067 0.225 0.242 0.123 0.092 0.088 0.149
BhV 0.563 0.060 0.006 0.005 0.008 0.009 0.226 0.336 0.122 0.103 0.086 0.110
WeV 0.433 0.008 0.000 0.001 0.001 0.001 0.141 0.216 0.045 0.036 0.029 0.067
YV 0.472 0.008 0.000 0.000 0.000 0.005 0.201 0.306 0.049 0.043 0.040 0.086
LS 0.724 0.005 0.000 0.000 0.001 0.000 0.356 0.135 0.080 0.063 0.071 0.112
WV 0.780 0.013 0.000 0.000 0.001 0.003 0.437 0.355 0.053 0.046 0.049 0.121
RV 0.667 0.057 0.003 0.001 0.003 0.006 0.326 0.250 0.104 0.084 0.074 0.109
Avg 0.551 0.028 0.003 0.002 0.004 0.008 0.252 0.212 0.063 0.049 0.052 0.088

Table 2.Omission rates in the equalized area test for GARP thresholdof 1 (left) and 10 (right). “Area” column is area of species’
potential distribution, as produced by GARP; other predictions are thresholded to give the same predicted area. The predictions analyzed
are: maxent with linear (L); linear and quadratic (LQ); linear, quadratic and product (LQP); and threshold (T) features; and GARP.

Bird L LQ LQP T GARP
GV 0.946 0.962 0.973 0.959 0.919
HV 0.870 0.957 0.955 0.963 0.835
PV 0.940 0.952 0.955 0.951 0.916
PhV 0.775 0.937 0.941 0.934 0.888
BV 0.857 0.932 0.936 0.937 0.840
CV 0.846 0.916 0.929 0.924 0.831
BhV 0.789 0.910 0.916 0.919 0.862
WeV 0.897 0.942 0.945 0.947 0.920
YV 0.849 0.925 0.928 0.929 0.882
LS 0.789 0.837 0.850 0.847 0.794
WV 0.644 0.836 0.840 0.840 0.742
RV 0.761 0.858 0.865 0.869 0.805
Avg 0.854 0.910 0.914 0.919 0.862

Table 3.AUC values averaged over 10 random partitions of oc-
currence localities. Predictions analyzed are as in Table 2.

The maximizingα, must be either−λj or Eq. (1) withπ̃[fj ]
replaced bỹπ[fj ]−βj (providedλj +α ≥ 0) or π̃[fj ]+βj

(providedλj +α ≤ 0). Thus, the bestα (for a givenfj) can
be computed by trying all three possibilities. Oncefj and
α have been selected, we only need updateλj ← λj + α.
As before, this algorithm can be proved to converge to a
solution to the problem described above.

Throughout our study we reduced theβj to a sin-
gle regularization parameterβ as follows. We expect
|π[fj ] − π̃[fj]| ≈ σ[fj ]/

√
m, whereσ[fj ] is the standard

deviation offj underπ. We therefore approximatedσ[fj ]
by the sample deviatioñσ[fj ] and usedβj = βσ̃[fj]/

√
m.

3. Experimental Methods
3.1. The Breeding Bird Survey

The North American Breeding Bird Survey (Sauer
et al., 2001) is a data set with a large amount of high-
quality location data. It is good for a first evaluation of
maxent for species distribution modeling, as the generous
quantities of data allow for detailed experiments and sta-
tistical analyses. It has also been used to demonstrate the
utility of GARP (Peterson, 2001). Roadside surveys are
conducted on standard routes during the peak of the nest-
ing season. Each route consists of fifty stops located at 0.5
mile intervals. A three-minute count is conducted at each
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Figure 2.ROC curves for the first random partition of occur-
rence localities of the Loggerhead Shrike and the Yellow-throated
Vireo. In both cases, maxent with linear features is the lowest
curve, GARP is the second lowest, and the remaining three are
very close together. Portions of LQ and T curves are obscuredby
the LQP curve.

stop, during which the observer records all birds heard or
seen within 0.25 mile of the stop. Data from all fifty stops
are combined to obtain the set of species observed on the
route. There are 4161 routes within the region covered by
the environmental coverages described below.

