
Package ‘MuMIn’
April 11, 2013

Type Package

Title Multi-model inference

Version 1.9.5

Date 2013-04-04

Encoding UTF-8

Author Kamil Bartoń

Maintainer Kamil Bartoń <kamil.barton@go2.pl>

Description Model selection and model averaging based on information criteria (AICc and alike).

License GPL-2

Depends R (>= 2.13.0)

Imports stats

Suggests
stats4, nlme, mgcv (>= 1.7.5), lme4 (>= 0.999375-16), gamm4,MASS, nnet, survival, geepack

Enhances
aod, coxme, glmmML, MCMCglmm, pscl, spdep, unmarked, ordinal,gee, splm, logistf, caper

LazyLoad yes

NeedsCompilation no

Repository CRAN

Date/Publication 2013-04-11 17:36:34

1

2 MuMIn-package

R topics documented:
MuMIn-package . 2
AICc . 3
Beetle . 5
Cement . 7
dredge . 8
Formula manipulation . 13
get.models . 14
importance . 15
Information criteria . 16
Model utilities . 18
model.avg . 19
model.sel . 23
MuMIn-models . 24
par.avg . 25
pdredge . 27
predict.averaging . 29
QAIC . 32
QIC . 33
r.squaredGLMM . 35
r.squaredLR . 36
subset.model.selection . 38
updateable . 40
Weights . 42

Index 44

MuMIn-package Multi-model inference

Description

The package MuMIn contains functions to streamline information-theoretic model selection and
carry out model averaging based on the information criteria.

Details

The collection of functions includes:

dredge performs automated model selection with subsets of the supplied ‘global’ model, and op-
tional choices of other model properties (such as different link functions). The set of models
may be generated either with ‘all possible’ combinations, or tailored according to the condi-
tions specified.
pdredge does the same, but can parallelize model fitting process using a cluster.

model.sel creates a model selection table from hand-picked models.

model.avg calculates model averaged parameters, with standard errors and confidence intervals.

AICc 3

AICc calculates second-order Akaike information criterion.

For a complete list of functions, use library(help = "MuMIn").

By default, AICc is used to rank the models and to obtain model selection probabilities, though any
other information criteria can be utilised. At least the following ones are currently implemented in
R: AIC and BIC in package stats, and QAIC, QAICc, ICOMP, CAICF, and Mallows’ Cp in MuMIn.
There is also DIC extractor for MCMC models, and QIC for GEE.

Most of R’s common modelling functions are supported, for a full inventory see list of supported
models.

Author(s)

Kamil Bartoń

References

Burnham, K. P. and Anderson, D. R (2002) Model selection and multimodel inference: a practical
information-theoretic approach. 2nd ed. New York, Springer-Verlag.

See Also

AIC, step or stepAIC for stepwise model selection by AIC.

Examples

data(Cement)

fm1 <- lm(y ~ ., data = Cement)
ms1 <- dredge(fm1)
plot(ms1)

model.avg(ms1, subset = delta < 4)

confset.95p <- get.models(ms1, cumsum(weight) <= .95)
avgmod.95p <- model.avg(confset.95p)
summary(avgmod.95p)
confint(avgmod.95p)

AICc Second-order Akaike Information Criterion

Description

Calculate second-order Akaike information criterion for one or several fitted model objects (AICc,
AIC for small samples).

4 AICc

Usage

AICc(object, ..., k = 2, REML = NULL)

Arguments

object a fitted model object for which there exists a logLik method, or a logLik object.

... optionally more fitted model objects.

k the ‘penalty’ per parameter to be used; the default k = 2 is the classical AIC.

REML optional logical value, passed to the logLik method indicating whether the re-
stricted log-likelihood or log-likelihood should be used. The default is to use the
method used for model estimation.

Value

If just one object is provided, returns a numeric value with the corresponding AICc; if more than
one object are provided, returns a data.frame with rows corresponding to the objects and columns
representing the number of parameters in the model (df) and AICc.

Note

AICc should be used instead AIC when sample size is small in comparison to the number of esti-
mated parameters (Burnham & Anderson 2002 recommend its use when n/K < 40).

Author(s)

Kamil Bartoń

References

Burnham, K. P. and Anderson, D. R (2002) Model selection and multimodel inference: a practical
information-theoretic approach. 2nd ed. New York, Springer-Verlag.

Hurvich, C. M. and Tsai, C.-L. (1989) Regression and time series model selection in small samples,
Biometrika 76: 297–307.

See Also

Akaike’s An Information Criterion: AIC

Other implementations: AICc in package AICcmodavg, AICc in package bbmle and aicc in pack-
age glmulti

Examples

#Model-averaging mixed models

library(nlme)
data(Orthodont, package = "nlme")

Beetle 5

Fit model by REML
fm2 <- lme(distance ~ Sex*age, data = Orthodont,

random = ~ 1|Subject / Sex, method = "REML")

Model selection: ranking by AICc using ML
ms2 <- dredge(fm2, trace = TRUE, rank = "AICc", REML = FALSE)

(attr(ms2, "rank.call"))

Get the models (fitted by REML, as in the global model)
fmList <- get.models(ms2, 1:4)

Because the models originate from ’dredge(..., rank=AICc, REML=FALSE)’,
the default weights in ’model.avg’ are ML based:
summary(model.avg(fmList))

same result
#model.avg(fmList, rank = "AICc", rank.args = list(REML=FALSE))

Beetle Flour beetle mortality data

Description

Mortality of flour beetles (Tribolium confusu) due to exposure to gaseous carbon disulfide CS2,
from Bliss (1935).

Usage

data(Beetle)

Format

Beetle is a data frame with 5 elements.

dose The dose of CS2 in mg/L

n.tested Number of beetles tested

n.killed Number of beetles killed

Prop A matrix with two columns named n.killed and n.survived

mortality Observed mortality rate.

Source

Bliss C. I. (1935) The calculation of the dosage-mortality curve. Annals of Applied Biology, 22:
134–167.

6 Beetle

References

Burnham, K. P. and Anderson, D. R. (2002) Model selection and multimodel inference: a practical
information-theoretic approach. 2nd ed. New York, Springer-Verlag.

Examples

"Logistic regression example"
from Burnham & Anderson (2002) chapter 4.11

data(Beetle)

Fit a global model with all the considered variables
globmod <- glm(Prop ~ dose + I(dose^2) + log(dose) + I(log(dose)^2),

data = Beetle, family = binomial)

A logical expression defining the subset of models to use:
* either log(dose) or dose
* the quadratic terms can appear only together with linear terms
msubset <- expression(xor(dose, ‘log(dose)‘) & (dose | !‘I(dose^2)‘)

& (‘log(dose)‘ | !‘I(log(dose)^2)‘))

Table 4.6

Use ’varying’ argument to fit models with different link functions
Note the use of ’alist’ rather than ’list’ in order to keep the
’family’ objects unevaluated
varying.link <- list(family = alist(

logit = binomial("logit"),
probit = binomial("probit"),
cloglog = binomial("cloglog")
))

(ms12 <- dredge(globmod, subset = msubset, varying = varying.link,
rank = AIC))

Table 4.7 "models justifiable a priori"
(ms3 <- subset(ms12, has(dose, !‘I(dose^2)‘)))
The same result, but would fit the models again:
ms3 <- update(ms12, update(globmod, . ~ dose), subset =,
fixed = ~dose)

mod3 <- get.models(ms3, 1:3)

Table 4.8. Predicted mortality probability at dose 40.

calculate confidence intervals on logit scale
logit.ci <- function(p, se, quantile = 2) {

C. <- exp(quantile * se / (p * (1 - p)))
p /(p + (1 - p) * c(C., 1/C.))

Cement 7

}

mavg3 <- model.avg(mod3, revised.var = FALSE)

pred <- sapply(mod3, predict, newdata = list(dose = 40), se.fit = TRUE,
type = "response")

get predictions both from component and averaged models
pred <- lapply(c(component = mod3, list(averaged = mavg3)), predict,

newdata = list(dose = 40), type = "response", se.fit = TRUE)
reshape predicted values
pred <- t(sapply(pred, function(x) unlist(x)[1:2]))
colnames(pred) <- c("fit", "se.fit")

build the table
tab <- cbind(

c(Weights(ms3), NA),
pred,
matrix(logit.ci(pred[,"fit"], pred[,"se.fit"],

quantile = c(rep(1.96, 3), 2)), ncol = 2)
)

colnames(tab) <- c("Akaike weight", "Predicted(40)", "SE", "Lower CI",
"Upper CI")

rownames(tab) <- c(as.character(ms3$family), "model averaged")
print(tab, digits = 3, na.print = "")

Figure 4.3
newdata <- list(dose = seq(min(Beetle$dose), max(Beetle$dose), length.out = 25))

add model-averaged prediction with CI, using the same method as above
avpred <- predict(mavg3, newdata, se.fit = TRUE, type = "response")

avci <- matrix(logit.ci(avpred$fit, avpred$se.fit, quantile = 2), ncol = 2)

matplot(newdata$dose, sapply(mod3, predict, newdata, type = "response"),
type = "l", xlab = quote(list("Dose of" ~ CS[2],(mg/L))),
ylab = "Mortality", col = 2:4, lty = 3, lwd = 1

)
matplot(newdata$dose, cbind(avpred$fit, avci), type = "l", add = TRUE,

lwd = 1, lty = c(1, 2, 2), col = 1)

legend("topleft", NULL, c(as.character(ms3$family), expression(‘averaged‘
%+-% CI)), lty = c(3, 3, 3, 1), col = c(2:4, 1))

Cement Cement hardening data

Description

Cement hardening data from Woods et al (1939).

