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Recent greenhouse gas emissions exceed the highest IPCC
SRES scenario (Raupach et al. 2007); global warming this
century is thus on track to exceed the 1.58C lower limit
cited by the IPCC Fourth Assessment Report as resulting in
increasingly high extinction risk for 20�30% of Earth’s
biodiversity (Parry et al. 2007). Minimising negative
impacts on biodiversity requires effective conservation
strategies that will enhance species’ opportunities to adapt
to climatic change, especially as their capacity for natural
adaptation very likely will be exceeded this century (Parry
et al. 2007). Developing and applying such strategies
requires insight into species’ responses and an integrated
approach to identifying vulnerable species and regions
(Williams et al. 2008). Robust predictive models of species’
and community responses to climatic change are essential to
this approach, and vital to inform policy and management
(Barnard and Thuiller 2008).

Species exhibit a variety of responses to climatic changes,
the magnitude and rate of change determining which
response type predominates (Fig. 1). Apart from macro-
evolution, that is elicited by relatively slow, larger-magni-
tude changes, species have exhibited all these generic
responses to the climatic changes of the past half century
(Parmesan and Yohe 2003, Root et al. 2003, Parmesan
2006). Behavioural and micro-evolutionary changes offer
limited scope for adaptation, however, being constrained by

species’ inherent plasticity and/or genetic variance (Huntley
2007). Local abundance changes are principally precursors
to, or symptoms of, spatial responses. Extinction results
from a species’ inability to achieve a sufficient response of
any other type. As the Quaternary record shows (Huntley
and Webb 1989), geographical distribution changes are
species’ predominant response to relatively rapid, large-
magnitude climatic changes, such as are projected for this
century. Our aim in this paper is to outline a strategy for
developing robust predictive models of species’ spatial
responses and the associated changes in abundance patterns.

Current state of the art

To-date, bioclimatic envelope models have been the
principal approach used to project potential species’ dis-
tribution changes resulting from climatic change (Midgley
et al. 2002, Araújo and Guisan 2006, Thuiller et al. 2006,
Huntley et al. 2008). Although their underlying assump-
tions and inherent simplifications have been debated
(Gaston 2003, Pearson and Dawson 2003) and their
reliability questioned (Davis et al. 1998, Beale et al. 2008),
several studies have demonstrated their general robustness.
They can successfully simulate species’ distributions for
regions (Beerling et al. 1995) or times (Hijmans and
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Graham 2006) independent of those from which data were
used in model construction, and retrodict species’ abun-
dance changes both near range margins (Green et al. 2008)
and throughout sub-continental regions (Gregory et al.
2009). Their application has highlighted the potential
magnitude of climatic change impacts upon species’
distributions (Thomas et al. 2004, Fitzpatrick et al. 2008,
Huntley et al. 2008), and potential species’ losses from
protected areas (Hannah et al. 2007, Hole et al. 2009,
Coetzee et al. 2009).

However, these static models may give an unrealistically
optimistic impression of species’ capacities to adapt to
climatic change because dispersal and colonisation rates will
limit realisation of potential range shifts (Huntley et al.
1995, Midgley et al. 2006), as may barriers to dispersal.
Efforts to address this have focused mostly on dispersal
limitations, especially of plants (Neilson et al. 2005),
relative mobility of animals (Warren et al. 2001) and
habitat availability and/or fragmentation (Collingham and
Huntley 2000, Hill et al. 2001). Demographic processes,
however, especially intrinsic rates of population increase, are
also fundamentally important determinants of species’ rates
of range expansion (Willis et al. 2009). Climatic change
may also de-couple existing relationships between species’
range extents and abundances, because of changes in relative
range quality (Wilson et al. 2004). Demographic processes
thus affect species’ ability to achieve range expansions from
source populations and to persist under less favourable
climatic conditions. Only by developing dynamic models of
species’ potential range shifts, that incorporate population
and dispersal processes, as well as ecological processes that
influence habitat suitability (e.g. disturbance), can we move
beyond simply simulating species’ potential range changes
(Guisan and Thuiller 2005). This is critical to our ability to
assess climatic change impacts upon species’ relative
extinction risks (Thomas et al. 2004, Schwartz et al.
2006) and to develop climatic change-adapted conservation

management strategies (Hannah et al. 2002) that will
enhance species’ likelihood of persistence.

