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Abstract

Most habitat maps are presented as if they were a certain fact, with no indication of uncertainties. In many cases,

researchers faced with the task of constructing such maps are aware of problems with the modelling data and of

decisions that they make within the modelling process that are likely to affect the output, but they find it difficult to

quantify this information. In some cases they attempt to evaluate the modelled predictions against independent data,

but the summary statistics have no spatial component and do not address errors in the predictions. It is proposed that

maps of uncertainty would help in the interpretation of these summaries, and to emphasize patterns in uncertainty such

as spatial clustering or links with particular covariates. This paper reviews the aspects of uncertainty that are relevant to

habitat maps developed with logistic regression, and suggests methods for investigating and communicating these

uncertainties. It addresses the problems of subjective judgement, model uncertainty and vague concepts along with the

more commonly considered uncertainties of random and systematic error. Methods for developing realistic confidence

intervals are presented along with suggestions on how to visualize the information for use by decision-makers.
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1. Introduction

Predictions from models of species-habitat as-

sociations are commonly interpreted as measure-

ments of the ‘suitability’ of sites for the species of

interest, and can be used as the basis for land-use

decisions and conservation planning strategies

(e.g. Corsi et al., 1999; Jarvis and Robertson,

1999; Manel et al., 2001; NSW NPWS, 1998). In

many cases, researchers faced with the task of

constructing such habitat maps are acutely aware

of deficiencies in the modelling data and of

decisions that they make within the modelling

process that are likely to affect the output.

Visualizations of uncertainty could be stored as

part of the suite of maps relevant to the species in a

geographic information system (GIS) and used to

inform decision-makers of regions that are prone

to extreme error or that appear particularly well-

modelled. But in general, habitat suitability maps

are presented as precise digital representations that

give the impression of certainty. Even though
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levels of uncertainty may be quantified with
prediction intervals, uncertainty is rarely factored

into the decision-making processes to which the

maps contribute. This deprives the users of in-

formation that could be crucial to their interpreta-

tion of the data, particularly if circumstances

suggest the decision-maker should not be risk-

neutral. In the long term it increases the risk that

conservation effort will be misdirected and inef-
fective. Mapped confidence intervals are also

essential for analyses of the propagation of

uncertainty into other models*/for example,

where habitat maps are used as an input to a

population viability analysis (Akçakaya et al.,

1995; Burgman et al., 1993; Possingham et al.,

1993; Elith and Burgman, 2002).

Generalized linear models (GLMs) are being
used with increasing frequency for habitat model-

ling, but there appear to be very few examples

where there is anything but a brief discussion of

the uncertainties in predictions. The objectives of

this paper are to review the aspects of uncertainty

that are relevant to habitat maps developed with

GLMs applied to presence-absence data, and to

outline and illustrate methods for investigating
and communicating these uncertainties. Many of

the ideas will be more broadly applicable to other

types of habitat models. If methods can be

developed for clearly communicating prediction

uncertainties to end-users it is likely that decisions

will become more sensitive to uncertainty. More-

over, a clear representation of the source and

location of most uncertainty will help focus efforts
to areas where a lack of information is a hindrance

to decision-making.

2. Classifying uncertainty

In a broad sense, uncertainty refers to a lack of

sureness or confidence about something. It is

sometimes thought of as being synonymous with
‘error’, where error includes not only ‘mistakes’

and ‘faults’ but also the statistical concept of

‘variation’ (Heuvelink, 1998). Recently Regan et

al. (2002) developed a taxonomy of uncertainty

that identifies the main sources of uncertainty in

biological systems and outlines appropriate meth-

ods for dealing with each type. Their work
provides a useful framework for considering un-

certainties in models of species distribution. They

propose that uncertainty falls broadly into two

main groups: epistemic uncertainty (uncertainty

about a determinate fact) and linguistic uncer-

tainty (uncertainty that arises because our natural

language is vague, ambiguous, and context depen-

dent, and because the precise meaning of words
can change in time). Both linguistic and epistemic

uncertainty can be present in modelled predictions.

The following exploration of classes of uncer-

tainty uses the taxonomy developed by Regan et

al. (2002) and outlines sources that are most

common in modelled predictions, including mea-

surement error, systematic error, natural variation,

model uncertainty, subjective judgement, and
vagueness (see Table 1).

3. Epistemic uncertainty

3.1. Measurement error

Measurement error arises from imperfections in

measuring equipment and observational techni-
ques, and imprecision in computer processes. It

results in apparently random variation around a

mean value. Some of the uncertainties in species

records are due to measurement error. A whole

population is rarely sampled, some individuals

may be unintentionally sampled more than once,

individual observers may make different observa-

tions in identical circumstances, and locations may
be recorded inaccurately or rounded inconsis-

tently. This is true for presence-absence records,

for counts, and for estimates of continuous vari-

ables such as cover.

Measurement error also contributes to uncer-

tainty in predictor variables. Models and predic-

tions are usually made on variables stored as GIS

layers. These are commonly produced by inter-
polation of field-based measurements, interpreta-

tion of aerial photos or satellite images, or

modelling of physical processes. Uncertainty exists

in the base data and is propagated as the data are

summarized, classified, modelled and interpolated.