8 dredge

Usage

data(Cement)

Format

Cement is a data frame with 5 variables. x1-x4 are four predictor variables expressed as a percentage
of weight.

X1 calcium aluminate

X2 tricalcium silicate

X3 tetracalcium alumino ferrite

X4 dicalcium silicate

y calories of heat evolved per gram of cement after 180 days of hardening.

Source

Woods H., Steinour H.H., Starke H.R. (1932) Effect of composition of Portland cement on heat
evolved during hardening. Industrial & Engineering Chemistry 24, 1207-1214.

References

Burnham, K. P. and Anderson, D. R (2002) Model selection and multimodel inference: a practical
information-theoretic approach. 2nd ed. New York, Springer-Verlag.

dredge Automated model selection

Description

Generate a set of models with combinations (subsets) of the terms in the global model, with optional
rules for model inclusion.

Usage

dredge(global.model, beta = FALSE, evaluate = TRUE, rank = "AICc",
fixed = NULL, m.max = NA, m.min = 0, subset, marg.ex = NULL,
trace = FALSE, varying, extra, ct.args = NULL, ...)

S3 method for class ’model.selection’
print(x, abbrev.names = TRUE, warnings = getOption("warn") != -1L, ...)

dredge 9

Arguments

global.model a fitted ‘global’ model object. See ‘Details’ for a list of supported types.

beta logical, should standardized coefficients be returned?

evaluate whether to evaluate and rank the models. If FALSE, a list of model calls is
returned.

rank optional custom rank function (information criterion) to be used instead AICc,
e.g. AIC, QAIC or BIC. See ‘Details’.

fixed optional, either a single sided formula or a character vector giving names of
terms to be included in all models.

m.max, m.min optionally the maximum and minimum number of terms in a single model (ex-
cluding the intercept), m.max defaults to the number of terms in global.model.

subset logical expression describing models to keep in the resulting set. See ‘Details’.

marg.ex a character vector specifying names of variables for which NOT to check for
marginality restrictions when generating model formulas. If this argument is set
to TRUE, all combinations of terms are used (i.e. no checking). If NA or missing,
the exceptions will be found based on the terms of global.model. See ‘Details’.

trace if TRUE, all calls to the fitting function (i.e. updated global.model calls) are
printed before actual fitting takes place.

varying optionally, a named list describing the additional arguments to vary between the
generated models. Item names correspond to the arguments, and each item pro-
vides a list of choices (i.e. list(arg1 = list(choice1, choice2, ...), ...)).
Complex elements in the choice list (such as family objects) should be either
named (uniquely) or quoted (unevaluated, e.g. using alist, see quote), other-
wise it may produce rather unpleasant effects. See example in Beetle.

extra optional additional statistics to include in the result, provided as functions, func-
tion names or a list of such (best if named or quoted). Similarly as in rank
argument, each function must accept fitted model object as an argument and
return a (value coercible to a) numeric vector. These can be e.g. additional in-
formation criterions or goodness-of-fit statistics. The character strings "R^2"
and "adjR^2" are treated in a special way, and will add a likelihood-ratio based
R

2

and modified-R
2

respectively to the result (this is more efficient than using
r.squaredLR directly).

x a model.selection object, returned by dredge.

abbrev.names should printed variable names be abbreviated? (useful with many variables).

warnings if TRUE, errors and warnings issued during the model fitting are printed below
the table (currently, only with pdredge). To permanently remove the warnings,
set the object’s attribute "warnings" to NULL.

ct.args optional list of arguments to be passed to coefTable (e.g. dispersion param-
eter for glm affecting standard errors used in subsequent model averaging).

... optional arguments for the rank function. Any can be an expression (of mode
call), in which case any x within it will be substituted with a current model.

10 dredge

Details

Models are fitted one by one through repeated evaluation of modified calls to the global.model (in
a similar fashion as with update). This approach, while robust in that it can be applied to a variety
of different model object types is not very efficient and may be time-intensive.

Note that the number of combinations grows exponentially with number of predictor variables (2N ,
less when interactions are present, see below). As there can be potentially a large number of models
to evaluate, to avoid memory overflow the fitted model objects are not stored in the result. To get (a
subset of) the models, use get.models on the object returned by dredge.

For a list of model types that can be used as a global.model see list of supported models. Mod-
elling functions not storing call in their result should be evaluated via the wrapper created by
updateable.

Information criterion: rank is found by a call to match.fun and may be specified as a function
or a symbol (e.g. a back-quoted name) or a character string specifying a function to be searched
for from the environment of the call to dredge. The function rank must accept model object as
its first argument and always return a scalar. Typical choice for rank would be "AIC", "BIC", or
"QAIC".

Interactions: dredge by default respects marginality constraints, so “all possible combinations”
do not include models containing interactions without their respective main effects and all lower
order terms. This behaviour can be altered by marg.ex argument, which can be used to allow
for simple nested designs. For example, with global model of form a / (x + z), one would use
marg.ex = "a" and fixed = "a". If global.model uses such a formula and marg.ex is missing
or NA, it will be adjusted automatically.

Subsetting: There are three ways to constrain the resulting set of models: setting limits to the
number of terms in a model with m.max and m.min, binding term(s) to all models with fixed, and
more complex rules can be applied using argument subset. To be included in the selection table,
the model formulation must satisfy all these conditions.
subset can take either a form of an expression or a matrix. The latter should be a lower triangular
matrix with logical values, where columns and rows correspond to global.model terms. Value
subset["a", "b"] == FALSE will exclude any model containing both a and b . Values other
than FALSE (or 0) are taken as TRUE.
In the form of expression, the argument subset acts in a similar fashion to that in the function
subset for data.frames: model terms can be referred to by name as variables in the expression,
with the difference being that they are always logical (i.e. TRUE if a term exists in the model).
The expression can contain any of the global.model terms (getAllTerms(global.model) lists
them), as well as names of the varying argument items. Names of global.model terms take
precedence when identical to names of varying, so to avoid ambiguity varying variables in
subset expression should be enclosed in V() (e.g. subset = V(family) == "Gamma" assuming
that varying is something like list(family = c(..., "Gamma"))).
If element names in varying are missing, the elements themselves are used. Call and symbol ele-
ments are represented as character values (via deparse), and everything except numeric, logical,
character and NULL values is replaced by item numbers (e.g. varying = list(family = list(..., Gamma)
should be referred to as subset = V(family) == 2. This can quickly become confusing, there-
fore it is recommended to use named lists in most cases. demo(dredge.varying) provides ex-
amples.

dredge 11

The subset expression can also contain variable ‘*nvar*‘ (needs to be backtick-quoted), which
is equal to number of terms in the model (not the number of estimated parameters K).
To make inclusion of a variable conditional on presence of some other variable, a function dc
(“dependency chain”) can be used in the subset expression. dc takes any number of variables
as arguments, and allows a variable to be included only if all preceding variables are also present
(e.g. subset = dc(a, b, c) allows for models of form a, a+b and a+b+c but not b, c, b+c or
a+c).
subset expression can have a form of an unevaluated call, expression object, or a one sided
formula. See ‘Examples’. Compound model terms (such as ‘as-is’ expressions within I()
or smooths in gam) should be treated as non-syntactic names and enclosed in back-ticks (e.g.
subset = ‘s(x, k = 2)‘ || ‘I(log(x))‘, see Quotes). Mind the spacing, names must match
exactly the term names in model’s formula. To simply keep certain terms in all models, use of
argument fixed is more efficient.

subset expression syntax summary:

a & b indicates that variables a and b must be present (see ‘Logical Operators’)
V(x) indicates a varying variable x
dc(a,b,c,...) ‘dependency chain’: a is allowed only if b is present, and b only if c is present, etc.
‘*nvar*‘ number of variables

Missing values: Use of na.action = na.omit (R’s default) in global.model should be avoided,
as it results with sub-models fitted to different data sets, if there are missing values. Warning is
given if it is detected.

