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a  b  s  t  r  a  c  t

Ecological  niche  models  and  species  distribution  models  are  becoming  important  elements  in  the toolkit
of  biogeographers  and  ecologists.  Although  burgeoning  in  use,  much  variation  exists  in  implementation
of  these  techniques,  leading  to considerable  diversity  of  methodology  and  discussion  of  what  is the
‘best’  approach.  In  this  analysis,  we  explore  implications  of different  configurations  of  major  factors  that
eywords:
cological niche
ispersal
AM
cological niche model
pecies distribution model

constrain  species’  distributions—abiotic  factors  and  dispersal  limitation—for  the  success  or  failure  of  these
models.  We  analyze  variation  in performance  among  modeling  approaches  as a  function  of  the  relative
configuration  of  these  two  factors  and  the  spatial  extent  of  training  region,  with  the  result  that  a  clear
understanding  of  the abiotic-dispersal  configuration  is  a prerequisite  to  effective  model  implementations;
the  effects  of  spatial  extent  of  the  training  region  are  less  consistent  and  clear.  Model  development  will be
powerful  only  when  set  in  an  appropriate  and  explicit  biogeographic  and  population  ecological  context.
. Introduction

In recent years, increasing effort has been invested in estimat-
ng ecological requirements of species and using those estimates to
dentify distributional areas. These methods are known as species
istribution modeling (SDM) when emphasis is on estimating dis-
ributions of species, or ecological niche modeling (ENM) when
mphasis is on niche requirements of species (Guisan and Thuiller,
005; Marti et al., 2005; Peterson, 2006). Since 1990, growth in
umbers of papers published in these fields has been almost expo-
ential (Lobo et al., 2010). The following is a summary of relevant
onceptual points, which are developed in greater detail in Peterson
t al. (2011).

The typical correlational methods for SDM and ENM are based
n finding regions in the space of environmental variables that
re, in some mathematical sense, similar to conditions at sites
here the species has been observed. Not surprisingly, many
ethods are capable of performing this task, and numerous stud-

es have attempted to compare their performances (Guisan and
immermann, 2000; Segurado and Araújo, 2004; Elith et al., 2006;
earson et al., 2006), some even trying to establish why  differ-

nt methods produce different answers (Elith and Graham, 2009).
hese questions are very relevant; to advance the discussion, how-
ver, we suggest that one must be explicit about what exactly is
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being modeled, with hypotheses regarding key factors affecting the
modeled object. Several kinds of distributional areas exist, each
with different properties (Soberón and Peterson, 2005; Jiménez-
Valverde et al., 2008; Peterson et al., 2011), so delineating the aim
of modeling efforts is crucial. Known presences in relation to proba-
ble absences define the occupied area of a species, making crucial an
explicit understanding of the type of absence data that are available
(Lobo et al., 2010). Another often-ignored point is the extent of the
region from which background data are sampled, if the algorithm
being used requires such information (Hirzel and Le Lay, 2008;
VanDerWal et al., 2009; Barve et al., 2011; Elith et al., 2011). Finally,
one needs to understand the actual mathematical operations that
different algorithms perform on the data to arrive at estimates of
the object of interest (Guisan and Zimmermann, 2000; Franklin,
2009).

In this study, we  compare five ENM/SDM algorithms in a novel
challenge, in which we specify unequivocally: (i) the type of dis-
tributional area being modeled, (ii) the configuration of factors
causing the distributions, and (iii) the way in which algorithms use
“background data.” Previous authors have concluded that the field
of ENM/SDM is still immature, and clear guidance for selecting rel-
evant methods cannot yet be provided (Elith and Graham, 2009).
We agree with these authors that much work remains before we
will understand fully the complexities of this field. However, sub-

stantial clarity can be obtained by assessing factors systematically,
using virtual species as test beds. The basis of our analysis is a simple
heuristic scheme, the BAM diagram (Soberón and Peterson, 2005;
Soberón, 2007), which summarizes joint effects of biotic, abiotic,
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http://www.sciencedirect.com/science/journal/03043800
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mailto:town@ku.edu
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Fig. 1. A simplified BAM diagram in which the effects of biotic interactions (B) do
not  constrain distributional potential of species strongly. The circle A represents the
parts of the world that contain the abiotic conditions required for a species’ survival
and growth. The circle M represents the region that has been accessible to the species
over a relevant period of time. The intersection of these two regions is the occupied
area  GO , which nonetheless includes areas of non-presence, for diverse reasons (e.g.,
metapopulation dynamics). The area GI has the correct suite of environmental con-
ditions, but has not been explored by the species. Open circles represent presence
data, closed circles indicate absences due to incorrect environment, closed squares
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ndicate absences due to lack of dispersal capacity, and triangles indicate absences
wing to both incorrect conditions and limited dispersal.

nd dispersal characteristics of species; we apply this framework
o virtual species for which the truth is known about what factors
etermine each distributional area.