Whilst some of this uncertainty is model uncer-
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tainty because a model (such as kriging, nearest

neighbour and so on) has been used to interpolate

expected values, measurement error is represented
by uncertainty at the actual measured or mapped

points. Other sources of measurement error in

predictor variables include translation of vector

data into raster format, and uncertainty about the

exact location of polygon boundaries for data such

as tenure classes that are, in principle at least,

sharply defined (Burrough, 1986). Information on

the likely magnitude of errors in such data
products is hard to find and, if it exists as

metadata accompanying the GIS layer, is usually

a brief summary statement for the whole layer.

3.2. Systematic error

Systematic error results from bias in measuring

equipment, sampling procedures or GIS opera-

tion. It is not random, is difficult to recognize

except on theoretical grounds, and can only be

corrected by more careful consideration of the

relevant theory and experimental methods, by

double sampling or by post-hoc correction factors.

However, systematic error is difficult to treat and

post-hoc correction factors may indeed introduce

further biases if the direction and magnitude of the

error is unknown.

Uncertainty in species data is partly systematic

error. Where data are used beyond their original

intention, or when there are constraints on time or

money, errors are especially prone to bias. For

instance, sampling is commonly close to roads,

and may be focussed in some vegetation types or

landscapes, or biased away from ecotones. In these

cases efforts are sometimes made to supplement

the existing data with records in poorly sampled

strata (Cawsey et al., 2002) or to adjust modelling

Table 1

Summary of some classes of uncertainty, with examples

Uncertainty Brief explanation Ideas for dealing with it, with examples

Epistemic

Measurement

error

Imperfect measurements or techniques produce random

variation in result, e.g. available equipment may not

record location precisely

Provide bounds, confidence intervals (e.g. Stoms et al.,

1992; Crosetto et al., 2000)

Systematic error Methods produce biased data, e.g. sampling is close to

roads

Recognise and remove bias (e.g. Cawsey et al., 2002)

Natural

variation

Real systems change in ways that are difficult to predict

and hard to characterise

Represent response with a probability distribution, e.g. in

GLMs

Model

uncertainty

Models are simplifications of real processes, and several

models may fit the data

In explanatory variables: produce multiple realizations of

the variable (e.g. Goovaerts, 2001). In GLM: allow �/1

model (e.g. Wintle et al., 2002b)

Subjective

judgement

Experts estimate facts or classifications Assign degrees of belief or imprecise probabilties (e.g. Ho

and Smith, 1997)

Linguistic

Vagueness Nature does not arrange itself into strict classes, so

sharp boundaries and homogenous classes do not

represent reality

Use fuzzy sets (e.g. Davis and Keller, 1997b; Roberts,

1996), supervaluational approach (Fine, 1975; Regan et

al., 2002)

Ambiguity Words can have more than one meaning Clarify meaning (e.g. Meyer and Printzen, 2000)

Underspecificity Data may have unwanted generality, e.g. location not

precisely reported

Provide narrowest bounds (e.g. Lynn et al., 1995)

Compounded Several types of uncertainty can be present in one set of

data or model

Use Monte Carlo simulations to combine realizations of

uncertainties in the constituent parts (e.g. Davis and

Keller, 1997a; Stoms et al., 1992)
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methods to cope with incomplete coverage (Au-
gustin et al., 1998). However, the effect of the

uncorrected biases are difficult to predict and are

not well researched. Mobile and cryptic species are

difficult to detect, and tend to be underestimated

by common field survey techniques (Lindenmayer

et al., 2001; Wintle et al., 2002a). A species may be

consistently overlooked in part of its range be-

cause of disturbance or successional dynamics, or
because of incorrect identification where there is

partial overlap with sister species.

In some cases systematic error is present in

species data but is not detrimental to the purpose

of the modelling. For example, predictions may be

required for ranking sites according to the relative

likelihood of species presence. If the species data

were systematically biased in the same direction in
each case, it is possible that the model predictions

will be poorly calibrated but will still have good

discrimination. The relative rank of sites is of

interest here, rather than absolute estimates of the

likelihood of species presence. In such cases careful

model evaluation is required to investigate the

nature of the bias and its effect on predictions

(Pearce and Ferrier, 2000).
Predictor variables can be biased. As the grain

at which data are recorded becomes coarser, units

that exist at a finer grain are subsumed into more

prevalent ones, leading to a bias against unusual

classes (e.g. rare vegetation classes). Alternatively,

mapping may be biased towards classes with

unusual and noticeable properties, such as those

with greater reflectivity, e.g. a lake, road or
grassland. Uncertainty that appears to be random

at one scale may be shown to be biased at another.

It may also be spatially clustered, such as errors in

a digital elevation model (DEM) which may be

globally small but locally large and spatially

correlated (Holmes et al., 2000).

Spatial autocorrelation (SA) is the tendency of

neighbouring units to have more similar (positive
SA) or more different (negative SA) characteristics

than expected for randomly associated pairs of

observations (Legendre, 1993). This is a poten-

tially widespread problem for modelled distribu-

tions. Neighbours may be similar because of a

patchy resource, and careful modelling of the

relationship between the resource and the species

will successfully describe the distribution of the
species. However, many species are also influenced

by their neighbours through contagious biotic

processes such as reproduction, mortality, pre-

dator�/prey interactions, disturbances, social orga-

nization and so on. In these cases spatial

autocorrelation occurs, and if it is not accounted

for in the model, parameter estimates will be

biased (Fox et al., 2002) and standard errors will
be underestimated.

3.3. Natural variation

Natural variation exists in systems that change

(for example, with respect to space or time) in

ways that are difficult to predict. Regan et al.