Methods: There are subset and plot methods, the latter produces a graphical representation
of model weights and variable relative importance. Coefficients can be extracted with coef or
coefTable.

Value

dredge returns an object of class model.selection, being a data.frame with models’ coefficients
(or presence/NA for factors), df - number of parameters, log-likelihood, the information criterion
value, delta-IC and Akaike weight. Models are ordered by the value of the information criterion
specified by rank (lowest on top).
The attribute "calls" is a list containing the model calls used (arranged in the same order as the
models). Other attributes: "global" - the global.model object, "rank" - the rank function used,
"call" - the matched call, and "warnings" - list of errors and warnings given by the modelling
function during the fitting, with model number appended to each. The associated model call can be
found with attr(*, "calls")[["i"]], where i is the model number.

Note

Users should keep in mind the hazards that a “thoughtless approach” of evaluating all possible
models poses. Although this procedure is in certain cases useful and justified, it may result in
selecting a spurious “best” model, due to the model selection bias.
“Let the computer find out” is a poor strategy and usually reflects the fact that the researcher did
not bother to think clearly about the problem of interest and its scientific setting (Burnham and
Anderson, 2002).

12 dredge

Author(s)

Kamil Bartoń

See Also

pdredge is a parallelized version of this function (uses a cluster).

get.models, model.avg. model.sel for manual model selection tables.

Possible alternatives: glmulti in package glmulti and bestglm (bestglm). regsubsets in package
leaps also performs all-subsets regression.

Examples

Example from Burnham and Anderson (2002), page 100:
data(Cement)
fm1 <- lm(y ~ ., data = Cement)
dd <- dredge(fm1)
subset(dd, delta < 4)

Visualize the model selection table:
if(require(graphics))

plot(dd)

Model average models with delta AICc < 4
model.avg(dd, subset = delta < 4)

#or as a 95% confidence set:
model.avg(dd, subset = cumsum(weight) <= .95) # get averaged coefficients

#’Best’ model
summary(get.models(dd, 1))[[1]]

Not run:
Examples of using ’subset’:
keep only models containing X3
dredge(fm1, subset = ~ X3) # subset as a formula
dredge(fm1, subset = expression(X3)) # subset as expression object
the same, but more effective:
dredge(fm1, fixed = "X3")
exclude models containing both X1 and X2 at the same time
dredge(fm1, subset = !(X1 && X2))
Fit only models containing either X3 or X4 (but not both);
include X3 only if X2 is present, and X2 only if X1 is present.
dredge(fm1, subset = dc(X1, X2, X3) && xor(X3, X4))
the same as above, but without using "dc"
dredge(fm1, subset = (X1 | !X2) && (X2 | !X3) && xor(X3, X4))

Include only models with up to 2 terms (and intercept)
dredge(fm1, m.max = 2)

End(Not run)

Formula manipulation 13

Add R^2 and F-statistics, use the ’extra’ argument
dredge(fm1, m.max = 1, extra = c("R^2", F = function(x)

summary(x)$fstatistic[[1]]))

with summary statistics:
dredge(fm1, m.max = 1, extra = list(

"R^2", "*" = function(x) {
s <- summary(x)
c(Rsq = s$r.squared, adjRsq = s$adj.r.squared,

F = s$fstatistic[[1]])
})

)

Add other information criterions (but rank with AICc):

dredge(fm1, m.max = 1, extra = alist(AIC, BIC, ICOMP, Cp))

Formula manipulation Manipulate model formulas

Description

simplify.formula rewrites a formula using shorthand notation. Currently only the factor crossing
operator * is applied, so that expanded expression such as a+b+a:b becomes a*b. expand.formula
does the opposite, additionally expanding other expressions, i.e. all nesting (/), grouping and ^.

Usage

simplify.formula(x)
expand.formula(x)

Arguments

x a formula or an object from which it can be extracted (such as a fitted model
object).

Author(s)

Kamil Bartoń

See Also

formula

delete.response, drop.terms, and reformulate

14 get.models

Examples

simplify.formula(y ~ a + b + a:b + (c + b)^2)
simplify.formula(y ~ a + b + a:b + 0)

expand.formula(~ a * b)

get.models Get models

Description

Generate a list of fitted model objects from a model.selection table. pget.models can use par-
alell computation in a cluster to do that.

Usage

get.models(object, subset, ...)
pget.models(object, cluster = NA, subset, ...)

Arguments

object object returned by dredge.

subset subset of models, an expression evaluated within the model selection table, see
the subset method. If it is a character vector, it is interpreted as names of rows
to be selected. By default, all model objects are fitted and returned (see ‘Note’).

... additional arguments to update the models. For example, in lme one may want
to use method = "REML" while using "ML" for model selection.

cluster a cluster object. See pdredge for details.

Value

list of fitted model objects.

Note

As of version 1.6.3, the default behaviour (if subset argument is missing) is to return all the models,
rather than a ‘confidence set’ with delta <= 4.

Author(s)

Kamil Bartoń

See Also

dredge, model.avg

importance 15

Examples

Mixed models:

require(nlme)
fm2 <- lme(distance ~ age + Sex, data = Orthodont,

random = ~ 1 | Subject, method = "ML")
ms2 <- dredge(fm2)

Get top-most models, but fitted by REML:
(confset.d4 <- get.models(ms2, subset = delta < 4, method = "REML"))

importance Relative variable importance

Description

Sum of ‘Akaike weights’ over all models including the explanatory variable.

Usage

importance(x)

Arguments

x Either a list of fitted model objects, or a "model.selection" or "averaging"
object.

Value

a numeric vector of relative importance values, named as the predictor variables.

Author(s)

Kamil Bartoń

See Also

Weights

dredge, model.avg, mod.sel

16 Information criteria

Examples

Generate some models
data(Cement)
fm1 <- lm(y ~ ., data = Cement)
ms1 <- dredge(fm1)

Importance can be calculated/extracted from various objects:
importance(ms1)
Not run:
importance(subset(mod.sel(ms1), delta <= 4))
importance(model.avg(ms1, subset = delta <= 4))
importance(subset(ms1, delta <= 4))
importance(get.models(ms1, delta <= 4))

End(Not run)

Re-evaluate the importances according to BIC
note that re-ranking involves fitting the models again

’nobs’ is not used here for backwards compatibility
lognobs <- log(length(resid(fm1)))

importance(subset(mod.sel(ms1, rank = AIC, rank.args = list(k = lognobs)),
cumsum(weight) <= .95))

This gives a different result than previous command, because ’subset’ is
applied to the original selection table that is ranked with ’AICc’
importance(model.avg(ms1, rank = AIC, rank.args = list(k = lognobs),

subset = cumsum(weight) <= .95))

Information criteria Various information criteria

Description

Calculate Mallows’ Cp and Bozdogan’s ICOMP and CAIFC information criteria.

Extract or calculate Deviance Information Criterion from MCMCglmm and mer object.

Usage

Cp(object, ..., dispersion = NULL)
ICOMP(object, ..., REML = NULL)
CAICF(object, ..., REML = NULL)
DIC(object, ...)

Information criteria 17

Arguments

object a fitted model object (in case of ICOMP and CAICF, logLik and vcov methods
must exist for the object). For DIC, an object of class MCMCglmm or mer.

... optionally more fitted model objects.

dispersion the dispersion parameter. If NULL, it is inferred from object.

REML optional logical value, passed to the logLik method indicating whether the re-
stricted log-likelihood or log-likelihood should be used. The default is to use the
method used for model estimation.

Details

Mallows’ Cp statistic is the residual deviance plus twice the estimate of σ2 times the residual de-
grees of freedom. It is closely related to AIC (and a multiple of it if the dispersion is known).

ICOMP (I for informational and COMP for complexity) penalizes the covariance complexity of the
model, rather than the number of parameters directly.

CAICF (C is for ‘consistent’ and F denotes the use of the Fisher information matrix) includes with
penalty the natural logarithm of the determinant of the estimated Fisher information matrix.

Value

If just one object is provided, the functions return a numeric value with the corresponding IC;
otherwise a data.frame with rows corresponding to the objects is returned.

References

Mallows, C. L. (1973) Some comments on Cp. Technometrics 15: 661–675.

Bozdogan, H. and Haughton, D.M.A. (1998) Information complexity criteria for regression models.
Comp. Stat. & Data Analysis 28: 51-76.

Anderson, D. R. and Burnham, K. P. (1999) Understanding information criteria for selection among
capture-recapture or ring recovery models. Bird Study 46: 14–21.