Fig. 1 is a simplified representation of the BAM diagram, in which
nly two sets of factors affect distributions of species (Grinnell,
924; Good, 1931; Udvardy, 1969; Brown et al., 1996; Gaston,
003): the right combination of environmental conditions (the A
ircle), and the region of geography that has been accessible to
he species over a given period of time (the M circle). We  ignore
iotic interactions (B) for reasons discussed below. From Fig. 1, we
ee that three regions exist that can reasonably be regarded as the
bject of a modeling exercise. First, the “occupied area” (Gaston,
003), denoted by GO, is an area that presents the abiotic condi-
ions that a species requires to survive and reproduce and that has
een accessible to the species; by definition, GO = A ∩ M.  The second
rea is that which can potentially be invaded if the restrictions of M
re relaxed (Svenning and Skov, 2004), defined as GI = A ∩ MC, with
he C denoting “complement.” GI is thus the set of areas with the
ight environmental conditions but that is currently inaccessible to
he species; this area is the focus of most modeling exercises deal-
ng with invasive species. The third area, the union of GO and GI, is
quivalent to A in the BAM diagram. The question of whether one
s attempting to model GO, A, or GI is key. The relative sizes and
ositions of B, A, and M should be explicit at the outset, because,
s we will see below, different configurations of the BAM diagram
ead to radically different capacities for algorithms to estimate the
reas of interest.

As a side note, we can use the BAM framework to distinguish
etween two conceptual frameworks in this emerging field. When
he focus is on estimating the occupied area GO, the study falls into
he realm of SDM. Modeling GO requires information not only about
avorable conditions for the species (i.e., its fundamental ecologi-
al niche), but also about factors that restrict its spread (biotic and

eographic factors constraining dispersal) or overpredictions will
esult (Peterson et al., 1999). When the focus is on estimating A
r GI, only the favorable conditions (and biotic circumstances for
he case of GI) need to be estimated, which can be projected in
g 237– 238 (2012) 11– 22

geographic space; these potential distributional areas are the sub-
ject of ENM.

Consider now the different types of absence data that the
above schemes may  require (Peterson, 2006; Lobo et al., 2010). In
Fig. 1, several types of “absence” data are shown, but the circles
are absences owing to lack of suitable environmental conditions
(black circles) within space that has been accessible to the species
(Barve et al., 2011) or occupancy dynamics (white circles) within
completely suitable and accessible areas (Hortal et al., 2010). The
squares, however, are absences under suitable conditions, but at
sites where the species is not present owing to inaccessibility. Black
triangles are absences resulting from both conditions acting simul-
taneously. It should be obvious that the biological meaning of these
three classes of absences is very different, particularly if one is
attempting to model GI or A. Therefore, as has been emphasized
previously (Barve et al., 2011), clear a priori hypotheses about M
should be an integral part of the modeling exercise, despite the
fact that no widely used SDM/ENM algorithm requests information
explicitly about this region.

It is also important to keep in mind the implications of how
different modeling algorithms operate on the data. First, one
must distinguish between “background data,” used to character-
ize the overall landscape; pseudoabsence data, which are artificial
absences created for algorithms that fit functions to binary data;
and true absences, which are based on reliable field evidence of
non-occurrence (although one still needs to ponder the different
types of absences listed above). Among commonly used algorithms
in ENM/SDM, for instance, Maxent uses background data to create
a null model for a probability density (Elith et al., 2011); Desktop
GARP uses pseudoabsences to fit some of its component methods
(Stockwell and Peters, 1999); and GAM and multivariate regres-
sion methods use either pseudoabsence or true absence data, but
the interpretations of models based on one or the other are not
the same (Pearce and Boyce, 2006; Ward et al., 2009). BIOCLIM,
DOMAIN, and other “envelope methods” operate with only pres-
ence data (Franklin, 2009). We use the term “non-presence data”
to refer to any of the above characterizations of absence; obviously,
choice of a reference area implies a choice of non-presence data
(Barve et al., 2011). Hence, selecting reference regions carefully and
with good biogeographic considerations is a crucial point in the
modeling exercise (VanDerWal et al., 2009; Godsoe, 2010; Barve
et al., 2011; Elith et al., 2011). Strict presence-only methods like
envelope or distance techniques (Busby et al., 1991; Hirzel et al.,
2002; Farber and Kadmon, 2003) may  be less affected by choice of
reference region.

Jiménez-Valverde et al. (2008) argued that ENM algorithms pro-
duce outputs that fall somewhere between the occupied area GO
and the potential area A. In this paper, we explore this insight in
greater detail, characterizing model results along this spectrum,
rather than simply seeking a ‘best’ approach. We  investigate impli-
cations of different hypotheses regarding the relative size and
position of accessible and suitable areas and the size of the ref-
erence region for the ability of different algorithms to estimate GO
and A. The result is a picture of the strengths and limitations of a
variety of ENM/SDM algorithms under certain sets of biological and
biogeographic circumstances.

2. Methods

2.1. Virtual niches and virtual species
We created three virtual fundamental niches for the purpose
of exploring the scenarios and ideas described above: the effects
of BAM scenario, training region, and modeling method on the
efficacy of models purporting to estimate ecological niches and
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Fig. 2. Distributional areas and associated BAM scenarios for the Desert species. (A) Map  showing G1 (small box), G2 (larger box), and the abiotic habitable area (A, in green).
(B–E)  Schematic diagrams summarizing the four BAM scenarios used (A is represented by the orange circle, M is represented by the hatched circle): (B) Classic BAM (CB), (C)
Wallace’s Dream (WD), (D) Hutchinson’s Dream (HD), and (E) Full Overlap (FO). (F–I) Maps of distributional areas associated with each of the BAM scenarios (M is represented
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y  the solid blue outline, hatched blue area indicates the inhabited area GO): (F) CB, 

f  this article.)

istributional areas. Simple fundamental niches were postulated
y selecting rectilinear, non-interacting sets of conditions in a
wo-dimensional environmental space (annual mean temperature
nd annual precipitation), and identifying the geographic areas to
hich they correspond. We  emphasize that these virtual funda-
ental niches were chosen on purpose to be simple, as our goal

as only to create a fertile environment for testing ideas about fac-

ors affecting niche reconstructions, although this simplicity (i.e.,
inary, non-interactive responses to a two-dimensional environ-
ental space) must be taken into account in pondering our results.
D,  (H) HD, and (I) FO. (The color version of this figure is available in the web version

Note that projection of niche space into geography often produces
areas that are not necessarily contiguous; in two cases, we disre-
garded small and peripheral disjunct areas, retaining only major
regions of niche suitability.