(2002) comment that it ‘is not a source of epistemic

uncertainty per se*/it is just that the true value of
the parameter in question is changing as a result of

changes in independent variables. It is often

regarded as a source of uncertainty because the

true value of the quantity of interest is usually

extraordinarily difficult to measure or predict

across the full range of temporal and spatial

values’.

Species data exhibit natural variation, and it is
unlikely that this variation would ever be fully

characterized. Models that are used to predict

habitat suitability are usually incomplete because

they do not incorporate all of the underlying

mechanisms for variation. Knowing that a species

currently occurs in a few locations and in a couple

of habitat types is not enough information to

predict occurrence without error in other loca-
tions. Such predictions would require knowledge

of all the underlying causal mechanisms of species

occurrence at very refined temporal and spatial

scales and full understanding of the dynamics of

the species, its interactions with other species, and

its reliance on ecological factors. Fielding and Bell

(1997), Austin (2002) and Guisan and Zimmerman

(2000) discuss further cases of biotic variation
including intra- and inter-specific interaction, the

spatial structure of historical events, the effect of

individual variability on site selection for cryptic

advantage, and issues related to scale.

If all causes of variation were known and could

be quantified, prediction would be certain and
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‘present’ or ‘absent’ would be the only necessary

predictions from presence-absence data. Since it is

impracticable (if not impossible) to make error-

free predictions, usually predictions are made in

terms of the chance of occurrence. ‘Natural

variation’ summarises the uncertainty of the pre-

diction as the chance that the response takes a

particular value, or as a distribution of possible

values for the response at a particular time and

place that arise as a consequence of a species’

response to its environment.

The usual way to deal with incomplete knowl-

edge of the natural variation in a dependent

variable is to construct a probability distribution

for the quantity in question that encompasses the

full range of possible values. For instance, logistic

regression specifies the distribution of the response

as binomial, and the logit link has a variance

function of m(1�/m), where m is the estimated

response (McCullagh and Nelder, 1989, and

Guisan et al., 2002). This variance function con-

tributes to the estimated confidence intervals

around predictions (see later). In other words,

the confidence intervals encompass uncertainty

due to natural variation.

3.4. Model uncertainty

Model uncertainty arises, in the case of GLMs,

because models are used to represent biological or

physical processes. This type of uncertainty does

not refer to the uncertainty in parameter estimates,

but rather addresses the simplifying assumptions

and the abstraction of ecological processes re-

quired by any model. It is widely recognized that

parsimony is an important goal in model building

(McCullagh and Nelder, 1989). Within reason,

simpler models have wider applicability and are

generally better overall predictors of species pre-

sence than more complex models because they are

less likely to be fitted to the peculiarities of a

particular sample of species data. However, there

is a trade-off between under-fitted models, in

which bias is large and precision is overestimated,

and over-fitted models, which may be free of bias

but have needlessly imprecise parameter estimates

(see, for example, Chatfield (1995) and the discus-

sion of the tradeoff between bias and variance in

Burnham and Anderson (1998) and Hastie et al.

(2001)).
While effort is usually dedicated to developing

the ‘best’ model for a species, in reality the final

model is only one of many possible models.

Decisions about how to select a model, which

predictors should be included in the initial candi-

date set, whether factors are included with all

available levels or as binary subsets, how to test for

collinearity between predictors and how to decide

which variables in a collinear set should be

retained, what form the response is allowed to

take (linear, quadratic, smoothed and so on), how

to handle interactions, whether to transform pre-

dictors to an orthogonalized dimension, how to

deal with spatial autocorrelation and overdisper-

sion, and how to define the link and variance

functions, are all embedded in the final model. In

reality there are a suite of competing models for

the spatial distribution of a species, and selection

of one model should not imply that it is the correct

one. Some modelling approaches such as Bayesian

Model Averaging (BMA) that specifically allow

for more than one model are discussed in a later

section.

3.5. Subjective judgement

Another type of epistemic uncertainty arises

when subjective judgement is used to interpret

data. For example, Pausas et al. (1995) used

subjective estimates from three field biologists to

develop a variable that indicated how prone

particular tree species were to developing hollows.

Similarly, field records of ‘suitable’ or ‘unsuitable’

habitat can be made instead of records of species

presence or absence, but they rely on an expert’s

interpretation of the environment and its effect on

the species. A degree of uncertainty accompanies

the expert’s judgement. The uncertainty is episte-

mic because the experts estimate a determinate fact

based on experience, knowledge of environmental

systems, and anecdotal observation.
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4. Linguistic uncertainty

4.1. Vagueness

Vagueness is a type of linguistic uncertainty that

arises because natural and scientific language

allows borderline cases. For instance, the number

of mature plants in a population may be uncertain

because some individuals, such as older juvenile

plants, are apparently neither mature nor are they
not mature*/they are borderline cases and it is not

clear whether they should be counted or not. In

cases such as these, the uncertainty arises because

there is no precise fact that defines what constitu-

tes a mature plant. Before the number of mature

plants can be counted, it is necessary to decide

what is meant by the term ‘mature plant’ (such as

individuals that have reproduced, are capable of
reproduction, have reached a certain age or size, or

have achieved a specific social status). Typically,

vagueness is dealt with by using arbitrary sharp

boundaries to define terms (such as, a mature

plant has a stem diameter �/5 cm). But such an

approach submerges the ecological reality and

leads to a tension between the original meaning

of the vague term and the technical term created
with the sharp delineation (see Regan et al. 2000).