Spiegelhalter, D.J., Best, N.G., Carlin, B.R., van der Linde, A. (2002) Bayesian measures of model
complexity and fit. Journal of the Royal Statistical Society Series B-Statistical Methodology 64:
583–616.

See Also

AIC and BIC in stats, AICc. QIC for GEE model selection. extractDIC in package arm, on which
the (non-visible) method extractDIC.mer used by DIC is based.

18 Model utilities

Model utilities Model utility functions

Description

These functions extract or calculate various values from provided fitted model objects(s). They are
mainly meant for internal use, but may be also useful for end-users.

beta.weights computes standardized coefficients (beta weights) for a model;

coeffs extracts model coefficients;

getAllTerms extracts independent variable names from a model object;

coefTable extracts a table of coefficients, standard errors and associated degrees of freedom when
possible;

model.names generates shorthand (alpha)numeric names for one or several fitted models;

Usage

beta.weights(model)

coeffs(model)

getAllTerms(x, ...)
S3 method for class ’terms’
getAllTerms(x, offset = TRUE, intercept = FALSE, ...)

coefTable(model, ...)
S3 method for class ’lme’
coefTable(model, adjustSigma, ...)
S3 method for class ’gee’
coefTable(model, ..., type = c("naive", "robust"))

model.names(object, ..., labels = NULL, use.letters = FALSE)

Arguments

model a fitted model object.

object a fitted model object or a list of such objects.

x a fitted model object or a formula.

offset should ‘offset’ terms be included?

intercept should terms names include the intercept?

labels optionally, a character vector with names of all the terms, e.g. from a global
model. model.names enumerates the model terms in order of their appearance
in the list and in the models. So, changing the order of the models would lead to
different names. The argument ’labels’ can be used to prevent this happening.

model.avg 19

... for model.names, more fitted model objects. For coefTable arguments that are
passed to appropriate summary method (e.g. dispersion parameter for glm may
be used here). In other functions often not used.

use.letters logical, whether letters should be used instead of numeric codes.

type for GEE models, the type of covariance estimator to calculate returned standard
errors on. Either "naive" or "robust" (‘sandwich’).

adjustSigma See summary.lme.

Details

The functions coeffs, getAllTerms and coefTable provide interface between the model object
and model.avg (and dredge). Custom methods can be written to provide support for additional
classes of models.

Note

coeffs’s value is in most cases identical to that returned by coef, the only difference being it returns
fixed effects’ coefficients for mixed models, and the value is always a named numeric vector.

Use of tTable is deprecated in favour of coefTable.

Author(s)

Kamil Bartoń

model.avg Model averaging

Description

Model averaging based on an information criterion.

Usage

model.avg(object, ..., revised.var = TRUE)

Default S3 method:
model.avg(object, ..., beta = FALSE, rank = NULL, rank.args = NULL,

revised.var = TRUE, dispersion = NULL, ct.args = NULL)

S3 method for class ’model.selection’
model.avg(object, subset, fit = FALSE, ..., revised.var = TRUE)

20 model.avg

Arguments

object a fitted model object or a list of such objects, or a model.selection object. See
‘Details’.

... for default method, more fitted model objects. Otherwise, arguments that are
passed to the default method.

beta logical, should standardized coefficients be returned?

rank optionally, a custom rank function (information criterion) to use instead of AICc,
e.g. BIC or QAIC, may be omitted if object is a model list returned by get.models
or a model.selection object. See ‘Details’.

rank.args optional list of arguments for the rank function. If one is an expression, an x
within it is substituted with a current model.

revised.var logical, indicating whether to use revised formula for standard errors. See par.avg.

dispersion the dispersion parameter for the family used. See summary.glm. This is used
currently only with glm, is silently ignored otherwise.

ct.args optional list of arguments to be passed to coefTable (besides dispersion).

subset see subset method for model.selection object.

fit if TRUE, the component models are fitted using get.models. See ‘Details’.

Details

model.avg may be used either with a list of models, or directly with a model.selection object
(e.g. returned by dredge). In the latter case, the models from the model selection table are not
evaluated unless the argument fit is set to TRUE or some additional arguments are present (such as
rank or dispersion). This results in much faster calculation, but has certain drawbacks, because
the fitted component model objects are not stored, and some methods (e.g. predict, fitted,
model.matrix or vcov) would not be available with the returned object. Otherwise, get.models
is called prior to averaging, and . . . are passed to it.

For a list of model types that are accepted see list of supported models.

rank is found by a call to match.fun and typically is specified as a function or a symbol (e.g. a back-
quoted name) or a character string specifying a function to be searched for from the environment of
the call to lapply. rank must be a function able to accept model as a first argument and must always
return a scalar.

Several standard methods for fitted model objects exist for class averaging, including summary,
predict, coef, confint, formula,

vcov. The coef method a accepts argument full, if set to TRUE the full model-averaged coefficients
are returned, rather than subset-averaged ones. logLik returns a list of logLik objects for the
component models.

Value

An object of class averaging is a list with components:

summary a data.frame with log-likelihood, IC, Delta(IC) and Akaike weights for the
component models.

model.avg 21

coef.shrinkage a vector of full model-averaged coefficients, see ‘Note’.

coefArray an array of component models’ coefficients, their standard errors, and degrees
of freedom.

term.codes names of the terms with numerical codes used in the summary.

avg.model the model averaged parameters. A data.frame containing averaged coeffi-
cients, unconditional standard error, adjusted SE (if df s are available) and z-
values (coefficient and SE) and significance (assuming a normal error distribu-
tion).

importance relative importance of the predictor variables (including interactions), calculated
as a sum of the Akaike weights over all of the models in which the parameter of
interest appears.

term.names character vector giving names of all terms in the model.

x, formula the model matrix and formula corresponding to the one that would be used in a
single model. formula contains only the averaged coefficients.

call the matched call.

In addition, the object has following attributes:

modelList a list of component model objects.

beta logical, were standardized coefficients used?

revised.var if TRUE, the standard errors were calculated with the revised formula (See par.avg).

Note

The ‘subset’ (or ‘conditional’) average only averages over the models where the parameter appears.
An alternative, the ‘full’ average assumes that a variable is included in every model, but in some
models the corresponding coefficient is set to zero. Unlike the ‘subset average’, it does not have a
tendency of biasing the value away from zero. It is, however, an unresolved issue how the variance
of this estimate should be calculated, therefore the standard errors and confidence interval are re-
turned only for the subset-averaged coefficients (as from version >= 1.5.0 argument method is no
longer accepted).

Averaging models with different contrasts for the same factor would yield nonsense results, cur-
rently no checking for contrast consistency is done.

From version 1.0.1, print method provides only a concise output (similarly as for lm). To print
a full summary of the results use summary function. Confidence intervals can be obtained with
confint.

Author(s)

Kamil Bartoń

References

Burnham, K. P. and Anderson, D. R (2002) Model selection and multimodel inference: a practical
information-theoretic approach. 2nd ed. New York, Springer-Verlag.

22 model.avg

See Also

See par.avg for more details of model averaged parameter calculation.

dredge, get.models
AICc has examples of averaging models fitted by REML.

modavg in package AICcmodavg, and coef.glmulti in package glmulti also perform model av-
eraging.

Examples

Example from Burnham and Anderson (2002), page 100:
library(MuMIn)
data(Cement)
fm1 <- lm(y ~ ., data = Cement)
(ms1 <- dredge(fm1))

#models with delta.aicc < 4
summary(model.avg(ms1, subset = delta < 4))

#or as a 95% confidence set:
avgmod.95p <- model.avg(ms1, cumsum(weight) <= .95)
confint(avgmod.95p)

Not run:
The same result, but re-fitting the models via ’get.models’
confset.95p <- get.models(ms1, cumsum(weight) <= .95)
model.avg(confset.95p)

Force re-fitting the component models
model.avg(ms1, cumsum(weight) <= .95, fit = TRUE)
Models are also fitted if additional arguments are given
model.avg(ms1, cumsum(weight) <= .95, rank = "AIC")

End(Not run)

Not run:
using BIC (Schwarz’s Bayesian criterion) to rank the models
BIC <- function(x) AIC(x, k = log(length(residuals(x))))
model.avg(confset.95p, rank = BIC)
the same result, using AIC directly, with argument k
’x’ in a quoted ’rank’ argument is substituted with a model object
(in this case it does not make much sense as the number of observations is
common to all models)
model.avg(confset.95p, rank = AIC, rank.args = alist(k = log(length(residuals(x)))))

End(Not run)

model.sel 23

model.sel model selection table

Description

Build a model selection table.

Usage

model.sel(object, ...)

S3 method for class ’model.selection’
model.sel(object, rank = NULL, rank.args = NULL, ...)
Default S3 method:
model.sel(object, ..., rank = NULL, rank.args = NULL)

Arguments

object A fitted model object, a list of such objects, or a "model.selection" object.