The virtual niches represented in these three regions of North
America focus on very different environmental circumstances,

as follows. “Desert” was defined as the conjunction of annual
mean temperature of 18.5–23.0 ◦C with annual precipitation of
36–445 mm,  which corresponds to the Chihuahuan and Sonoran
deserts of the southwestern United States and northern Mexico
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Fig. 3. Example distribution in environmental space associated with the Classic BAM
(CB) scenario for the Desert species. The black points represent all the environmen-
tal  combinations available within the region G2. Blue points represent the suite of
environments represented within the M region (Supplemental Fig. 1F). The orange
box indicates the fundamental niche, and the orange points inside the orange box
are  the environments associated with the randomly selected occurrence localities.
It  can be seen that the fundamental niche excludes numerous environmental com-
binations (in black) that have never been visited by the species (i.e., they are outside
of  M).  The projection of the orange box to geographic space represents the region
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,  while the blue points inside the orange rectangle are the geographic-space man-
festation of GO . (The color version of this figure is available in the web  version of
his article.)

see Figs. 2 and 3). “Southeast” was defined as the conjunction of
nnual mean temperature of 15.1–16.9 ◦C and annual precipitation
f 1181–1469 mm,  which corresponds to humid temperate areas in
he southeastern United States, extending from southeastern Okla-
oma east to the Carolinas. Finally, “Northwest” was  defined as the
onjunction of annual mean temperature of −3.0 to 12.0 ◦C and
nnual precipitation of 1500–3500 mm,  which corresponds to the
rea along the Pacific Coast west of the Cascade Mountains in Wash-
ngton, Oregon, northern California, and southwestern Canada, a
egion that is subdivided by the Willamette River Valley corridor.

.2. BAM scenarios and distributional areas

The niches described above are hypothesized fundamental eco-
ogical niches, corresponding to the abiotic habitable area A in the
erminology of Peterson et al. (2011).  Biotic interactions (B in the
AM framework) are disregarded because we want to maintain the
rgument as simple as possible: modeling B is extremely compli-
ated; actual data on biotic effects are seldom available; and such
actors may  manifest on much-finer spatial scales than A (Soberón,
007, 2010), although other authors would disagree (Bullock et al.,
000; Leathwick and Austin, 2001). In the BAM framework, this
ssertion translates into the idea that B is large with respect to A
nd M (Fig. 1).

Under this scenario, we  explored the four possible relationships
etween A and M,  as follows. “Hutchinson’s Dream” (HD) is the
ituation in which A ⊂ M (Fig. 2D), and the principal constraint
o occupation is lack of favorable environments; an example of
his scenario would be a species distributed in a continuous land-
cape without major barriers, such as Tyto alba (Barn owl) when
iewed globally, wherein many range limits are set by climatic (i.e.,
-related) factors (Marti et al., 2005). “Wallace’s Dream” (WD) is

he situation in which M ⊂ A (Fig. 2C), and the chief constraint on
ccupation of areas is dispersal capacity; here, viewing the distri-

ution of the introduced T. alba populations that are restricted to
he Hawaiian Islands by dispersal constraints would be an example.
Classic BAM” (CB) is the situation in which M and A overlap only
artially (Fig. 2B); the same T. alba, but viewed across mainland
g 237– 238 (2012) 11– 22

North America (such that additional habitable areas exist else-
where), would be an example. Finally, “Full Overlap” (FO) is the
situation in which M ≈ A, such that the accessible and habitable
areas coincide (Fig. 2E), which would be the case in any study lim-
ited to a single small island where a species like T. alba has full ability
to use all environments present. Note that the same species can be
taken as exemplifying any of the four “AM” scenarios, depending
on the spatial extent of reference.

Because of how the scenarios are constructed, HD and FO
have potential and occupied areas that are equivalent (i.e., GO = A),
whereas CB and WD have potential areas larger than their occupied
areas. For each virtual niche (projected to identify a corresponding
area A), we  created distributional situations that fit with each of
the four BAM scenarios described above (see Fig. 2, Supplemental
Figs. 1 and 2). Creating these scenarios involved selection of areas
representing M,  or the area accessible to the species (Soberón and
Peterson, 2005; Barve et al., 2011). In each case, GO, the occupied
area, is GO = A ∩ M.  This selection of areas was accomplished arbi-
trarily, with an eye to creating clear and representative examples.

We  assumed that models would be best calibrated within M,
as has been argued elsewhere (Anderson and Raza, 2010; Barve
et al., 2011; Elith et al., 2011). However, since our M’s  were drawn
arbitrarily so as to mimic  the effects of a hypothetical and unspec-
ified barrier, for the purposes of comparison, we also outlined two
broader rectangular areas within which models could be calibrated,
here referred to as G1 (smaller) and G2 (larger; Fig. 2, Supplemental
Figs. 1 and 2). Each distributional area for each species was trans-
formed to a grid with 0’s representing unsuitable areas and 1’s
indicating suitable areas. Therefore, for each species and scenario,
we had known occupied (GO) and potential (A) areas of distri-
bution against which to compare the predictions of the different
algorithms.