3.2. Environmental Variables
The environmental variables (coverages) use a North

American grid with 0.2 degree square cells, and are
all included with the GARP distribution, available at
http://www.lifemapper.org/desktopgarp. Some coverages
are derived from weather station readings during the period
1961 to 1990 (New et al., 1999). Out of these we use annual
precipitation, number of wet days, average daily tempera-
ture and temperature range. The remaining coverages are
derived from a digital elevation model for North America,
and consist of elevation, aspect and slope. Each coverage
is defined over a 386× 286 grid, of which 58,065 points
have data for all coverages.

3.3. Experimental Design
We chose 12 out of the 421 species included in the

Breeding Bird Survey to model, and considered a route to
be an occurrence locality for a species if it had a presence
record for any year of the survey. The chosen species and
the number of routes where each has occurrence localities



are shown in Table 1. The occurrence data was divided into
ten random partitions: in each partition, 50% of the occur-
rence localities were randomly selected for the training set,
while the remaining 50% were set aside for testing.

We chose four feature types for maxent to use: the raw
environmental variables (linear features); squares of envi-
ronmental variables (quadraticfeatures); products of pairs
of environmental variables (product features); and binary
features derived by thresholding environmental variables
(thresholdfeatures). The latter features are equal to one
if an environmental variable is above some threshold, and
zero otherwise. Use of linear features constrains the mean
of the environmental variables in the maxent distribution,
linear plus quadratic features constrain the variance, while
linear plus quadratic plus product features constrain the co-
variance of pairs of environmental variables.

On each training set, we ran maxent with four different
subsets of the feature types: linear (L); linear and quadratic
(LQ); linear, quadratic and product (LQP); and threshold
(T). We also ran GARP on each training set.

The output of GARP and maxent have quite different
interpretations. Nevertheless, each can be used to (par-
tially) rank all locations according to their habitability. To
compare these rankings, we used receiver operating charac-
teristic (ROC) curves. For each of the runs, we calculated
the AUC (area under the ROC curve), and determined the
average AUC over the ten occurrence data partitions. See
Section 3.5 for further discussion of this metric.

The AUC comparison is somewhat biased in maxent’s
favor, as a continuous prediction will typically have a
higher AUC than a discrete prediction. We therefore do
a second comparison, where we select operating thresh-
olds for GARP that have been widely used in practice, and
compare the algorithms only at those operating points. We
call this an “equalized area test”, and the details are as fol-
lows. We applied two thresholds to each GARP predic-
tion, namely 1 and 10, corresponding to at least one, or
all, best-subset models predicting presence (see Section 3.4
for GARP details). These are the most-often used GARP
thresholds (Anderson & Martı́nez-Meyer, 2004). For each
of the two resulting predictions, we set thresholds for the
maxent models that result in prediction of the same area
(geographic extent) as GARP. The predictions, now binary
and with the same predicted area, are then simply compared
using omission rates (fraction of test localities not predicted
present). Again, averages were taken over the 10 random
partitions of the occurrence data.

Most applications of species distribution modeling have
much less data available than for North American birds.
Indeed, species of conservation importance may have ex-
tremely few georeferenced locality records, often fewer
than 10. To investigate the use of maxent in such limited
data settings, we perform experiments using limited subsets
of the Breeding Bird data. We selected increasing subsets
of training data in each partition, ran all four versions of
maxent, and took an average AUC over ten partitions.

In order to determine sensitivity of maxent to the value
of β and its interaction with sample size, we variedβ and
the number of training examples and took an average AUC

over ten partitions for all four versions of maxent. Lastly,
to measure the effect of our acceleration method, we per-
formed runs using the first random partition for the Logger-
head Shrike and the Yellow-throated Vireo, both with and
without line search forα (as described in Section 2), and
measured the log loss on both training and test data as a
function of running time.

3.4. Algorithm implementations
For the maxent runs, we ran the iterative algorithm de-

scribed in Section 2 for 500 rounds, or until the change in
the objective function on a single round fell below10−5.
For the regularization parameterβ, to avoid overfitting the
test data, we used the same setting of0.1 for all feature
types, except threshold features for which we used1.0. In
Section 4.4, we describe experiments showing how sensi-
tive our results are to the choice ofβ.