Vagueness can be found in concepts with a natural

numerical ordering (such as seedling, juvenile,

mature that can be ordered according to age or

size) but also in concepts without a numerical

order, such as vegetation classes. Most ecologists

now accept the individualistic continuum view of

vegetation (McIntosh, 1967; Whittaker, 1967), in
which vegetation types or communities are under-

stood to be intrinsically arbitrary subdivisions of

continuous patterns. Vegetation classes mapped as

polygons are an arbitrary quantification of a

vague concept.

Vagueness is often referred to in the GIS

literature as classification fuzziness (e.g. Davis

and Keller, 1997a), but Regan et al. (2002)
recommend the term ‘vagueness’ on the grounds

that it does not prejudice the selection of a method

for dealing with it. Use of the term ‘fuzziness’ may

lead to the adoption of fuzzy measures, which are

just one of a set of potentially useful tools (see

Regan et al. 2002, and Table 1).

4.2. Ambiguity

Ambiguity arises because some words have

more than one meaning, and it is not clear which

meaning is intended. Regan et al. (2002) use the

example of ‘cover’, which could refer to projective

foliage cover (which excludes gaps in the canopy

from its measure) or to crown cover (which is

determined by the perimeter of the crown and thus

includes gaps). Ambiguity can be a problem in

modelling when records from a number of sources

are being used and the original researcher is not

accessible for, or cannot help with, clarification of

the record.

4.3. Underspecificity

Underspecificity is present where there is un-

wanted generality in data. For example, historic

records of species locations are often very general,

e.g. ‘north-east of Melbourne’. While the species

location is actually more precise than this (at least

for immobile species), the choice of language to

describe locality obscures the information and

renders the record underspecific. In this way it

can be considered as a source of linguistic un-

certainty. The recording of information in this

underspecific manner can be regarded as informa-

tion loss if the original data on which the record is

based was more precise than this general descrip-

tion. However, historically observers may have

considered that there was no precise locality (i.e.

the actual observation represents the species exist-

ing north-east of Melbourne). In many instances,

when historical data have been recorded in this

way, they are too general to be useful in quanti-

tative applications.

Underspecificity can also arise as a result of

epistemic uncertainty. Today observations of spe-

cies location are likely to be recorded to within a

few meters of the true location with a global

positioning system. The current trend is to think of

location in terms of precise coordinates, so if it is

recorded generally (e.g. the location is within a 100

km radius of specified coordinates) the under-

specificity is due to epistemic uncertainty.
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5. Compounded and interrelated uncertainties

This list of possible sources of uncertainty is not

complete. But the elements are rarely acknowl-

edged explicitly, despite their pervasive presence. It

is clear that some data will carry uncertainty from

several different sources. For instance, there are a

number of factors that influence prediction suc-

cess. A prediction of habitat suitability can be

realized as false because: (i) the model on which

the predictions are based is an incomplete repre-

sentation of the system; (ii) the data on which the

prediction is based are subject to measurement

error, systematic error, model uncertainty (in the

case of interpolated GIS data) and subjective

judgment; (iii) the ecological system is subject to

spatial and temporal variation as well as variation

in other parameters and processes making it

difficult to predict species occurrence across the

full parameter space; (iv) underspecificity in his-

torical records may be so general that it swamps

predictions.

Incomplete knowledge of the ecological system

and errors in observations will always lead to

uncertainty in predictions. Models used to predict

species presence are based on observations of

current distribution, and in a strict sense, predic-

tions are estimates of the probability that the

species currently occupies a site. Within a recover-

ing or an expanding population it is not always

clear whether some of the current absence records

are actually records of unsaturated but suitable

habitat (Capen et al., 1986). Furthermore, some

observations of presence may be recorded in

habitat unsuitable for the persistence of a popula-

tion. Van Horne (1983) pointed out that density

and demographic success are not necessarily

closely related. Individuals of a species may not

congregate in the most suitable locations because

of behavior, intraspecific competitive exclusion, or

dispersal dynamics. As a result of such processes,

population sinks may have high population den-

sities, but they may be of relatively limited value in

contributing to the likelihood of persistence of a

species. Buckland and Elston (1993) suggest that

different models may be needed to estimate pre-

sence and suitability.

Temporal uncertainty (Davis and Keller, 1997a)
is likely to affect both species data (often collected

over a number of years but modelled as if they are

current) and predictor variables (e.g. vegetation

classes interpreted from old images). Age of data

can also present problems where there is a mis-

match between the year(s) when species data were

collected and the year(s) represented in GIS layers

for disturbance events. In some cases these un-
certainties could be interpreted as natural varia-

tion (the habitat is broadly suitable but knowledge

is not detailed enough to model temporal fluctua-

tions). In others it could be viewed as measure-

ment error (the aim is to model current

distribution but old and inaccurate data are used).

Linguistic uncertainty only adds to the mix. For

example, an estimate of the number and cover of
mature woody shrubs of a rare species on a rocky

outcrop is likely to be uncertain because of

vagueness (there are borderline cases between

‘mature plants’ and ‘not mature plants’) and

ambiguity in the definition of cover, and also

because of epistemic uncertainties: measurement

error (some plants may not be counted), systema-

tic error (shrubs on the steepest slopes are more
difficult to sample and less likely to be included in

the count), and temporal variation (the number of

shrubs changes in time). The errors will have both

a random and a systematic component.

Definition of the source of the variation is

important in as much as it clarifies the problem

and points to ways to correct the errors or account

for the resulting uncertainty in predictions. Any
attempt at quantifying uncertainty cannot address

all uncertainties, but in many cases modellers have

an appreciation of the deficiencies in their data

and of the decisions they have made that are likely

to influence predictions. This can be a starting

point for dealing with uncertainty.