To test algorithms and their ability to estimate niches and dis-
tributional areas, we randomly sampled 50 presence points from
within GO for each niche × BAM scenario combination using the
Generate Random Points function in Hawth’s Tools, version 3.27,
an extension to ArcGIS 9.3. One algorithm that was explored in
this study required data on true absences of the species in ques-
tion (GAM models, see below). For this case, we  also generated 500
absence points for each species within M,  within G1, and within
G2, but in each case, constrained to be outside of GO, such that we
assumed no error in sampling of either presences or absences. It is
important to note that the WD and FO scenarios lack random points
to represent true absences in M (but not in G1 and G2), as M and A
are synonymous for these scenarios. This point also means that, as
the reference region is broadened to G1 and G2, the BAM configu-
ration may  change; for instance, a WD scenario cast on a broader
extent may  become a HD or CB scenario.

2.3. Niche modeling approaches

We explored five algorithms for niche modeling. Two require
presence data only (BIOCLIM and DOMAIN); a maximum entropy
algorithm (Maxent; Phillips et al., 2006) uses points from the
background to minimize relative entropy; GARP, a genetic algo-
rithm (Stockwell and Peters, 1999), uses random points to model
pseudoabsences for fitting a logistic regression, and, finally, a
Generalized Additive Model (Yee and Mitchell, 1991) uses true
absences. Note that because BIOCLIM and DOMAIN depend solely
on presence data, only the G2 sampling scheme was employed for
these two  algorithms (training across M,  G1, or G2 would yield
identical results).
Specifications for the five algorithms were as follows. For GARP,
we ran 100 replicate runs at 0.05 convergence with 1000 maximum
iterations; the consensus of replicate models was  achieved via a
20% relative omission threshold, retaining the central 50% of the
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istribution of proportional areas predicted as suitable (Anderson
t al., 2003). For Maxent, we used default settings and the logistic
utput, except that a 50% random test percentage was  specified.
iva-GIS 7.4 (Hijmans et al., 2001) was used for generating models
f BIOCLIM and DOMAIN, with all parameters at default settings.
inally, GAMs were run in R (http://www.r-project.org/) using the
ackage mgcv with a spline-based smoother. We  built two  GAM
odels: one with independent variables and the other incorporat-

ng interactions between variables; the AIC value of each model was
ompared, and the model with the smaller AIC was  used as the final
odel (Johnson and Omland, 2004). Models were trained across the

egion of interest in each treatment (see below), but all results were
rojected to the G2 region. The contrasting non-presence points
ere taken randomly from the regions M,  G1, and G2 for Maxent

nd GARP, and from the region excluding GO but within M,  G1, or
2 for GAM.

.4. Summary statistics

The goal of this study was not to establish which algorithm or
odeling setup is ‘best,’ but rather to assess the relative position

f model outputs along a spectrum between actual and potential
istributional areas, or between GO and A, respectively. Since no
rror factors were included in any of the data, we  could assume that
odels would respond closely to the known truth. While we are

ompletely cognizant of the problems involved with Cohen’s kappa,
e see it as appropriate in this particular application since we  know

he truth; as such, we measured the correspondence between each
f our models and the corresponding distributional areas A and GO
sing Cohen’s kappa, via the following sequence of steps.

First, we thresholded each model using the Least Training Pres-
nce Thresholding method, in which the threshold for predictions
f presence (as opposed to absence) was set at the lowest suitability
alue assigned to any of the occurrence points used in calibrating
he model (Pearson et al., 2007). This step achieved two  goals: (1)
ll models were made into binary predictions, with 0’s indicating
nsuitable conditions and 1’s indicating suitable conditions; and (2)
he thresholds of different models were calibrated to one another
ased on the yardstick of the training data. For algorithms for which
aw outputs are continuous in nature (e.g., Maxent, GAM), we con-
erted raw outputs to integer values prior to thresholding, retaining
our significant digits.

We then calculated Cohen’s kappa statistic for correspondence
o each GO and A for each virtual niche × BAM scenario via the
ollowing steps. First, the thresholded models for each species
ere combined with a binary grid summarizing A and GO for

hat virtual niche × BAM scenario using the “Combine” function in
rcGIS 9.3 Spatial Analyst Tools. Then, we calculated omission and
ommission error rates as the percentage of pixels predicted as
uitable outside of A or GO, and the percentage of pixels omitted
rom A or GO, respectively. From these quantities, we calculated
ohen’s kappa (Fielding and Bell, 1997). The kappa statistic mea-
ures departure from a random prediction, so a value of zero means

 classification indistinguishable from a random one and a value of
 indicates very close correspondence, above and beyond random
xpectations.

.5. Design of experiments

As described above, we assessed four BAM scenarios, three train-
ng regions, and five niche modeling algorithms, each for three

irtual niches. Taking into account the fact that some degeneracy
xisted (e.g., WD and FO are identical for the BIOCLIM and DOMAIN
lgorithms), this scheme of testing resulted in a total of 128 models,
ach of which was evaluated for correspondence with A and GO.
g 237– 238 (2012) 11– 22 15

The goal of this in silico experiment was  to determine how the
different modeling algorithms perform under different configura-
tions of the BAM diagram and training region, so as to encourage
careful and appropriate consideration of these conditions in niche
modeling applications. For our kappa-based evaluations of virtual
species, two sorts of information can be derived: (1) proximity to or
distance from the origin for both A and GO as an indication of overall
model quality, and (2) the position of the model along a spectrum
between A and GO as an indication of tendency to approximate the
potential versus occupied distributional areas. We  reiterate that
the kappa statistic is appropriate for this particular application,
even though we see few applications of it to real-world questions
of niches and distributions, in which the truth is not known.