The next generation � fully integrated
models

Addressing this challenge requires integrated models that
bring together the necessary component sub-models as
modules within a unified framework. We envisage such
models as grid-based, operating on discrete, normally
annual, time steps, and with modules to simulate: 1)
climatic suitability; 2) habitat availability/suitability; 3)
population dynamics; and 4) dispersal. Although candidate
models are available for all four components, integrated
models are still in the early stages of development (Keith
et al. 2008, Anderson et al. 2009). There are three core
challenges in developing such models: 1) integrating across
different spatial and temporal scales at which their
components operate. For example, climatic suitability
operates principally at extensive spatial scales to determine
species’ overall potential geographical ranges, whereas
habitat availability/suitability is more relevant when con-
sidering where in a local landscape a species may occur, and
in what numbers. 2) Providing realistic uncertainty esti-
mates for model outputs. As with other complex models,
analytical statistical approaches to assessing uncertainty are
unlikely to be possible. 3) Balancing a desire for biologically
‘‘realistic’’ process representation with model complexity,
data requirements and computational demands. It is likely
that, as with earth system models (ESMs), there will be a
need for complementary models differing in their degree of
complexity. Much can be learned by developing and
applying models of intermediate complexity, as the applica-
tion of ESMs of intermediate complexity has shown
(Claussen et al. 2002, Sánchez-Goñi et al. 2005).

1. Climatic suitability module

This module will be needed for most species, although in a
minority of cases it will be redundant. The latter will be the
case where: 1) the species’ inherent physiological limits are
known; 2) available data allow the species’ growth,
performance, survival and reproduction to be modelled
mechanistically, including the effects of climate; or 3) a
physiologically mechanistic approach is possible (Kearney
and Porter 2009). The module will usually be based
primarily upon observed correlations between the species’
present distribution and present climate, and the necessary
assumption that the species’ distribution is at least
approximately in equilibrium with that climate. The
approach is thus precluded for those, usually rare, species
that violate this assumption. It is essential that variables
used, whether acting directly or indirectly, have plausible,
preferably known, mechanistic roles in determining species’
range limits. These bioclimatic variables generally are not
solely those recorded in meteorological data, but are derived
from these. It also is important that the implicit and/or
explicit assumptions of the modelling approach are con-
sistent with observations, especially with respect to the form
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Figure 1. Schematic representation of species’ responses to
climatic changes. Species’ predominant response to climatic
changes depends upon the combination of the magnitude and
the rate of those changes. Spatial responses, i.e. changes in
geographical distribution, predominate for relatively large magni-
tude and relatively rapid changes, such as those projected for the
present century.
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of the relationships between species’ occurrence probability
and bioclimatic variables.

2. Habitat availability/suitability module

This module may be simple or quite complex. At its
simplest, it may be a binary mask (Midgley et al. 2010),
with areas categorised either as suitable or unsuitable for the
species. Such masks often will be derived from earth
observation data, usually using a classified land-cover data
product. Where the data product has a finer grain than that
of the model, habitat availability within each model cell can
be quantified (Hill et al. 2001). At the opposite extreme,
complex niche models may include many habitat dimen-
sions (Catling et al. 1998, Franco et al. 2000). Such models
may be fitted using many different approaches, some more
appropriate in their assumptions than others (Austin 2007).
Although recent emphasis has been on applying more
complex functions, and thereby more realistically relating
species’ responses to environmental predictors (Austin
2007), such approaches are limited by data availability.
Generally, the more complex the responses, the more data
are needed to construct a reliable model (Barry and Elith
2006) whilst avoiding over-fitting (Araújo and Guisan
2006). In practice, data limitations will preclude use of
more complex models for most species.

Whichever approach is adopted, a key issue is how to
incorporate changes in habitat availability and/or suitability
arising mainly from three processes: 1) disturbance, whether
natural (e.g. wildfire, extreme weather events) or anthro-
pogenic (e.g. forest harvesting, burning), triggers episodic
regeneration of vegetation. This leads to rapid changes in
both the nature and extent of habitats available at spatial
scales from landscapes to regions. 2) Vegetation structure
and composition determine habitat suitability for most
terrestrial animals and sub-dominant plants. Climatic
change and increasing atmospheric CO2 concentration are
expected to lead to changes in these vegetation attributes
over most of the global land surface, through shifts in plant
species’ distributions, CO2 fertilisation and differential
benefits to C3 vs C4 plants (Woodward and Kelly 2008)
and to woody vs herbaceous plants (Bond et al. 2003).
These changes will take place across a range of temporal
scales, depending upon disturbance frequency and the rates
at which individual species’ responses are realised. 3)
Changes in human land use resulting from both climatic
change and socio-economic factors will result in loss and/or
fragmentation of many species’ habitats.