To reduce the variability inherent in GARP’s random
search procedure, we made composite GARP predictions
using the “best-subsets” procedure (Anderson et al., 2003),
as was done in recent applications (Peterson et al., 2003;
Raxworthy et al., 2004). We generated 100 binary models,
using GARP version 1.1.3 with default parameter values,
then eliminated models with more than 5% intrinsic omis-
sion (negative prediction of training localities). If at most
10 models remained, they then constituted the best subset;
otherwise, we selected the 10 models whose predicted area
was closest to the median of the remaining models. The
composite prediction gives the number of best-subset mod-
els in which each point is predicted suitable (0-10). For
Cassin’s Vireo, the best subset was empty for most random
partitions of occurrence localities, so we increased the in-
trinsic omission threshold to 10% for that species.

3.5. ROC curves
An ROC curve shows the performance of a classifier

whose output depends on a threshold parameter. It plots
true positive rate against false positive rate for each thresh-
old. A point (x, y) indicates that for some threshold, the
classifier classifies a fractionx of negative examples as pos-
itive, and a fractiony of positive examples as positive. The
curve is obtained by “joining the dots”.

The area under an ROC curve (AUC) has a natural sta-
tistical interpretation. Pick a random positive example and
a random negative example. The area under the curve is
the probability that the classifier correctly orders the two
points (with random ordering in the case of ties). A perfect
classifier therefore has an AUC of 1. However, to use ROC
curves with presence-only data, we must interpret as “neg-
ative examples” all grid cells with no occurrence localities,
even if they support good environmental conditions for the
species. The maximum AUC is therefore less than one (Wi-
ley et al., 2003), and is smaller for wider-ranging species.

4. Results
4.1. Equalized Area Test

The results of the equalized area test are in Table 2.
With a threshold of 1, GARP predicts large areas as having
suitable conditions for the species, and all algorithms have
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Figure 3.Learning curves.AUC averaged over 10 partitions for four versions of maxent (L, LQ, LQP and T) as a function of the number
of training examples. Numbers of training examples are plotted on a logarithmic scale. We also include the average AUC for GARP on
all training examples. Curves for the remaining species look qualitatively similar.

very low average omission (with the exception of GARP
on Cassin’s Vireo). A threshold of 10 causes less over-
prediction, and reveals more differences between the algo-
rithms. The best results are obtained by maxent with two
of the feature sets (LQP and T). These two are superior to
GARP on all species, often very substantially; LQ is supe-
rior to GARP for all species but BhV.

4.2. ROC analysis
Table 3 shows the AUC for each species, averaged over

the 10 random partitions of the occurrence localities. Ex-
ample ROC curves used in computing the averages can be
seen in Figure 2, which shows the performance of the al-
gorithms on the first random partition for the Loggerhead
Shrike and Yellow-throated Vireo.

The AUC for maxent improves dramatically going from
linear (L) to linear plus quadratic (LQ) features, with
a small further improvement when product features are
added (LQP). The AUC for threshold features (T) is similar
to LQP. For all species, the AUC for GARP is lower than
for all maxent feature sets except sometimes L. Note that
GARP is disadvantaged in AUC comparisons by not dis-
tinguishing between points in its highest rank (those points
predicted present in all best-subset models), as can be seen
in Figure 2, where GARP loses area at the left end of the
ROC curve. Nevertheless, wherever GARP has data points,
maxent with the better feature sets is quite consistently as
good as or better than GARP.

4.3. Learning Curve Experiments
Figure 3 shows the AUC averaged over 10 partitions

for an increasing number of training examples on eight of
the species. We also include GARP results for full train-
ing sets as a base line. As expected, models with a larger
number of features tend to overfit small training sets, but
they give more accurate predictions for large training sets.

Linear models do not capture species distribution very well
and are included only for completeness. With the exception
of the Plumbeous Vireo, three remaining versions of max-
ent outperform L models already for the smallest training
sets. LQP models become better than LQ for 30-40 train-
ing examples; their performance, however, matches that of
LQ already for smaller training sets. T models perform
worse than both LQ and LQP for small training sets, but
they slightly outperform LQP once training sets reach 400
examples. Learning curves for species with large numbers
of examples indicate that for both LQ and LQP about 50-
100 examples suffice for a prediction that is close to opti-
mal for those models.