2.6. Contrasts of environmental similarity

Elith et al. (2010, 2011) proposed the use of a measure
of environmental similarity which they termed a Multivariate
Environmental Similarity Surface (MESS) to identify areas with
environments outside the range present among the points used to
train models. They developed and implemented this measure as a
warning for extrapolation sensu stricto, as opposed to transferring
predictions to other regions or times, but within the range of vari-
ables used for training. We  apply the MESS idea to illustrate how
different two  regions are, regardless of the range of values of the
variables, and thus modified the details of Elith et al.’s (2010, 2011)
proposal (see Supplemental Information). MESS maps were created
based on the average Euclidean distance to the closest decile of the
reference region for each point in the broader landscape of interest.
For the questions explored herein, the most appropriate refer-
ence region is M (see below); these questions regarding MESS and
transfer/extrapolation of models among regions are under detailed
examination in a next study from our research group (in prep.).

In the present case, we are interested in how environments
are similar or different across the broader landscape of interest
in relation to those environments that have been sampled by the
species (i.e., areas within M),  regardless of their suitability. Using
the actual occurrence points of the species as reference (Elith et al.,
2010, 2011) mixes effects of niche with those of environmental
difference; therefore, to maintain focus on identifying areas of
extrapolation (i.e., areas presenting environmental conditions very
different from those of the training region), our MESS analyses use
as a reference the M regions for each scenario. For each reference
region, scenario, and species, we  sampled from a set of 50,000
points to obtain the distribution of MESS values with respect to M.
Finally, to identify concretely those areas with conditions that fall
outside of environmental ranges for any of the variables included
in the model, we identified ranges of values represented within
M for each environmental variable independently, and then used
those ranges to flag areas across the broader G2 that fall outside of
the training-region range for any variable, and thereby represent
extrapolation.

3. Results

For each combination of algorithm, species, and BAM scenario,
we evaluated the closeness of algorithm output to the correspond-
ing actual (GO) and potential (A) distributional areas (Fig. 4). We
noted consistent differences among BAM scenarios with respect
to these measures. In the CB and HD scenarios, algorithms were
capable of yielding relatively good predictions of both A and GO

(recalling that in HD A = GO). The other two  scenarios posed chal-
lenges that the algorithms we  tested consistently failed to meet.
In the FO scenario, every prediction except one had kappa values
below 0.2, which are very close to random. In the WD scenario, no

http://www.r-project.org/
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GO
value exceeded 0.4, and most KA values were below 0.5. That

s, FO and WD showed predictions that were near random. It is not
urprising that WD models did a better job of recovering A than GO,
s the latter is determined mostly by the dispersal factors of M.  In
he FO scenario, most algorithms captured, at best, only a subset of
he niche.

We also compared the performance of algorithms as regards
ifferent training areas. We  trained models based on the arbitrary
rea M that curtails A to produce GO, but also based on two larger
reas, here termed G1 and G2. In light of our previous argument
hat model calibration should be restricted to areas of relevance,
.e., areas that have been accessible to the species, and thus are
ikely unsuitable if they are not inhabited (Barve et al., 2011), our
nitial expectation was that models trained in M would perform
etter than models trained across broader areas. That idea, how-
ver, was not confirmed (see Supplementary Table 1), likely owing
o the fact that our hypothesized M’s  do not directly inform the

lgorithms. As a more controlled comparison of small versus large
odel training areas, we compared performance of models trained

n G1 and G2, but found little consistency in performance differ-
nces (Fig. 5). Indeed, the only pattern that we noted was that GAM
models performed consistently better when trained across broader
areas (G2).

We compared the five algorithms for each of the three species
and for the two  BAM scenarios for which models could be devel-
oped successfully (see above). Models generally performed better
under HD than CB (Fig. 6), likely reflecting the fact that HD sce-
narios allow the species to access the entirety of A, whereas CB
scenarios inevitably include some suitable areas that are not occu-
pied owing to accessibility constraints (Figs. 2 and 3). For example,
for the Desert species under the CB scenario (Fig. 3), 296,686 cells
were present across G2; M included 11.7% of these points, and
the fundamental niche contained 2601 cells, or 0.87% of avail-
able combinations. In this scenario (CB), M includes only a part of
the fundamental niche termed the existing fundamental ecologi-
cal niche (i.e., the part of the fundamental ecological niche that is
actually manifested within the region of interest; Peterson et al.,
2011), creating a region fitting the conditions of the existing fun-

damental niche that is outside of the area sampled by the species.
In such situations, modeling A may  be difficult, because parts of the
fundamental niche remain “hidden” from analyses based on data
drawn from the known occurrences of the species.
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reas  (G1 and G2). Symbols as in Fig. 4. (The color version of this figure is available i
A second insight from these comparisons is that four of the
ve approaches consistently performed quite well (Fig. 6 and
upplemental Table 1)—only DOMAIN failed in 3 of the 6 compar-
sons. We  note that the good performance of BIOCLIM is likely a
utput to the potential (KA) and occupied (KGO
) areas for two  different calibration

web  version of this article.)
function of the rectilinear definition of our virtual niches, which
matches the mechanism of this algorithm, and likely gives it an
unfair advantage that would not hold true in more realistic applica-
tions. Overall, then, the remaining three algorithms (GARP, Maxent,
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AM) performed similarly and consistently well, and will be the
ocus of our discussions.