6. Quantifying uncertainty in predictions

6.1. Confidence intervals: dealing with epistemic

uncertainty

One way to begin to quantify uncertainty is to

estimate confidence intervals around predictions.
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The usual confidence intervals for predictions
from a GLM express the uncertainty associated

with parameter estimation in the final model. In

the case of linear regression with normal errors,

confidence intervals for one particular value of the

response (‘prediction intervals’) are wider than

those for the mean response because an extra term

is used to describe the added variability of an

individual’s response over the group’s mean re-
sponse (Kleinbaum et al., 1998). The prediction

intervals are allowing for natural variation in the

response of the new individual. The situation is

different for logistic regression, because the fitted

values for any individual must be either 0 or 1.

That is, no extra individual variability is possible.

Therefore the only possible confidence interval is

that for the fitted logistic regression line (Hosmer
and Lemeshow, 1995).

The simplest and most commonly used interval

estimate for a fitted value in logistic regression is a

Wald statistic confidence interval for the logit, but

other parametric intervals are available for special

situations (Table 2). These confidence intervals

encompass uncertainty from a number of sources.

For example, species data are a sample and may
not be sufficient to estimate parameters (see

Harrell et al., 1996; Miller, 1990; Steyerberg et

al., 1999), and species data may be sparse in part

of the environmental space. These have elements

of measurement error and systematic error. The

intervals are also affected by the specification of a

particular error distribution for the response. In

the case of logistic regression, this influences the
weights which are used in calculation of the

residual deviance, which are in turn used to

calculate the likelihood of the parameter estimates.

This uncertainty can be attributed to natural

variation. Any uncertainties that influence the

precision of parameter estimation will be included

in the confidence intervals. Since the standard

error of parameter estimates depends on the
curvature of the log-likelihood function at its

maximum (Agresti, 1996), uncertainties that de-

crease this curvature will increase the Wald CIs.

There are other sources of uncertainty that

contribute to the confidence intervals, but their

contribution actually misrepresents the truth. For

example, selection algorithms such as stepwise,

forward or backward selection lead to selection
biases because a variable will tend to be selected if

its parameter is overestimated (Chatfield, 1995;

Miller, 1990). This results in parameter estimates

that are biased high and standard errors that are

biased low, resulting in falsely narrow confidence

intervals (Harrell, 2001). In the statistical literature

this is categorized as model uncertainty (e.g. see

Chatfield, 1995; Draper, 1995) because it reflects
the fact that the true model is not known and that

selection procedures have been employed to find a

‘good’ model. However, it could be argued that it

is more broadly due to measurement and systema-

tic uncertainty in the data, because these lead to

inaccurate parameter estimates. Regardless of its

classification, such uncertainty affects the usual

confidence intervals but is not properly repre-
sented (that is, it makes them narrower rather than

wider) and needs to be investigated in other ways.

Confidence intervals can also be estimated with

bootstrap methods (Buckland and Elston, 1993;

Davison and Hinkley, 1997; Efron and Tibshirani,

1993). There are different types of bootstrap

confidence intervals (for example, percentile,

BCa, bootstrap t-interval (Efron and Tibshirani,
1993)) and these are calculated on bootstrap

samples generated under two approaches to

Monte Carlo sampling (Hall, 1992) (Table 2).

Bootstrapped confidence intervals account for

different sources of uncertainty depending on the

approach taken, and particular methodologies

need to be analyzed to understand what is

represented in the final estimate of uncertainty.

6.2. Widening the bounds for epistemic uncertainty:

model uncertainty

In all of the above cases, confidence intervals

will be too narrow because they do not properly

deal with uncertainty about the model or uncer-

tainty in the species and/or covariate data. How-

ever, a treatment of model uncertainty is no trivial
matter. The best (or closest) representation of the

system is extremely difficult to determine. This is

the ‘structural uncertainty’ of Draper (1995) and

Chatfield (1995) and is a separate issue from the

uncertainty in the parameter values on which a

model relies. It is likely to have a substantial effect
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Table 2

Particulars of confidence intervals (CIs) and their estimation

Estimate Description Comments References

Wald CI Two-sided 1�/a interval CI is: logit9/z1�a/2 s where z is

critical value from normal distribution and s is the

estimated large-sample standard error (ASE)

ASE is estimated from information in the variance�/

covariance matrix. Wald CI easy to calculate in most

advanced statistical packages

Agresti (1996); Collett (1991);

Harrell (2001)

Other para-

metric CIs

e.g. score and LR-based CIs May be more appropriate in some situations Harrell (2001); Hauck (1983);

Doganaksoy and Schmee (1993)

Robust covar-

iance estimates

e.g. ‘sandwich’ estimator, bootstrapped CIs. Consider

these in conditions where usual matrix based on Fisher

information matrix is not valid: e.g. if model incorrect

because non-independence, lack of fit

These address systematic uncertainty and model uncer-

tainty and attempt to account for them within the Cis

Huber (1967); Harrell (2001)

Bootstrap

CIs*/non-para-

metric

Do not rely on any assumption about the model. Each

of many resamples is generated by sampling with

replacement vectors of data from the original sample.

For regression models resampling is usually from

residuals, and GLMs require special methods for scaling

and sampling the errors.

Efron and Tibshirani (1993);

Davison and Hinkley (1997);

Buckland and Elston (1993)

Bootstrap

CIs*/para-

metric

Considers the predictors to be fixed and generates a

sample according to the model.