Sub-modules to simulate some of these processes,
including disturbance and related vegetation dynamics,
and vegetation structural responses to climatic change and
increasing CO2 concentration (Keith et al. 2008, Midgley
et al. 2010), could be incorporated into the habitat module.
Careful consideration of temporal and spatial scale differ-
ences between vegetation dynamics and species’ range
changes is necessary, as well as the need to balance
complexity with computational efficiency. Alternatively,
land-cover scenario series could be simulated using an
ESM that includes a coupled dynamic global vegetation
model (Cox et al. 2000, Sitch et al. 2003), although scale
mismatches between the ESM grid and that needed to

model species’ range and abundance dynamics require
consideration. Land-cover scenarios, therefore, might better
be derived from offline runs of a vegetation dynamics
model, driven by the changing climatic conditions simu-
lated by an ESM, for the grid used in the integrated model.
Potential human land-use changes could be incorporated
using scenarios derived from models of societal and
economic processes, and their impacts on land use (Alcamo
et al. 1996).

3. Population dynamics module

This module too may have various levels of complexity.
Where data describing the influence of climate on life-
history (e.g. age-specific survival, reproduction) are available
for a species, the climatic suitability module may be
redundant. Instead, the population dynamics module can
simulate how climatic changes affect key demographic
processes that determine a species’ range and abundance.
In practice, such data are rarely available and then only
from intensive, localised studies. It is unclear whether
relationships between weather and fitness observed in such
local studies apply also to longer-term climatic changes and,
if so, how they lead to distribution changes at the extensive
spatial scales at which ranges are limited principally by
climate (Schwager et al. 2008). If such relationships do
apply at extensive spatial scales, demographic parameters
should vary with climatic gradients. Although demographic
parameters do vary geographically (Frederiksen et al. 2005),
we know of no study clearly relating this to climate. Ample
evidence for local adaptation of life-history characteristics
(e.g. counter-gradient variation, Laugen et al. 2003)
suggests extrapolations from local studies to overall ranges
require care. Nonetheless, where basic demographic data are
available, a simple population dynamics module could
simulate population changes. In a grid-based model, this
module would simulate population changes in each grid
cell, the maximum population each cell can support being
determined by its climatic suitability and habitat avail-
ability/suitability (Hill et al. 2001, Keith et al. 2008).
Where demographic data are not available for a species,
generic estimates based upon similar species may suffice
(Anderson et al. 2009). Sensitivity analysis of the demo-
graphic module will reveal which fitness components must
be estimated most accurately to maximise reliability of the
predictions. Minimally, data enabling estimation of the
maximum population density and maximum intrinsic rate
of population increase in optimal habitat and climate can
provide a basis for simulating abundance changes as climate
and habitat change.

4. Dispersal module

At its simplest, this module would, at each time step, take the
propagules/offspring simulated for each grid cell by the
population dynamics module and disperse them stochasti-
cally according to a function representing the species’
dispersal characteristics. Whilst this may be adequate for
passive dispersers, mobile organisms capable of directed
dispersal and habitat selection may require more sophisti-
cated treatment. For example, an offspring’s eventual
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destination may be simulated by a combination of a
stochastic process, determining distance and direction of
initial dispersal, and a subsequent directed movement if that
grid cell is unsuitable. This allows occupation of the nearest
suitable and/or not yet fully occupied grid cell within some
maximum distance of that to which it initially dispersed (Hill
et al. 2001). Density-dependent dispersal also requires
consideration (Sutherland et al. 2002). Animals capable of
strongly directed dispersal and habitat selection may disperse
according to the rules of an ideal free distribution, electing to
settle in the optimal reachable patch, as determined by
habitat quality and population density. This can lead to a
balanced dispersal process in which propensity to disperse is
negatively correlated with local carrying capacity (McPeek
and Holt 1992, Diffendorfer 1998). Dispersal of strongly
territorial species, however, may accord with an ideal
despotic distribution (Zimmerman et al. 2003). If dispersal
propensity is unrelated to local population density, source�
sink dynamics will dominate population dynamics at the
range edge (Pulliam 1988), with more suitable areas
supporting higher population densities and producing
more emigrants than marginal areas. The module must be
able to simulate these various dispersal modes. In addition,
many mobile species disperse more than once during their
life, often in age- and sex-specific ways (Greenwood and
Harvey 1982), and the module also must accommodate these
cases.