4.4. Sensitivity to Regularization
Figure 4 shows the sensitivity of maxent to the regu-

larization valueβ for LQP and T versions of maxent. Due
to the lack of space we do not present results for L and
LQ versions, and give sensitivity curves for only four spe-
cies. Curves for the remaining species look qualitatively
similar. Note the remarkably consistent peak atβ ≈ 1.0
for threshold feature curves; theoretical reasons for this
phenomenon require further investigation. For LQP runs,
peaks are much less pronounced and do not appear at the
same value ofβ across different species. Benefits of regu-
larization in LQP runs diminish as the number of training
examples increases (this is even more so for LQ and L runs,
not presented here). This is because the relatively small
number of features (compared with threshold features) nat-
urally prevents overfitting large training sets.

4.5. Feature Profiles
Maxent as we have described it returns a vectorλ that

characterizes the Gibbs distributionq�(x) = e
�·�(x)/Z�

minimizing the (regularized) log loss. When each feature
is derived from one environmental variable then the linear
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combination in the exponent ofq� can be decomposed into
a sum of terms each of which depends on a single environ-
mental variable. Plotting the value of each term as a func-
tion of the corresponding environmental variable we obtain
feature profiles for the respective variables. This decompo-
sition can be carried out for L, LQ and T models, but not
for LQP models. Note that adding a constant to a profile
has no impact on the resulting distribution as constants in
the exponent cancel out withZ� . For L models profiles
are linear functions, for LQ models profiles are quadratic
functions, and for T models profiles can be arbitrary step
functions. These profiles provide an easier to understand
characterization of the distribution than the vectorλ.

Figure 5 shows feature profiles for an LQ run on the
first partition of the Yellow-throated Vireo and two T runs
with different values ofβ. The value ofβ = 0.01 only
prevents components ofλ from becoming extremely large,
but it does little to prevent heavy overfitting with numer-
ous peaks capturing single training examples. Raisingβ to
1.0 completely eliminates these peaks. This is especially
prominent for the aspect variable where the regularized T
as well as the LQ model show no dependence while the

insufficiently regularized T model overfits heavily. Note
the rough agreement between LQ profiles and regularized
T profiles. Peaks in these profiles can be interpreted as in-
tervals of environmental conditions favored by a species.
However, from a flat profile we may not conclude that the
species distribution does not depend on the corresponding
variable since variables may be correlated and maxent will
sometimes pick only one of the correlated variables.

4.6. Acceleration
For the LQP version of maxent, line search onα sub-

stantially accelerated convergence when meaured in terms
of log loss both on training and on test data. Log loss on
test data in the first partition decreased with running time
(measured on a 1GHz Pentium) as follows:

Bird Line search? 10s 50s 100s 300s
LS no 10.424 10.205 10.131 10.068
LS yes 10.130 10.054 10.047 10.040
YV no 10.086 9.658 9.536 9.433
YV yes 9.540 9.358 9.339 9.334

The observed acceleration is similar to that obtained by
Goodman (2002). Line search made no discernible dif-



ference for threshold features. Indeed, while there is an
approximation made in the derivation ofα in Sections 2
and 2.2, the derivation is exact for binary features, hence
line search is not needed. Maxent was much faster with
threshold features: log loss was within .001 of convergence
in at most 50 seconds for both species.

5. Conclusions
Species distribution modeling represents a scientifically

important area that deserves the attention of the machine
learning community while presenting it with some interest-
ing challenges.

In this work, we have shown how to use maxent to
predict species distributions. Maxent only requires posi-
tive examples, and in our study, is substantially superior to
the standard method, performing well with fairly few ex-
amples, particularly when regularization is employed. The
models generated by maxent have a natural probabilistic in-
terpretation, giving a smooth gradation from most to least
suitable conditions. We have also shown that the models
can be easily interpreted by human experts, a property of
great practical importance.

While maxent fits the problem of species distribution
modeling cleanly and effectively, there are many other
techniques that could be used such as Markov random
fields or mixture models. Alternatively, some of our as-
sumptions could be relaxed, mainly that of the indepen-
dence of sampling. In our future work, we plan to address
sampling bias and include it in the maxent framework in
a principled manner. We leave the question of alternative
techniques to attack this problem open for future research.
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