Has the disadvantage that datasets generated from a

poorly-fitted model may not have the statistical proper-

ties of original data*/for example, in cases of unmo-

delled overdispersion

Buckland and Elston (1993),

Harrell (2001), Davison and

Hinkley (1997)
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on model predictions and therefore on the con-

fidence intervals (Buckland et al., 1997; Burnham

and Anderson, 1998; Chatfield, 1995; Draper,

1995). For example, a model that mis-specifies

the dependence of the probability of presence on

explanatory variables may have confidence inter-

vals of an appropriate width but in the wrong

place (Miller, 1995)*/that is, the entire interval

may be shifted away from the true value because

of systematic uncertainty. Some methods for

exploring the problem include model checking

(goodness-of-fit tests, calibration tests, tests on

the residuals including testing for the presence of

spatial autocorrelation (Bio 2000; Pearce and

Ferrier 2000; Fox et al., 2002)) and testing the

predictions against independent data (Fielding and

Bell, 1997). These produce useful summary statis-

tics for the particular locations where species

records have been collected, but cannot be mapped

over an entire geographic area. Nevertheless, they

are essential as part of the suite of model testing

tools.

Bayesian methods (BMA) avoid selecting a

single best model by averaging over a number of

plausible competing models. Each model contri-

butes to the prediction proportionally to the

support it receives from the observed data and

prior knowledge. Several approaches have been

advocated*/see, for example, Draper (1995) on

model expansion, Madigan and Raftery (1994) on

Occam’s window, and Madigan and York (1995)

on Markov chain Monte Carlo techniques. Baye-

sian methods have been applied to GLMs for

prediction and for estimation of confidence inter-

vals (e.g. see Raftery et al. 1997; Wintle et al.,

2002b). Alternatively, Buckland et al. (1997) and

Burnham and Anderson (1998) present less com-

plex non-Bayesian methods that assign a weight to

each model in proportion to their relative pena-

lized likelihood, or in proportion to the number of

times it is selected in many bootstrap resamples.

Any of these methods could be implemented as

part of a strategy for investigating the effect of

model uncertainty on predictions and their con-

fidence intervals. All of them will only encompass

the set of models initially considered, so that

ignorance or lack of data that leads to problems

such as omission of important variables will still be
unrepresented in the confidence intervals.

6.3. Widening the bounds for epistemic and

linguistic uncertainty in model inputs

Model inputs (species and covariate data) may

include many types of epistemic and linguistic

uncertainty. There is an expanding research effort

addressing uncertainty in the GIS field, and it is
remarkable that few of the concepts about un-

certainty or of the methods for dealing with it have

been applied to ecological modelling. Two rela-

tively early publications (Burrough, 1986; Lod-

wick et al., 1990) present detailed summaries of

sources of possible errors in GIS and provide

examples and discussions of many of the error

classes of Regan et al. (2002), including measure-
ment error, natural variation, model uncertainty,

systematic error and linguistic uncertainty.

Uncertainty in model inputs is not explicitly

accounted for in the usual confidence intervals of

GLMs. However, it could be argued that a portion

of it is indirectly incorporated because data error is

likely to make parameter estimation less precise. A

recent analysis of input uncertainty on prediction
uncertainty in GLMs applied to wetland plant

species showed that confidence intervals due solely

to input uncertainty can be very wide (van Horssen

et al., 1999).

Sensitivity analyses (e.g. Crosetto et al., 2000;

Stoms et al., 1992) allow users to quantify the

uncertainties in species data and explanatory

variables and to explore the extent of their effect
on predictions. They require information on the

type, magnitude and spatial distribution of error in

the input. The GIS literature provides a range of

methods for defining the uncertainty in point, line,

raster and vector data*/see, for example, Fisher

(1991), Holmes et al. (2000), Stoms et al. (1992),

De Genst et al. (1999) and Hunter et al. (1999). In

many modelling situations, however, there is no
definite information available about errors asso-

ciated with covariate data, and the only option is

to make informed guesses about error type and

extent. This is clearly far from ideal and runs the

risk of misrepresenting the true uncertainty in the

data (Heuvelink, 1998), but is preferable to mak-
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ing no attempt at characterizing the input error.
Examples of studies where expert knowledge has

been used to quantify at least some of the error

include Stoms et al. (1992), Davis and Keller

(1997b) and Thorsen et al. (2001). The ‘informed

guess’ could be based on available data-for in-

stance, in the case of subjective judgement, where

experts have been used to classify data, the extent

and frequency of disagreement in the classifica-
tions could be simulated in new realizations of the

data.

Errors can be treated in a variety of ways from a

mathematical perspective*/for example, they can

be represented by intervals, probability distribu-

tions, degrees of belief, fuzzy sets and so on. See

Regan et al. (2002) for a discussion of the

appropriate treatment for the different sources of
uncertainty, Davis and Keller (1997b) for an

example using fuzzy sets, and Stoms et al. (1992)

for an application of probability distributions.

Monte Carlo methods (Hammersley and

Handscomb, 1964; Manly, 1997) are commonly

used within sensitivity analyses to create likely

realizations of the input data and apply the

modelling process to each realization (e.g. see
Crosetto et al., 2000; Lodwick et al., 1990;

McKenney et al., 1999; Stoms et al., 1992). The

results are then summarized for the statistic of

interest. For GLMs, methods need to be developed

for establishing confidence intervals that combine

parameter uncertainty, model uncertainty and

input uncertainty, or combinations of these. Con-

ceptually, bootstrap confidence intervals can offer
an appealing solution, but care is needed in

establishing the correct philosophy for generating

bootstrap resamples where there are potentially

many realizations of the species data, the covariate

data and the model form (see, for example, Buck-

land and Elston (1993); Buckland et al. (1997)).