A practical challenge for simulating dispersal is that of
obtaining reliable data from which to estimate the distribu-
tion of dispersal distances (Paradis et al. 1998, Clark et al.
2003). Suitable propagule dispersal data are available for only
very few plant species (Schurr et al. 2005). Dispersal of
mobile animal offspring is often easier to observe than plant
propagule dispersal, especially where offspring can be
individually marked at their natal site and observed or
recaptured later. A key difficulty with such data, however, is
how to account for varying detection probabilities (Bennetts
et al. 2001, Tufto et al. 2005). Faced with these challenges,
some authors have used arbitrary migration rates (Fitzpatrick
et al. 2008) or simple rule-based dispersal models (Williams
et al. 2005, Midgley et al. 2006) to simulate plant species’
range expansion. Reliable estimates of dispersal character-
istics are important, however, because the distribution of
dispersal distances can critically affect species’ rates of range
shift (Anderson et al. 2009). In particular, much evidence
indicates that species’ occupation of newly suitable areas
following an environmental change depends not upon
relatively local, easily observed and more measurable dis-
persal of the majority of propagules/offspring, but upon
inherently rare and difficult to detect long-distance dispersal
of a very small minority of propagules/offspring (Clark 1998,
Cain et al. 2000). Furthermore, such long-distance dispersal
may depend upon mechanisms different from those involved
in local dispersal (Wilkinson 1997, Higgins et al. 2003).
Where possible, therefore, the form of the species’ long-
distance dispersal function should be estimated, including,
where relevant, the maximum distance attainable by active
dispersal. An estimate of the proportion of long-distance
dispersed propagules/offspring also is desirable. When faced
with a shortage of data upon which to base such estimates,
however, simpler approaches to modelling long-distance
dispersal will be necessary.

Discussion

Development of integrated models requires careful balan-
cing of model complexity with data availability. For a few
species, available data may permit a mechanistic approach
to simulating all key processes; more likely, such an
approach will be possible for only one or two processes.
For most species, the data requirements of fully mechanistic
approaches cannot be satisfied and various simplifications
are necessary, such as using a binary habitat mask rather
than a quantitative habitat suitability sub-model. Even
simple integrated models (Keith et al. 2008, Anderson et al.
2009), however, represent an important advance upon
climatic envelope models. Integrated model development
should be pursued urgently for species that satisfy the
necessary assumptions, and especially those for which at
least minimum data requirements are met. Initially, these
models will be valuable research tools, enabling hypothesis
testing and sensitivity analyses to investigate, for example,
how habitat availability and/or fragmentation limit species’
realisation of their potential responses to climatic change.
Development of these models will also highlight areas of
critical data deficiency, whilst sensitivity analyses can help
prioritise efforts to fill data gaps. Ultimately, and most
importantly, these models will provide more and better
policy-relevant information on species’ responses to climatic
change within a dynamic community and habitat context,
and thus a sounder basis for decisions about how and where
to allocate scarce conservation resources.

The data requirements of such models emphasise the
vital contribution made by amateurs and the general public.
It is often they who have provided most of the species’
distribution and abundance data over extensive regions.
Furthermore, model validation requires datasets from
repeated mapping/atlas schemes and schemes recording
long-term abundance or demographic data. Continuity of
financial support for such activities is essential for future
assessments of the success of biodiversity conservation
strategies and for identifying needs for their adaptive
modification (Sutherland et al. 2004). In addition, long-
term detailed datasets collected by researchers for individual
species are essential for development of the more complete
and mechanistic models required to assess simpler models’
performances. Although maintaining such long-term stu-
dies is unfashionable and difficult, the value of the data they
provide in guiding climatic change adaptation options must
be recognised by scientific funding agencies worldwide and
appropriate resources provided to ensure their future
continuity.

The development of integrated range�abundance dy-
namics models is an urgent research priority, although only
the next step towards more realistic simulations of species’
responses to climatic change (Barnard and Thuiller 2008).
As such models are developed, an important challenge is
provision of realistic uncertainty assessments for their
outputs; these, in turn, require uncertainty assessments for
the inputs. One potential approach to assessing uncertain-
ties is to develop simplified models, often formulated using
a Bayesian framework (Wynn et al. 2001), that emulate the
behaviour of complex models but can be run many
thousands of times to provide uncertainty estimates. In
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the longer term, models able jointly to simulate the range
and abundance dynamics of two or more interacting species
can be envisaged. Such models can test competing
hypotheses about the importance of species’ interactions
in determining geographical distributions (Heikkinen et al.
2007, Preston et al. 2008), and about assembly and
dynamics of communities as climate changes (Guisan
et al. 2006). They would also contribute to further
improvements in robustness of range-change projections
upon which conservation policy, planning and management
decisions must be made.

In summary, bioclimatic envelope models produce
valuable, first-order assessments of potential climatic change
impacts on biodiversity. However, their limitations, to-
gether with the urgent need to provide more robust
information to policy-makers and conservation practi-
tioners, demand the development of integrated models
with at least the components we outline here. Because data
constraints will inevitably prevent use of complex, fully-
mechanistic models for most species of conservation
concern, however, we advocate development of models of
intermediate complexity (Keith et al. 2008, Anderson et al.
2009) as a means to bridge the knowledge gap and provide
more realistic projections of species’ responses to climatic
change.
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