Finally, we note an interesting feature of Fig. 4: the comparisons

etween prediction of GO versus A. In the HD and FO scenarios, A
nd GO are equivalent. In the CB and WD scenarios, however, all pre-
ictions fell closer to A. This imbalance would be highly unexpected

f no underlying difference existed (sign test, P < 0.05).
assic BAM CB, and Hutchinson’s Dream HD) trained within the G2 region. Dark bars
able in the web  version of this article.)

4. Discussion

This study departs from previous comparative analyses of ENM

or SDM (e.g., Brotons et al., 2004; Segurado and Araújo, 2004; Elith
et al., 2006; Elith and Graham, 2009) in that: (i) the relative impor-
tance of environmental suitability vs. dispersal (i.e., configurations
of the BAM diagram) is considered, (ii) the measure of performance
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f the models is their correspondence to two known distributional
reas (the occupied and potential distributions), and (iii) we dis-
inguish between different types of non-occurrence data. We also
xplore the consequences of using different reference regions for
btaining calibration data (VanDerWal et al., 2009; Barve et al.,
011; Elith et al., 2011).

.1. Comparisons among BAM scenarios

Our four BAM scenarios neglected the effects of B, owing to the
onceptual and computational difficulties of including effects of
iotic interactions in such explorations (Araújo and Guisan, 2006;
oberón, 2010). As a result, our comparisons explore different con-
gurations of an “AM” framework only. Nonetheless, we observed
ramatic contrasts in model success rates among scenarios, in
hich certain configurations cause algorithms to have very low

uccess in reconstructing either potential or actual distributional
reas. This result suggests that the factors included in BAM dia-
rams should always be considered carefully in ENM/SDM projects.
n particular, models under the WD and FO scenarios frequently
ailed to perform better than random expectations. These scenar-
os are ones in which all areas that are accessible to the species are
lso suitable for the species, effectively situations in which disper-
al limitations govern distributional patterns of species. In these
ituations, little or no contrast is available to algorithms on which
o base inferences. These scenarios represent situations that are
requently manifested in the real world—for example, species on
mall islands may  see their distributional limits set entirely or pre-
ominantly by M,  and not by factors related to A. These species
re effectively WD species, and our results indicate that ENM/SDM
ill not provide good estimates of either A or GO. Niche estimates

btained in such scenarios may  still be employed as first approxi-
ations to small portions of the realized niche that can be useful

n further documentation of the distribution (Siqueira et al., 2009;
enon et al., 2010). Some improvement may  be made to these
odels if the spatial resolution can be increased or the M-based

raining region broadened, the effect being to shift WD situations
owards HD or CB scenarios.

Lack of appreciation of the differences in BAM configurations
ay  have confused previous efforts to understand differences

etween ENM/SDM methods. For instance, Elith et al. (2006) pre-
ented comparisons across taxa sampled from six regions. One
xtreme in terms of BAM configuration was birds in Ontario, in
hich all species had broader ranges than the study area. If we
se “S” to denote the area actually sampled to produce the data
nalyzed, then we could describe this part of the study as a case
f the FO scenario, in which S ⊂ A ≈ M,  which appears to present a
erious challenge to SDM/ENM. At the other extreme, another Elith
t al. (2006) dataset examined distributions of liana species across
outh America, where the likely BAM configuration was  S ⊃ A ⊃ M,
hich is close to a WD situation, and again is difficult to model. As

 consequence, different BAM configurations, rather than intrin-
ic differences among algorithms in inferential ability, probably
ccount for some of the variation observed and analyzed in that
tudy.

In another example of failing to assess implications of particu-
ar BAM configurations, Beale et al. (2008) concluded that European
ird species’ distributions were rarely governed by climatic factors.
owever, the authors neglected to consider (1) the barriers to dis-
ersal that surround much of Western Europe (Mediterranean Sea
o the south, Atlantic Ocean to the west, North Sea to the north), and
2) the abrupt cut-off of the sampling available to them to the east.

he result was  a situation in which the study region is artificially
onstrained, imposing distorted and unrealistic limits on what can
e observed of M and A. The limits of A will only rarely be discern-
ble in such cases, and one ends up with a WD situation. A follow-up
g 237– 238 (2012) 11– 22 19

study replicating the Beale et al. methodology for North America,
where much more avian endemism is present, such that frequently
A ⊂ M (an HD case), showed much greater climatic determination
of bird species’ ranges, effectively corroborating the idea that the
BAM structure has critical implications both for the niche modeling
process and for interpretation of results (Jiménez-Valverde et al.,
2011).

4.2. Comparisons among calibration areas

This portion of our study yielded the least clear-cut results. We
initially designated explicit hypotheses of M for each of the virtual
species (i.e., combinations of three virtual niches and four BAM sce-
narios), and expected that models calibrated on these restricted
areas would perform more reliably than those calibrated across
broader regions (G1 and G2). However, such was not the case (cf.
Elith et al., 2011), perhaps, we  realize in retrospect, owing to the
fact that our M hypotheses only very indirectly affect the opera-
tion of the algorithms used. In other words, proposing an accessible
region M in theory adds an ecologically sensible factor for the
creation of GO in a virtual species, but the information about M
enters the modeling process only indirectly, through the char-
acteristics of occurrence and non-presence points. Moreover, the
effect of different types of non-occurrence data on different algo-
rithms is probably not the same; we found that it is difficult to
disentangle the effects of different algorithms, different types of
non-occurrence data, and distinct calibration areas.