Alternatively, the analytical method of Burnham

and Anderson (1998) and Buckland et al. (1997)
could be extended to deal with more than model

uncertainty. The method involves calculation of a

weighted term that sums the variance of a predic-

tion from each model and the deviation of each

prediction from the weighted average prediction

(see their equation 4.10 and example 4.3.1) for that

set of covariate data. It could be used to expand

Wald confidence intervals in logistic regression as
shown in Appendix 1.

6.4. Dealing with non-statistical uncertainty

It is often suggested that probabilistic tools and

Monte Carlo simulations cannot deal with vague-

ness (Colyvan, 2002). There are some elegant

examples in the GIS literature of methods for
dealing with vague concepts such as vegetation

classes, forest types or soil types with fuzzy

classification (e.g. Davis and Keller, 1997b; Fisher

et al., 1997). These demonstrate that non-prob-

abilistic methods can be developed to explore this

type of uncertainty. If habitat suitability is an

inherently vague concept, then statistical tools will

not address the uncertainty associated with the
vagueness. Statistical tools are useful for dealing

with the epistemic components of habitat suitabil-

ity metrics. It is likely that a combination of

statistical and non-probabilitistic methods are

necessary to address the full suite of uncertainty

in ecological methods (Regan et al., 2002).

7. Visualizing data uncertainty

An important component of communicating the

uncertainty in predictions to the decision-maker is

summarizing and visualizing it in ways that high-

light the information that is useful in the particular

context. A planner may need to define a threshold

at which it will be assumed that the species is

present, and would be helped by having mapped
information on the certainty of predictions, parti-

cularly in areas where land-use will change con-

tingent on his/her decisions. It has been

demonstrated that visualizations of data reliability

can help to inform even novice users (Evans,

1997). These are usually prepared and displayed

within a GIS, but can be displayed in other

interactive computer software (e.g. Evans, 1997;
Ehlschlaeger et al., 1997). There is a growing body

of research in the GIS literature on visualization

techniques; key references include Beard et al.

(1991) and Hearnshaw and Unwin (1994).

Techniques available for mapped visualizations

fall into two broad classes: static maps and
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dynamic maps. Static maps include simple com-
parisons between the separate sets of maps of the

predictions and their upper and lower bounds (or

the predictions and the range of the confidence

interval), or single maps that depict both the data

and its uncertainty (e.g. Lindenmayer et al., 1995).

In the second case the uncertainty could be

visualized by saturation of the colour, by fuzzi-

ness, or a third dimension (Davis and Keller,
1997a; Goodchild et al., 1994; Van der Wel et

al., 1998). Another option is to summarize the data

into groups by determining cutoffs. For example,

classes could be formed representing a small

chance of occurrence with low uncertainty, a small

chance of occurrence with high uncertainty and so

on, and this summary could be visualized. The

interpretation of the simple parametric confidence
intervals for logistic regression requires some care,

because the intervals around 0.5 tend to be wider

than the intervals around predictions closer to 1 or

0.

Dynamic visualizations or animations can be

useful for viewing a set of static maps. A simple

application is that of a ‘dynamic map pair’, for

example where a color map of predicted probabil-
ities and one of associated uncertainties (e.g. a

grey-scale map of the ranges of the confidence

intervals) are toggled (Van der Wel et al., 1998).

The speed of the toggle can generally be selected

interactively. The animation produces an impres-

sion of the uncertainty surrounding predictions

(e.g. see Evans 1997). Alternatively, many realiza-

tions of predictions could be animated. If Monte
Carlo simulations were used to generate many

realizations of the response and explanatory data,

and these were then used to produce many

realizations of predicted species occurrence, these

realizations could be visualized in an animation.

The particular animation method chosen (with

options such as: are transitions between images

smoothed? is each image given equal time?) may
affect how the viewer interprets the data, and it is

important to choose a method that can be

theoretically justified from the data (Ehlschlaeger

et al., 1997; Van der Wel et al., 1998). Animations

are reported to draw the user’s eye to the more

uncertain areas by the apparent motion of the

images in those areas compared with the more

constant colour of less variable regions (Bastin et

al., 1999). See Buttenfield et al. (1991) for a

bibliography on animation of spatial data.

A mixture of graphs and maps could be used to

help the modeller to investigate patterns in the

data. Where confidence intervals are particularly

wide, it would be interesting to know what

environment exists in that region. If graphs of

the response to each variable with confidence

intervals were linked to a static map of uncertain-

ties in prediction across the study area (Fig. 1) so

that clicking on the map at the site of interest

activated a pointer at the realized value for each

variable, this may help to indicate what contri-

butes to the uncertainty in the prediction. There is

plenty of scope in this area to develop useful

technology.