... More fitted model objects.

rank Optional, custom rank function (information criterion) to use instead of AICc,
e.g. QAIC or BIC, may be omitted if object is a model list returned by get.models.

rank.args Optional list of arguments for the rank function. If one is an expression, an x
within it is substituted with a current model.

Value

An object of class "model.selection" with columns containing useful information about each
model: the coefficients, df, log-likelihood, the value of the information criterion used, Delta(IC)
and ‘Akaike weight’. If any arguments differ between the modelling function calls, the result will
include additional columns showing them (except for formulas and some other arguments).

Author(s)

Kamil Bartoń

See Also

dredge, AICc, list of supported models.

Possible alternatives: ICtab (in package bbmle), or aictab (AICcmodavg).

24 MuMIn-models

Examples

data(Cement)
Cement$X1 <- cut(Cement$X1, 3)
Cement$X2 <- cut(Cement$X2, 2)

fm1 <- glm(formula = y ~ X1 + X2 * X3, data = Cement)
fm2 <- update(fm1, . ~ . - X1 - X2)
fm3 <- update(fm1, . ~ . - X2 - X3)

ranked with AICc by default
(msAICc <- model.sel(fm1, fm2, fm3))

ranked with BIC
model.sel(fm1, fm2, fm3, rank = AIC, rank.args = alist(k = log(nobs(x))))
or
model.sel(msAICc, rank = AIC, rank.args = alist(k = log(nobs(x))))
or
update(msAICc, rank = AIC, rank.args = alist(k = log(nobs(x))))

MuMIn-models List of supported models

Description

List of model classes accepted by model.avg, model.sel, and dredge.

Details

Fitted model objects that can be used with model selection and model averaging functions include
those returned by:

• lm, glm (package stats);

• rlm, glm.nb and polr (MASS);

• multinom (nnet);
• lme, gls (nlme);

• lmer, glmer (lme4);

• gam, gamm* (mgcv);

• gamm4* (gamm4);

• glmmML (glmmML);

• glmmadmb (glmmADMB from R-Forge);

• hurdle, zeroinfl (pscl);
• negbin, betabin (class glimML, package aod);

par.avg 25

• sarlm, spautolm (spdep);

• spml (if fitted by ML, splm);

• coxph, survreg (survival);

• coxme, lmekin (coxme);

• rq (quantreg);

• clm and clmm (ordinal);

• logistf (logistf);

• crunch*, pgls (caper);

• functions from package unmarked (within the class unmarkedFit);

• mark and related functions (class mark from package RMark). Note currently dredge can
only manipulate formula element of the argument model.parameters, keeping its other ele-
ments intact.

Generalized Estimation Equation model implementations: geeglm from package geepack, gee
from gee, and yags from yags (from R-Forge) can be used with QIC as the selection criterion.

MCMCglmm* models (package MCMCglmm) with DIC as the rank function are accepted by model.sel
and dredge.

Other classes are also likely to be supported, in particular if they inherit from one of the above
classes. In general, the models averaged with model.avg may belong to different types (e.g. glm
and gam), provided they use the same data and response, and if it is valid to do so. This applies also
to constructing model selection tables with model.sel.

Note

* In order to use gamm4, gamm4, crunch or MCMCglmm with dredge, an updateable wrapper for
these functions should be created.

See Also

model.avg, model.sel and dredge.

par.avg Parameter averaging

Description

Average a single model coefficient based on provided weights. It is mostly intended for internal
use.

Usage

par.avg(x, se, weight, df = NULL, level = 1 - alpha, alpha = 0.05,
revised.var = TRUE, adjusted = TRUE)

26 par.avg

Arguments

x vector of parameters.

se vector of standard errors.

weight vector of weights.

df (optional) vector of degrees of freedom.

alpha, level significance level for calculating confidence intervals.

revised.var logical, should the revised formula for standard errors be used? See ‘Details’.

adjusted logical, should the inflated standard errors be calculated? See ‘Details’.

Details

Unconditional standard errors are square root of the variance estimator, calculated either according
to the original equation in Burnham and Anderson (2002, equation 4.7), or a newer, revised formula
from Burnham and Anderson (2004, equation 4) (if revised.var = TRUE, this is the default). If
adjusted = TRUE (the default) and degrees of freedom are given, the adjusted standard error esti-
mator and confidence intervals with improved coverage are returned (see Burnham and Anderson
2002, section 4.3.3).

Value

par.avg returns a vector with named elements:

Coefficient model coefficients,

SE unconditional standard error,

Adjusted SE adjusted standard error,
Lower CI, Upper CI

unconditional confidence intervals.

Author(s)

Kamil Bartoń

References

Burnham, K. P. and Anderson, D. R (2002) Model selection and multimodel inference: a practical
information-theoretic approach. 2nd ed.

Burnham, K. P. and Anderson, D. R. (2004). Multimodel inference - understanding AIC and BIC in
model selection. Sociological Methods & Research 33(2): 261-304.

See Also

model.avg for model averaging.

pdredge 27

pdredge Automated model selection using parallel computation

Description

Parallelized version of dredge.

Usage

pdredge(global.model, cluster = NA, beta = FALSE, evaluate = TRUE, rank = "AICc",
fixed = NULL, m.max = NA, m.min = 0, subset, marg.ex = NULL, trace = FALSE,
varying, extra, ct.args = NULL, check = FALSE, ...)

Arguments

global.model, beta, evaluate, rank

see dredge.
fixed, m.max, m.min, subset, marg.ex, varying, extra, ct.args, ...

see dredge.

trace displays the generated calls, but may not work as expected since the models are
evaluated in batches rather than one by one.

cluster either a valid cluster object, or NA for a single threaded execution.

check either integer or logical value controlling how much checking for existence and
correctness of dependencies is done on the cluster nodes. See ‘Details’.

Details

All the dependencies for fitting the global.model, including the data and any objects the modelling
function will use must be exported into the cluster worker nodes (e.g. via clusterExport). The re-
quired packages must be also loaded thereinto (e.g. via clusterEvalQ(..., library(package)),
before the cluster is used by pdredge.

If check is TRUE or positive, pdredge tries to check whether all the variables and functions used in
the call to global.model are present in the cluster nodes’ .GlobalEnv before proceeding further.
This causes false errors if some arguments of the model call (other than subset) would be evaluated
in data environment. In that case using check = FALSE (the default) is desirable.

If check is TRUE or greater than one, pdredge will compare the global.model updated at the cluster
nodes with the one given as argument.

Value

See dredge.

Author(s)

Kamil Bartoń

28 pdredge

See Also

makeCluster and other cluster related functions in packages parallel or snow.

Examples

One of these packages is required:
Not run: require(parallel) || require(snow)

From example(Beetle)
data(Beetle)

Beetle100 <- Beetle[sample(nrow(Beetle), 100, replace = TRUE),]

fm1 <- glm(Prop ~ dose + I(dose^2) + log(dose) + I(log(dose)^2),
data = Beetle100, family = binomial)

msubset <- expression(xor(dose, ‘log(dose)‘) & (dose | !‘I(dose^2)‘)
& (‘log(dose)‘ | !‘I(log(dose)^2)‘))

varying.link <- list(family = alist(logit = binomial("logit"),
probit = binomial("probit"), cloglog = binomial("cloglog")))

Set up the cluster
clusterType <- if(length(find.package("snow", quiet = TRUE))) "SOCK" else "PSOCK"
clust <- try(makeCluster(getOption("cl.cores", 2), type = clusterType))

clusterExport(clust, "Beetle100")

noticeable gain only when data has about 3000 rows (Windows 2-core machine)
print(system.time(dredge(fm1, subset = msubset, varying = varying.link)))
print(system.time(pdredge(fm1, cluster = FALSE, subset = msubset,

varying = varying.link)))
print(system.time(pdd <- pdredge(fm1, cluster = clust, subset = msubset,

varying = varying.link)))

print(pdd)

Not run:
Time consuming example with ’unmarked’ model, based on example(pcount).
Having enough patience you can run this with ’demo(pdredge.pcount)’.
library(unmarked)
data(mallard)
mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site,

obsCovs = mallard.obs)
(ufm.mallard <- pcount(~ ivel + date + I(date^2) ~ length + elev + forest,

mallardUMF, K = 30))
clusterEvalQ(clust, library(unmarked))
clusterExport(clust, "mallardUMF")

’stats4’ is needed for AIC to work with unmarkedFit objects but is not

predict.averaging 29

loaded automatically with ’unmarked’.
require(stats4)
invisible(clusterCall(clust, "library", "stats4", character.only = TRUE))

#system.time(print(pdd1 <- pdredge(ufm.mallard,
subset = ‘p(date)‘ | !‘p(I(date^2))‘, rank = AIC)))

system.time(print(pdd2 <- pdredge(ufm.mallard, clust,
subset = ‘p(date)‘ | !‘p(I(date^2))‘, rank = AIC, extra = "adjR^2")))

best models and null model
subset(pdd2, delta < 2 | df == min(df))

Compare with the model selection table from unmarked
the statistics should be identical:
models <- pget.models(pdd2, clust, delta < 2 | df == min(df))

modSel(fitList(fits = structure(models, names = model.names(models,
labels = getAllTerms(ufm.mallard)))), nullmod = "(Null)")

End(Not run)

stopCluster(clust)

predict.averaging Predict method for the averaged model

Description

Model-averaged predictions with optional standard errors.