First, we stress that the region M plays two roles in our analyses.
It is used to define the occupied region GO by intersection with the
suitable region, GO = A ∩ M,  but it is also one of the three regions
from which non-presence points were extracted. The first role is
internalized in the modeling process only if true-absence data are
available and a regression method is used (Phillips et al., 2009),
and then only implicitly. In other words, none of the algorithms
we used includes explicit consideration of a region beyond which
the species has never been able to explore. Very recent process-
oriented methods are beginning to take into account dispersal and
movements (Cabral and Schurr, 2010; Smolik et al., 2010; Barve
et al., 2011), but this gap is a limitation for the set of methods most
commonly used: it is simply impossible to inform them directly
about M,  which is a major factor determining GO. This limitation
causes confusion as to whether model output should be interpreted
as GO or as A, which is central in many of the arguments regarding
“overprediction” (Jiménez-Valverde et al., 2008) and whether the
object of modeling is a niche or a distribution.

The second role that M plays is as the smallest of the three
regions from which non-occurrence data were extracted. Several
things happen as the calibration region grows. As illustrated in
Fig. 7, non-occurrence data may  come from regions that are sim-
ilar to or different from those assumed to be sampled by the
species. Different algorithms use non-occurrence data in differ-
ent ways. Maxent uses background data to estimate a distribution
of environmental combinations z (strictly speaking, in “features”
space), called f(z) (Elith et al., 2011). This distribution provides
a null model that is used to find a Gibbs’ distribution as close
as possible to the null model and restricted to produce the
same means of features as those of the distribution of environ-
ments in the occurrence points, called f1(z). More specifically,
Maxent minimizes the Kullback–Leibler divergence div(f1, f ) =∫

z
f1(z) ln[f1(z)/f (z)] dz, between these two distributions, subject

to the means restriction (Elith et al., 2011). Therefore, the effect
of adding background data from a broader area essentially informs

the algorithm via the function f(z). Adding more background points
alters the shape of f(z), in one way  if the background points are
different from the region near the occurrences, as is the case in
G2 for the Southeast (Supplemental Fig. 1), or in another way if
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Fig. 7. MESS values summarizing similarity of environments across the broader study region to the environments represented across the accessible area M for each of the
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hree  species (Desert, Southeast, Northwest) for two BAM scenarios (Classic BAM 

urple, which indicates highest dissimilarity. Scales are the same across all of the 

vailable in the web  version of this article.)

he environmental values are similar, as it is the case for G2 for
he Northwest (Supplemental Fig. 2). On the other hand, when fit-
ing a logistic (or a similar function), as GAM or GARP does (GARP
oes it internally, as one of its four competing algorithms, and
AM uses a linear combination of non-linear smoothers for the

og-odds), the non-presence data are used not as a null model,
ut together with presences to maximize the log-likelihood of

 model for binary data. Broadening the reference region, then,
ay add non-presences with dissimilar environments, as in the

outheast case, or non-presences with similar environments, as
n the Northwest species, which may  be more challenging, since
t may  lower the discriminating power of the model. It is clear
hat these two cases probably affect the likelihoods in contrasting
ays, but it is not obvious to us that increasing non-occurrence
oints with different MESS distributions affects entropy-based
ethods in the same way that it affects regression-based
ethods.
As the calibration area is broadened, another effect is taking

lace. If, as is the case for the Desert and Northwest species, increas-
ng the area allows areas highly similar to the training region but
acking occurrences to be included in the analysis, the BAM con-
guration is changing. The different BAM configurations explored
ere are not independent of hypotheses of calibration area. That is,

 “Wallace’s Dream” configuration, in which species’ distributional
imits are constrained by M exclusively, morphs into something
ore akin to a “Classic BAM” or a “Hutchinson’s Dream” when
roader calibration areas are employed. As a consequence, one
hould take considerable care in defining scenarios and applying
hem only under appropriate circumstances.
utchinson’s Dream). Pale blue indicates high environmental similarity, grading to
. The region M is outlined in black in each case. (The color version of this figure is

The conclusion that we  extract from the preceding discussion
is that increasing the extent from which non-occurrence data is
obtained has complex and difficult-to-assess effects on modeling
algorithms. Biologically speaking, models should be calibrated based
on contrasts between presences and absences of the species across
M,  as has been appreciated in several recent papers (VanDerWal
et al., 2009; Barve et al., 2011; Elith et al., 2011)—these contrasts
are those in which the species of interest has in effect “sampled”
the non-inhabited landscape and not established populations there,
ostensibly for reasons related to A (although effects of B may  also
have to be assessed). However, we  note that the effects of con-
straining model calibration to conditions represented within M are
reflected in model correctness, but potentially not in model perfor-
mance. The current generation of SDM/ENM algorithms essentially
ignores information about M in their workings. A new generation
should seek to incorporate such information more directly in mod-
els, perhaps via Bayesian approaches.