A combination of maps and species observa-

tions is also likely to be useful in exploring a model

visually, particularly if independent observations

are available. Observations that are poorly fitted

could be highlighted (e.g. all records that are more

than, say, 0.3 from the numerically closest con-

fidence bound; or all records which are discrepant

with the estimated probability at selected thresh-

olds). This could be used alongside summaries of

Fig. 1. Visualization of uncertainty in predictions linked to

graphs of responses. The heavy vertical lines on the response

functions show the position in environmental space correspond-

ing to the geographical position in the greyscale map of

prediction uncertainty. The responses are graphed as solid

black lines; the surrounding dotted lines are 95% confidence

intervals. We envisage an interactive link.
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the model performance such as area under the

receiver operating characteristic (ROC) curve

(Hanley and McNeil, 1982; Zweig and Campbell,

1992) or Cohen’s kappa statistic (Cohen, 1960).

8. Conclusion and directions for future research

At the end of an important statistical paper on

model uncertainty, Draper (1995) concluded ‘A

greater acknowledgement of model uncertainty

often has the consequence of widening one’s

uncertainty bands. . . this is an unpopular turn of

events, at least in the short run’. He was making

the point that it is difficult to deal with uncer-

tainty, but in the long run it is better to address

and treat the uncertainty in an attempt to include

the true values within a model’s predictions than

to ignore uncertainty and miss the true values

completely. Others express the same sentiment as

their efforts in dealing with uncertainty result in

wider confidence intervals (e.g. Buckland et al.,

1997; Chatfield, 1995; Davis and Keller, 1997a).

Part of the problem is that uncertainty has many

dimensions, making it difficult to think about in

relation to GLMs. This paper attempts to make

some of these dimensions explicit and to trace the

uncertainty from its source to the modelled pre-

dictions. Graphical displays of predictions that

deal with uncertainty (say, in the form of predic-

tion estimates with confidence intervals) are a

necessary part of a model assessment toolbox.

Relatively few published ecological models devel-

oped with GLMs present predictions with any

indication of their uncertainty. Exceptions include

the work of Buckland and colleagues (Buckland et

al., 1997; Buckland and Elston, 1993; Elston and

Buckland, 1993) who present confidence intervals

around estimates of range, and Lindenmayer et al.

(1995) who present upper and lower 95% con-

fidence limits alongside estimated probabilities of

presence. Only one study was found that included

an analysis of the contribution of uncertainties in

data to final estimates (van Horssen et al., 1999),

and this paper apparently ignored parameter

uncertainty in the confidence intervals. Most work

on model evaluation to date has focussed on

summary statistics calculated across all point

estimates (Fielding and Bell, 1997; Manel et al.,

2001). Recognition and treatment of uncertainty

would help in the interpretation of these summa-

ries, and to emphasize patterns in uncertainty such

as spatial clustering or links with particular

covariates.

Sensitivity analysis of predictions of species

occurrence allows the decision-maker to explore

the impact of various sources of uncertainty on

prediction estimates. It is also important to under-

stand and quantify the uncertainty associated with

less commonly considered sources of error, such as

the components of linguistic uncertainty, when

predictions are going to be used as input into other

models such as PVAs or reserve selection algo-

rithms (e.g. Akçakaya et al., 1995; Ferrier et al.,

2000; Freitag et al., 1996), or where predictions are

guiding decisions about species reintroductions

(Yanez and Floater, 2000) or sites at risk from

invasive species (Buchan and Padilla, 2000). Bastin

et al. (1999) present an example of an integrated

software system that allows decision-makers to

explore visually the range of likely realizations of

fuzzy data and to interpret the results that are

particularly relevant to their context. It reflects the

current momentum related to dealing with uncer-

tainty (in GIS, risk assessment, and conservation

biology) which provides an opportunity for spatial

modellers to develop an appropriate approach for

their discipline.

It would be particularly useful to develop some

studies that address the full range of issues

associated with uncertainties in predictions from

GLMs, and consider the results in the light of

other summaries of model performance and with

respect to their impact on management decisions.

At the moment the relatively small amount of

work that has been done is scattered throughout

the literature, but is difficult to analyze as a whole.

A framework needs to be developed that will

enable prediction uncertainty to be traced back

to its various sources, quantified, and communi-

cated to decision-makers.
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Appendix A: Expanding confidence intervals to

represent more of the true uncertainty

1) An outline of the situation: many predictions

can potentially be generated because there

may be many possible realizations of the value

of any predictor variable at any site, giving
many realizations of the modelling data set

(Section 6.3) and perhaps several alternative

plausible models (Section 6.2). Predictions will

be made with each model applied to each

realization of the modelling data set. The final

set of all predictions for any given site will

include a weight for each prediction. Perhaps

each realization of the modelling data set is
viewed as equally likely and thus the predic-

tion for each realization will be given an equal

weight, with the total weights summing to one.

Superimposed over this, predictions arising

from alternative models could be weighted

according to some sort of penalized likelihood

statistic, such as the Akaike Information

Criterion (AIC).
2) For estimation of confidence intervals begin

with the calculation of predictions and their

standard error and hence variance, v̂; for each

of the m realizations of the modelling data

and the n models (producing m �/n�/j pre-

dictions for the response at each site), retain-

ing these on the logit scale (i.e., on the scale of
the additive predictors).

3) For a prediction ui/that is one of the j possible

predictions for the response at site i with a

weight wi; and an averaged prediction ua/which

is a weighted average of the j predictions, the

expanded standard error of the average ŝ(ûa) is

estimated as:

ŝ(ûa)�
Xj

i�1

ŵi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂(ûi)�(ûi� ûa)2

q

4) Use this standard error to determine the two-

sided 1�a confidence interval for the logit as

ûa9z1�a=2ŝ(ûa); and translate these to the

response (probability) scale by substituting ûa/

and its bounds as u into:

Probability of presence�
exp(u)

1 � exp(u)
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