Usage

S3 method for class ’averaging’
predict(object, newdata = NULL, se.fit = FALSE,

interval = NULL, type = NA, backtransform = FALSE, full = TRUE, ...)

Arguments

object An object returned by model.avg.

newdata An optional data frame in which to look for variables with which to predict. If
omitted, the fitted values are used.

se.fit logical, indicates if standard errors should be returned. This has any effect only
if the predict methods for each of the component models support it.

interval Currently not used.

30 predict.averaging

type The type of predictions to return (see documentation for predict appropriate
for the class of used component models). If omitted, the default type is used.
See ‘Details’.

backtransform If TRUE, the averaged predictions are back-transformed from link scale to re-
sponse scale. This makes sense provided that all component models use the
same family, and the prediction from each of the component models is calcu-
lated on the link scale (as specified by type. For glm, use type = "link"). See
‘Details’.

full If TRUE, the full model averaged coefficients are used (only if se.fit = FALSE
and the component objects are a result of lm).

... Arguments to be passed to respective predict method (e.g. level for lme
model).

Details

If all the component models are oridinary linear models, the prediction can be made either with
the full averaged coefficients (the argument full = TRUE this is the default) or subset-averaged
coefficients. Otherwise the prediction is obtained by calling predict on each component model
and weighted averaging the results, which corresponds to the assumption that all predictors are
present in all models, but those not estimated are equal zero. See ‘Note’ in model.avg. Predictions
from component models with standard errors are passed to par.avg and averaged in the same way
as the coefficients.

Predictions on the response scale from generalized models can be calculated by averaging predic-
tions of each model on the link scale, followed by inverse transformation (this is achieved with
type = "link" and backtransform = TRUE). This is only possible if all component models use
the same family and link function. Alternatively, predictions from each model on response scale
may be averaged (with type = "response" and backtransform = FALSE). Note that this leads
to results differing from those calculated with the former method. See also predict.glm.

Value

If se.fit = FALSE, a vector of predictions, otherwise a list with components: fit containing the
predictions, and se.fit with the estimated standard errors.

Note

This method relies on availability of the predict methods for the component model classes (except
when all component models are of class lm).

The package MuMIn includes predict methods for lme, gls and lmer (lme4), all of which can
calculate standard errors of the predictions (with se.fit = TRUE). The former two enhance the
original predict methods from package nlme, and with se.fit = FALSE they return identical result.
MuMIn’s versions are always used in averaged model predictions (so it is possible to predict with
standard errors), but from within global environment they will be found only if MuMIn is before
nlme on the search list (or directly extracted from namespace as MuMIn::predict.lme).

predict method for mer models currently can only calculate values on the outermost level (equiv-
alent to level = 0 in predict.lme).

predict.averaging 31

Author(s)

Kamil Bartoń

See Also

model.avg, and par.avg for details of model-averaged parameter calculation.

predict.lme, predict.gls

Examples

require(graphics)

Example from Burnham and Anderson (2002), page 100:
data(Cement)
fm1 <- lm(y ~ X1 + X2 + X3 + X4, data = Cement)

ms1 <- dredge(fm1)
confset.95p <- get.models(ms1, subset = cumsum(weight) <= .95)
avgm <- model.avg(confset.95p)

nseq <- function(x, len = length(x)) seq(min(x, na.rm = TRUE),
max(x, na.rm=TRUE), length = len)

New predictors: X1 along the range of original data, other
variables held constant at their means
newdata <- as.data.frame(lapply(lapply(Cement[1:4], mean), rep, 25))
newdata$X1 <- nseq(Cement$X1, nrow(newdata))

n <- length(confset.95p)

Predictions from each of the models in a set, and with averaged coefficients
pred <- data.frame(
model = sapply(confset.95p, predict, newdata = newdata),
averaged.subset = predict(avgm, newdata, full = FALSE),

averaged.full = predict(avgm, newdata, full = TRUE)
)

opal <- palette(c(topo.colors(n), "black", "red", "orange"))
matplot(newdata$X1, pred, type = "l",
lwd = c(rep(2,n),3,3), lty = 1,

xlab = "X1", ylab = "y", col=1:7)

For comparison, prediction obtained by averaging predictions of the component
models
pred.se <- predict(avgm, newdata, se.fit = TRUE)
y <- pred.se$fit
ci <- pred.se$se.fit * 2
matplot(newdata$X1, cbind(y, y - ci, y + ci), add = TRUE, type="l",
lty = 2, col = n + 3, lwd = 3)

legend("topleft",

32 QAIC

legend=c(lapply(confset.95p, formula),
paste(c("subset", "full"), "averaged"), "averaged predictions + CI"),

lty = 1, lwd = c(rep(2,n),3,3,3), cex = .75, col=1:8)

palette(opal)

QAIC Quasi AIC or AICc

Description

Calculate a modification of Akaike’s Information Criterion for overdispersed count data (or its
version corrected for small sample, “quasi-AICc”), for one or several fitted model objects.

Usage

QAIC(object, ..., chat, k = 2)
QAICc(object, ..., chat, k = 2)

Arguments

object a fitted model object.

... optionally, more fitted model objects.

chat ĉ, the variance inflation factor.

k the ‘penalty’ per parameter.

Value

If only one object is provided, returns a numeric value with the corresponding QAIC or QAICc;
otherwise returns a data.frame with rows corresponding to the objects.

Note

ĉ is the dispersion parameter estimated from the global model, and can be calculated by dividing
model’s deviance by the number of residual degrees of freedom.

In calculation of QAIC, the number of model parameters is increased by 1 to account for estimating
the overdispersion parameter. Without overdispersion, ĉ = 1 and QAIC is equal to AIC.

Note that glm does not compute maximum-likelihood estimates in models within the quasi- family.
In case it is justified, and with a proper caution, a workaround could be used by ‘borrowing’ the aic
element from the corresponding ‘non-quasi’ family (see ‘Example’).

Author(s)

Kamil Bartoń

QIC 33

See Also

AICc, quasi family used for models with over-dispersion

Examples

Based on "example(predict.glm)", with one number changed to create
overdispersion
budworm <- data.frame(

ldose = rep(0:5, 2), sex = factor(rep(c("M", "F"), c(6, 6))),
numdead = c(10, 4, 9, 12, 18, 20, 0, 2, 6, 10, 12, 16))

budworm$SF = cbind(numdead = budworm$numdead,
numalive = 20 - budworm$numdead)

budworm.lg <- glm(SF ~ sex*ldose, data = budworm, family = binomial)
(chat <- deviance(budworm.lg) / df.residual(budworm.lg))

dredge(budworm.lg, rank = "QAIC", chat = chat)
dredge(budworm.lg, rank = "AIC")

Not run:
A ’hacked’ constructor for quasibinomial family object, that allows for
ML estimation
x.quasibinomial <- function(...) {

res <- quasibinomial(...)
res$aic <- binomial(...)$aic
res

}
QAIC(update(budworm.lg, family = x.quasibinomial), chat = chat)

End(Not run)

QIC QIC and quasi-Likelihood for GEE

Description

Calculate quasi-likelihood under the independence model criterion (QIC) for Generalized Estimat-
ing Equations.

Usage

QIC(object, ..., typeR = FALSE)
QICu(object, ..., typeR = FALSE)
quasiLik(object, ...)

34 QIC

Arguments

object a fitted model object of class gee, geepack or yags.

... for QIC and QICu, optionally more fitted model objects.

typeR logical, whether to calculate QIC(R). QIC(R) is based on quasi-likelihood of a
working correlation R model. Defaults to FALSE, and QIC(I) based on indepen-
dence model is returned.

Value

If just one object is provided, returns a numeric value with the corresponding QIC; if more than one
object are provided, returns a data.frame with rows corresponding to the objects and one column
representing QIC or QICu.

Note

This implementation is based partly on (revised) code from packages yags (R-Forge) and ape. The
functions are still in experimental stage and should be used with caution.