4.3. Comparisons among algorithms

The main point of our study is that comparisons of performance
of ENM/SDM algorithms are best done when the factors underlying
a species’ distribution are considered explicitly, and when evalua-
tion criteria are unequivocal. Using virtual species, where the true
distributions are known, permits these possibilities. As described

above, disentangling the relevant factors, even in very simplified
cases, may  be surprisingly difficult. This point makes the uncon-
trolled nature of some previous comparisons (e.g., Elith et al., 2006;
Ortega-Huerta and Peterson, 2008; Wisz et al., 2008) difficult to
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nterpret, since, quite simply, it remains unclear what one learns
rom comparisons based on unknown BAM configurations and sit-
ations in which the actual region being modeled (be it A or GO)
emains unknown and largely unknowable.

In this study, we observed rather poor performance by DOMAIN,
nd good, but perhaps artifactual performance by BIOCLIM. The
emaining three algorithms all showed relatively good perfor-
ance, albeit with some variation. Despite being provided with

rue absences, GAM was, surprisingly, not consistently better at
stimating GO than the other methods. No other consistent differ-
nces emerged among algorithms in these comparisons, save for

 couple of GAM results showing oddly low performance values.
n general, however, Maxent, GARP, and GAM showed similar per-
ormance, a result that is of particular note because it indicates no
ignificant improvement in model performance when high-quality
bsence data are used in the GAM algorithm. Much theory (Keating
nd Cherry, 2004; Pearce and Boyce, 2006; Phillips et al., 2009;
ard et al., 2009; Li et al., 2011) and data (Brotons et al., 2004;
isz et al., 2008) support the widespread view that true-absence

ata would be the only way to estimate GO, since prevalence cannot
e identified without true absences: this idea was  not supported by
ur analyses using virtual species.

.4. Implications for modeling applications

The exercises presented in this paper are admittedly simplified,
ince their purpose was to illuminate the operation of compli-
ated methods in identifying unknown biological objects: they are
ased on virtual niches and actual and potential distributions across
eal-world landscapes. However, the virtue of the simplification is
hat some issues are clarified substantially—while our very-simple
irtual species may  give an overly optimistic view of simple algo-
ithms such as BIOCLIM, they represent a best-case situation for
he important insights that we have obtained, which have clear
mplications for real-world applications of niche and distribution

odeling techniques.
The principal lesson to be drawn from our analyses is that

he configuration of the main factors determining distributions of
pecies (which we conceptualize via the BAM diagram) must be
nderstood clearly, or at least hypothesized, prior to any appli-
ation of niche and distribution modeling. Although any set of
ccurrence points and environmental data layers can be stuck into
ome algorithm and maps obtained, their meaning remains dubi-
us without a firm conceptual framework by which to organize the
esults. That is, we must understand what factors generally struc-
ure the distributional area of the species of interest: are at least
ome of its distributional limits related to aspects of A, and not to
? For instance, a species may  be strictly endemic to an island,
hich suggests a Wallace’s Dream-style BAM configuration, and

hus the species may  not be very amenable to analysis; however, if
he species does not cover the entire island, and if distributional and
nvironmental data are sufficiently detailed, some level of analysis
ay  be feasible . . . perhaps it is distributed only up to middle ele-

ations, but does not ascend to the highest points on the island. In
his manner, we need not immediately “throw the baby out with
he bath water,” but instead take care to assess likely BAM configu-
ations before beginning analyses. More in depth, we should know
rom which sectors of which BAM configuration the presence and
bsence data being used to calibrate models are drawn; in cases in
hich this information is not known, assumptions should be stated

learly and explicitly, such that their implications can be evaluated.
A further point is that, although in theory models should be cal-
brated only within a (clearly and explicitly stated) hypothesis of
, our results and those of Elith et al. (2011) and VanDerWal et al.

2009) do not consistently show better results when model cal-
bration is restricted to smaller regions of reference. The use of
g 237– 238 (2012) 11– 22 21

MESS maps (Elith et al., 2011) may  clarify the reasons for these
equivocal results, and should become a key tool in the design and
interpretation of ENM/SDM exercises—only areas relatively similar
to, and falling within the environmental breadth of, the training
region should be interpretable in terms of whether they are part
of the distributional potential of a species. MESS can also be used
to describe whether a model is projecting (extrapolating) to condi-
tions not manifested within M (see Supplemental Information for
worked examples).

4.5. Niche modeling versus distribution modeling

Finally, we make some reflection regarding what these diverse
techniques are actually modeling. Niche modeling and distribution
modeling are terms that have been equated quite carelessly in the
literature, with “niche” uses treated under the distribution mod-
eling rubric and vice versa (Peterson, 2006). Here and elsewhere
(Peterson et al., 2011), we emphasize the critical need for much
more careful use of terminology and concepts: a clear separation
between the two ideas is that of focus on estimation of GO (species
distribution modeling) versus focus on estimation of the environ-
ments of A (ecological niche modeling). Jiménez-Valverde et al.
(2008) pointed out that these two objects of estimation, in reality,
form the extremes of a spectrum, and that most modeling efforts
probably estimate some quantity in between the two extremes.

Curiously, although it is easy to erect different definitions of
the two  approaches, the tools and data streams employed by the
two are similar or identical. The implications are serious—the same
data are input and the same tools are applied, but the results may
be interpreted in very different manners. Our results point to a res-
olution of the question of which quantity is being estimated: in 14
of 15 comparisons, our model results were more closely aligned
with the potential distribution than with the actual distribution.
In short, at least in the case of three simple virtual species, our
models were much more niche models than distribution models.
This result suggests that additional processing steps are necessary
to estimate actual distributions from these models (i.e., to reduce
model outputs from A to GO, on the basis of suitable additional infor-
mation), and that “species distribution modeling” as a universal
term is misleading and incorrect.
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