Author(s)

Kamil Bartoń

References

Pan W. (2001) Akaike’s Information Criterion in Generalized Estimating Equations. Biometrics 57:
120-125

Hardin J. W., Hilbe, J. M. (2003) Generalized Estimating Equations. Chapman & Hall/CRC

See Also

Methods exist for gee (package gee), geeglm (geepack), and yags (yags on R-Forge). yags and
compar.gee from package ape both provide QIC values.

Examples

library(geepack)
data(ohio)

fm1 <- geeglm(resp ~ age * smoke, id = id, data = ohio,
family = binomial, corstr = "exchangeable", scale.fix = TRUE)

fm2 <- update(fm1, corstr = "ar1")
fm3 <- update(fm1, corstr = "unstructured")

model.sel(fm1, fm2, fm3, rank = QIC)

Not run:
same result:

dredge(fm1, m.min = 3, rank = QIC, varying = list(
corstr = list("exchangeable", "unstructured", "ar1")

r.squaredGLMM 35

))

End(Not run)

r.squaredGLMM Pseudo-R-squared for Generalized Mixed-Effect models

Description

Calculate a conditional and marginal coefficient of determination for Generalized mixed-effect
models (R2

GLMM).

Usage

r.squaredGLMM(x, nullfx = NULL)

Arguments

x a fitted linear model object.

nullfx optionally, a fitted null model including only intercept and all the random effects
of the reference model.

Details

For mixed-effects models, R2 can be categorized into two types: marginal and conditional. Marginal
R2 represents the variance explained by fixed factors, and is defined as:

R2
GLMM(m) =

σ2
f

σ2
f +

∑u
l=1 σ

2
l + σ2

ε

Conditional R2 is interpreted as variance explained by both fixed and random factors (i.e . the
entire model), and is calculated according to the equation:

R2
GLMM(c) =

σ2
f +

∑u
l=1 σ

2
l

σ2
f +

∑u
l=1 σ

2
l + σ2

ε

where σ2
f is the variance of the fixed effect components, and

∑
σ2
l is the sum of all u variance

components (group, individual, etc.), and σ2
ε is the residual variance.

Value

r.squaredGLMM returns a numeric vector with two values for marginal and conditional R2
GLMM .

36 r.squaredLR

Note

R2
GLMM can be calculated also for fixed-effect models. In the simpliest case of OLS it reduces

to var(fitted) / (var(fitted) + deviance / 2). Yet, unlike likelihood-ratio based R2 for
OLS, value of this statistic differs from that of the classical R2.

Currently methods exist for classes: mer(Mod), lme, glmmML and (g)lm.

See note in r.squaredLR help page for comment on using R2 in model selection.

This implementation is based on R code from ‘Supporting Information’ for Nakagawa & Schielzeth
(2012).

This function is in experimental stage and should be used with caution. Specifically, conditional
R2
GLMM for Poisson family models cannot be yet calculated (NA is returned).

References

Nakagawa, S, Schielzeth, H. (2012). A general and simple method for obtaining R2 from General-
ized Linear Mixed-effects Models. Methods in Ecology and Evolution: (online) doi:10.1111/j.2041-
210x.2012.00261.x

See Also

summary.lm, r.squaredLR

Examples

library(lme4)
data(Orthodont, package = "nlme")

fm1 <- lmer(distance ~ Sex * age + (1 | Subject), data = Orthodont)

r.squaredGLMM(fm1)
r.squaredLR(fm1)
r.squaredLR(fm1, null.RE = TRUE)

r.squaredLR Likelihood-ratio based pseudo-R-squared

Description

Calculate a coefficient of determination based on the likelihood-ratio test (R2
LR).

Usage

r.squaredLR(x, null = NULL, null.RE = FALSE)

null.fit(x, evaluate = FALSE, RE.keep = FALSE, envir = NULL)

r.squaredLR 37

Arguments

x a fitted model object.

null a fitted null model. If not provided, null.fit will be used to construct it.
null.fit’s capabilities are limited to only a few model classes, for others the
null model has to be specified manually.

null.RE logical, should the null model contain random factors? Only used if no null
model is given, otherwise omitted, with a warning.

evaluate if TRUE evaluate the fitted model object else return the call.

RE.keep if TRUE, the random effects of the original model are included.

envir the environment in which the null model is to be evaluated, defaults to the envi-
ronment of the original model’s formula.

Details

This statistic is is one of the several proposed pseudo-R-squared’s for nonlinear regression models.
It is based on an improvement from null (intercept only) model to the fitted model, and calculated
as

R2
LR = 1 − exp(− 2

n
(logLik(x) − logLik(0)))

where logLik(x) and logLik(0) are the log-likelihoods of the fitted and the null model respectively.
ML estimates are used for this purpose in when models have been fitted by REstricted ML (by calling
logLik with argument REML = FALSE). Note that the null model can include the random factors of
the original model, in which case the statistic represents the ‘variance explained’ by fixed effects.

For OLS models the value is consistent with classical R2. In some cases (e.g. in logistic regres-
sion), the maximum R2

LR is less than one. The modification proposed by Nagelkerke (1991)
adjusts the R2

LR to achieve 1 at its maximum: R̄2 = R2
LR/max(R2

LR) where max(R2
LR) =

1 − exp(2
n logLik(0)).

null.fit tries to guess the null model call, given the provided fitted model object. This would be
usually a glm. The function will give an error for an unrecognized class.

Value

r.squaredLR returns a value of R2
LR, and the attribute "adj.r.squared" gives the Nagelkerke’s

modified statistic. Note that this is not the same as nor equivalent to the classical ‘adjusted R
squared’.

null.fit returns the fitted null model object (if evaluate = TRUE) or an unevaluated call to fit a
null model.

Note

R2 is a useful goodness-of-fit measure as it has the interpretation of the proportion of the variance
‘explained’, but it performs poorly in model selection, and is not suitable for use in the same way
as the information criterions.

38 subset.model.selection

References

Cox, D. R. and Snell, E. J. (1989) The analysis of binary data, 2nd ed. London, Chapman and Hall

Magee, L. (1990) R2 measures based on Wald and likelihood ratio joint significance tests. Amer.
Stat. 44: 250-253

Nagelkerke, N. J. D. (1991) A note on a general definition of the coefficient of determination.
Biometrika 78: 691-692

See Also

summary.lm, r.squaredGLMM

subset.model.selection

Subsetting model selection table

Description

Return subsets of a model selection table returned by dredge or model.sel.

Usage

S3 method for class ’model.selection’
subset(x, subset, select, recalc.weights = TRUE,
recalc.delta = FALSE, ...)
S3 method for class ’model.selection’
x[i, j, recalc.weights = TRUE, recalc.delta = FALSE, ...]

Arguments

x a model.selection object to be subsetted.

subset,select logical expressions indicating columns and rows to keep. See subset.

i,j indices specifying elements to extract.

recalc.weights logical value specyfying whether Akaike weights should be normalized across
the new set of models to sum to one.

recalc.delta logical value specyfying whether delta[IC] should be calculated for the new set
of models (this is not done by default).

... further arguments passed to [.data.frame.

Value

A model.selection object containing only the selected models (rows). When columns are selected
(arguments select or j are provided), a plain data.frame is returned.

subset.model.selection 39

Note

Unlike the method for data.frame, extracting with only one index (i.e. x[i]) will select rows
rather than columns.

To select rows according to presence or absence of the variables (rather than their value), a pseudo-
function has may be used, e.g. subset(x, has(a, !b)) will select rows with a and without b (this
is equivalent to !is.na(a) & is.na(b)). has can take any number of arguments. Importantly, the
has() notation cannot be used in the subset argument for dredge, where the variable names should
be given directly, with the same effect.

To select rows where one variable can be present conditional on the presence of other variable(s),
the function dc (dependency chain) can be used. dc takes any number of variables as arguments,
and allows a variable to be included only if all the preceding arguments are also included (e.g.
subset = dc(a, b, c) allows for models of form a, a+b and a+b+c but not b, c, b+c or a+c).

Author(s)

Kamil Bartoń

See Also

dredge, subset and [.data.frame for subsetting and extracting from data.frames.

Examples

data(Cement)
fm1 <- lm(formula = y ~ X1 + X2 + X3 + X4, data = Cement)

generate models where each variable is included only if the previous
are included too, e.g. X2 only if X1 is there, and X3 only if X2 and X1
dredge(fm1, subset = dc(X1, X2, X3, X4))

which is equivalent to
dredge(fm1, subset = (!X2 | X1) & (!X3 | X2) & (!X4 | X3))

alternatively, generate "all possible" combinations
ms0 <- dredge(fm1)
...and afterwards select the subset of models
subset(ms0, dc(X1, X2, X3, X4))
which is equivalent to
subset(ms0, (has(!X2) | has(X1)) & (has(!X3) | has(X2)) & (has(!X4) | has(X3)))

Different ways of finding a confidence set of models:
delta(AIC) cutoff
subset(ms0, delta <= 4, recalc.weights = FALSE)
cumulative sum of Akaike weights
subset(ms0, cumsum(weight) <= .95, recalc.weights = FALSE)
relative likelihood
subset(ms0, (weight / weight[1]) > (1/8), recalc.weights = FALSE)

40 updateable

updateable Make a function return updateable result

Description

Creates a function wrapper that stores a call in the values returned by its argument FUN.

Usage

updateable(FUN)
updateable2(FUN, Class)

updateable wrapper for mgcv::gamm and gamm4::gamm4
uGamm(formula, random = NULL, ..., lme4 = inherits(random, "formula"))

Arguments

FUN function to be modified, found via match.fun.
Class optional character vector naming class(es) to be set onto the result of FUN (not

possible with formal S4 objects).
formula, random, ...

arguments to be passed to gamm or gamm4
lme4 if TRUE, gamm4 is called, gamm otherwise.

Details

Most model fitting functions in R returns an object that can be updated or re-fitted via update. This
is thanks to the call stored in the object, which can be used (possibly modified) later on. It is also
utilised by dredge to generate sub-models.

Some functions (such as gamm or MCMCglmm) do not provide their result with the call element. In
this case updateable can be used on that function to add it. The resulting wrapper should be used
in exactly the same way as the original function.

Value

A function with the same arguments as FUN, wrapping a call to FUN and adding an element named
call to its result if possible, or an attribute "call" (if the returned value is atomic or a formal S4
object).

Note

uGamm sets also an appropriate class onto the result ("gamm4" and/or "gamm"), which is needed for
some generics defined in MuMIn to work (note that unlike the functions created by updateable it
has no formal arguments of the original function. As of version 1.9.2, MuMIn::gamm is no longer
available.

MuMIn replaces the default method for getCall (defined originally in package stats), with a
function that can extract the call also when it is an attribute (rather than an element of the object).

updateable 41

Author(s)

Kamil Bartoń

See Also

update, getCall, getElement, attributes

gamm, gamm4

Examples

Simple example with cor.test:

From example(cor.test)
x <- c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1)
y <- c(2.6, 3.1, 2.5, 5.0, 3.6, 4.0, 5.2, 2.8, 3.8)

ct1 <- cor.test(x, y, method = "kendall", alternative = "greater")

uCor.test <- updateable(cor.test)

ct2 <- uCor.test(x, y, method = "kendall", alternative = "greater")

getCall(ct1) # --> NULL
getCall(ct2)

#update(ct1, method = "pearson") --> Error
update(ct2, method = "pearson")
update(ct2, alternative = "two.sided")

predefined wrapper for ’gamm’:
library(mgcv)
set.seed(0)
dat <- gamSim(6, n = 100, scale = 5, dist = "normal")

fmm1 <- uGamm(y ~s(x0)+ s(x3) + s(x2), family = gaussian, data = dat,
random = list(fac = ~1))

getCall(fmm1)
class(fmm1)
###

Not run:
library(caper)
data(shorebird)
shorebird <- comparative.data(shorebird.tree, shorebird.data, Species)

fm1 <- crunch(Egg.Mass ~ F.Mass * M.Mass, data = shorebird)

42 Weights

uCrunch <- updateable(crunch)

fm2 <- uCrunch(Egg.Mass ~ F.Mass * M.Mass, data = shorebird)

getCall(fm1)
getCall(fm2)
update(fm2) # Error with ’fm1’
dredge(fm2)

End(Not run)

Weights Akaike weights

Description

Calculate or extract normalized model likelihoods (‘Akaike weights’).

Usage

Weights(x)

Arguments

x a numeric vector of information criterion values such as AIC, or objects returned
by functions like AIC. There are also methods for extracting Akaike weights
from a model.selection or averaging objects.

Value

a numeric vector of normalized likelihoods.

Author(s)

Kamil Bartoń

See Also

importance

weights, which extracts fitting weights from model objects.

Weights 43

Examples

data(Beetle)

fm1 <- glm(Prop ~ dose, data=Beetle, family=binomial)
fm2 <- update(fm1, . ~ . + I(dose^2))
fm3 <- update(fm1, . ~ log(dose))
fm4 <- update(fm3, . ~ . + I(log(dose)^2))

round(Weights(AICc(fm1, fm2, fm3, fm4)), 3)

Index

∗Topic datasets
Beetle, 5
Cement, 7

∗Topic manip
Formula manipulation, 13
Model utilities, 18
subset.model.selection, 38

∗Topic models
AICc, 3
dredge, 8
get.models, 14
importance, 15
Information criteria, 16
Model utilities, 18
model.avg, 19
model.sel, 23
MuMIn-package, 2
par.avg, 25
pdredge, 27
predict.averaging, 29
QAIC, 32
QIC, 33
r.squaredGLMM, 35
r.squaredLR, 36
Weights, 42

∗Topic package
MuMIn-models, 24
MuMIn-package, 2

∗Topic utils
updateable, 40

[.data.frame, 38, 39
[.model.selection

(subset.model.selection), 38

AIC, 3, 4, 17
AICc, 3, 3, 4, 17, 22, 23, 33
aicc, 4
aictab, 23
alist, 9
attribute, 40

attributes, 41

Beetle, 5, 9
bestglm, 12
beta.weights (Model utilities), 18
BIC, 3, 17

CAICF, 3
CAICF (Information criteria), 16
Cement, 7
coef, 19
coef.glmulti, 22
coeffs (Model utilities), 18
coefTable, 9, 11, 20
coefTable (Model utilities), 18
compar.gee, 34
confint, 21
Cp (Information criteria), 16

delete.response, 13
DIC, 3, 25
DIC (Information criteria), 16
dredge, 2, 8, 14, 15, 22, 23, 25, 27, 39
drop.terms, 13

expand.formula (Formula manipulation),
13

extractDIC, 17

formula, 13, 20
Formula manipulation, 13

gamm, 41
gamm-wrapper (updateable), 40
gamm4, 41
gee, 25, 34
geeglm, 25, 34
get.models, 10, 12, 14, 22
getAllTerms (Model utilities), 18
getCall, 41
getElement, 41

44

INDEX 45

glmulti, 12

has (subset.model.selection), 38

IC (Information criteria), 16
ICOMP, 3
ICOMP (Information criteria), 16
ICtab, 23
importance, 15, 42
Information criteria, 16

list, 14
list of supported models, 3, 10, 20, 23
lme, 30
Logical Operators, 11
logLik, 20

Mallows’ Cp, 3
Mallows’ Cp (Information criteria), 16
match.fun, 20, 40
mod.sel, 15
mod.sel (model.sel), 23
modavg, 22
Model utilities, 18
model.avg, 2, 12, 14, 15, 19, 25, 26, 30, 31
model.names (Model utilities), 18
model.sel, 2, 12, 23, 25
MuMIn (MuMIn-package), 2
MuMIn-gamm (updateable), 40
MuMIn-model-utils (Model utilities), 18
MuMIn-models, 24
MuMIn-package, 2

null.fit (r.squaredLR), 36

par.avg, 20–22, 25, 31
pdredge, 2, 12, 14, 27
pget.models (get.models), 14
predict, 20
predict.averaging, 29
predict.glm, 30
predict.gls, 31
predict.lme, 30, 31
print.averaging (model.avg), 19
print.model.selection (dredge), 8

QAIC, 3, 32
QAICc, 3
QAICc (QAIC), 32
QIC, 3, 17, 25, 33

QICu (QIC), 33
quasi, 33
quasiLik (QIC), 33
quote, 9
Quotes, 11

r.squaredGLMM, 35, 38
r.squaredLR, 9, 36, 36
reformulate, 13
regsubsets, 12

search list, 30
simplify.formula (Formula

manipulation), 13
step, 3
stepAIC, 3
subset, 11, 20, 38, 39
subset method, 14
subset.model.selection, 38
summary.glm, 20
summary.lm, 36, 38
summary.lme, 19

tTable (Model utilities), 18

uGamm (updateable), 40
update, 40, 41
updateable, 10, 25, 40
updateable2 (updateable), 40

vcov, 20

Weights, 15, 42
weights, 42

	MuMIn-package
	AICc
	Beetle
	Cement
	dredge
	Formula manipulation
	get.models
	importance
	Information criteria
	Model utilities
	model.avg
	model.sel
	MuMIn-models
	par.avg
	pdredge
	predict.averaging
	QAIC
	QIC
	r.squaredGLMM
	r.squaredLR
	subset.model.selection
	updateable
	Weights
	Index

