
www.allitebooks.com

http://www.allitebooks.org

Using OpenRefine

The essential OpenRefine guide that takes you from
data analysis and error fixing to linking your dataset
to the Web

Ruben Verborgh

Max De Wilde

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Using OpenRefine

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Production Reference: 1040913

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-908-0

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Ruben Verborgh

Max De Wilde

Reviewers
Martin Magdinier

Dr. Mateja Verlic

Acquisition Editor
Sam Birch

Commissioning Editor
Subho Gupta

Technical Editors
Anita Nayak

Harshad Vairat

Project Coordinator
Sherin Padayatty

Proofreader
Paul Hindle

Indexer
Hemangini Bari

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

Foreword

At the time I joined Metaweb Technologies, Inc. in 2008, we were building up
Freebase in earnest; entity by entity, fact by fact. Now you may know Freebase
through its newest incarnation, Google's Knowledge Graph, which powers the
"Knowledge panels" on www.google.com.

Building up "the world's database of everything" is a tall order that machines and
algorithms alone cannot do, even if raw public domain data exists in abundance.
Raw data from multiple sources must be cleaned up, homogenized, and then
reconciled with data already in Freebase. Even that first step of cleaning up the data
cannot be automated entirely; it takes the common sense of a human reader to know
that if both 0.1 and 10,000,000 occur in a column named cost, they are very likely in
different units (perhaps millions of dollars and dollars respectively). It also takes a
human reader to decide that UCBerkley means the same as University of California
in Berkeley, CA, but not the same as Berkeley DB.

If these errors occur often enough, we might as well have given up or just hired
enough people to perform manual data entry. But these errors occur often enough
to be a problem, and yet not often enough that anyone who has not dealt with such
data thinks simple automation is sufficient. But, dear reader, you have dealt with
data, and you know how unpredictably messy it can be.

Every dataset that we wanted to load into Freebase became an iterative exercise in
programming mixed with manual inspection that led to hard-coding transformation
rules, from turning two-digit years into four-digits, to swapping given name and
surname if there is a comma in between them. Even for most of us programmers, this
exercise got old quickly, and it was painful to start every time.

So, we created Freebase Gridworks, a tool for cleaning up data and making it ready
for loading into Freebase. We designed it to be a database-spreadsheet hybrid; it is
interactive like spreadsheet software and programmable like databases. It was this
combination that made Gridworks the first of its kind.

www.allitebooks.com

http://www.allitebooks.org

In the process of creating and then using Gridworks ourselves, we realized that
cleaning, transforming, and just playing with data is crucial and generally useful,
even if the goal is not to load data into Freebase. So, we redesigned the tool to be
more generic, and released its Version 2 under the name "Google Refine" after
Google acquired Metaweb.

Since then, Refine has been well received in many different communities; data
journalists, open data enthusiasts, librarians, archivists, hacktivists, and even
programmers and developers by trade. Its adoption in the early days spread through
word of mouth, in hackathons and informal tutorials held by its own users.

Having proven itself through early adopters, Refine now needs better organized
efforts to spread and become a mature product with a sustainable community around
it. Expert users, open source contributors, and data enthusiast groups are actively
teaching how to use Refine on tours and in the classroom. Ruben and Max from the
Free Your Metadata team have taken the next logical step in consolidating those
tutorials and organizing those recipes into this handy missing manual for Refine.

Stepping back to take in the bigger picture, we may realize that messy data is not
anyone's own problem, but it is more akin to ensuring that one's neighborhood is
safe and clean. It is not a big problem, but it has implications on big issues such as
transparency in government. Messy data discourages analysis and hides real-world
problems, and we all have to roll up our sleeves to do the cleaning.

David Huynh
Original creator of OpenRefine

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Ruben Verborgh is a PhD researcher in Semantic Hypermedia. He is fascinated
by the Web's immense possibilities and tries to contribute ideas that will maybe
someday slightly influence the way the Web changes all of us. His degree in
Computer Science Engineering convinced him more than ever that communication is
the most crucial thing for IT-based solutions. This is why he really enjoys explaining
things to those eager to learn. In 2011, he launched the Free Your Metadata project
together with Seth van Hooland and Max De Wilde, which aims to evangelize the
importance of bringing your data on the Web. This book is one of the assets in this
continuing quest.

He currently works at Multimedia Lab, a research group of iMinds, Ghent
University, Belgium, in the domains of Semantic Web, Web APIs, and Adaptive
Hypermedia. Together with Seth van Hooland, he's writing Linked Data for Libraries,
Archives, and Museums, Facet Publishing, a practical guide for metadata practitioners.

Max De Wilde is a PhD researcher in Natural Language Processing and a teaching
assistant at the Université libre de Bruxelles (ULB), department of Information and
Communication Sciences. He holds a Master's degree in Linguistics from the ULB
and an Advanced Master's in Computational Linguistics from the University
of Antwerp. Currently, he is preparing a doctoral thesis on the impact of
language-independent information extraction on document retrieval. At the
same time, he works as a full-time assistant and supervises practical classes for
Master's level students in a number of topics, including database quality, document
management, and architecture of information systems.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Martin Magdinier, during the last six years, has been heavily engaged with startup
and open data communities in France, Vietnam, and Canada. Through his recent
projects (TTCPass and Objectif Neige) and consulting positions, he became intimate
with data massage techniques. Coming from a business approach, his focus is on data
management and transformation tools that empower the business user. In 2011, he
started to blog tips and tutorials on OpenRefine to help other business users to make
the most out of this tool. In 2012, when Google released the software to the community,
he helped to structure the new organization. Today, he continues to actively support
the OpenRefine user base and advocates its usage in various communities.

Dr. Mateja Verlic is Head of Research at Zemanta and is an enthusiastic
developer of the LOD-friendly distribution of OpenRefine. After finishing her PhD in
Computer Science, she worked for two years as Assistant Professor at the University
of Maribor, focusing mostly on machine learning, intelligent systems, text mining,
and sentiment analysis. In 2011, when she joined Zemanta as an urban ninja and
researcher, she began exploring the semantic web and has been really passionate
about web technologies, lean startup, community projects, and open source software
ever since.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com to download the datasets and projects to follow
along with the recipes in this book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

To Linda, for her ever-lasting and loving support

Ruben Verborgh

To Hélène, and baby Jeanne

Max De Wilde

Table of Contents
Preface	 1
Chapter 1: Diving Into OpenRefine	 5

Introducing OpenRefine	 5
Recipe 1 – installing OpenRefine	 6

Windows	 7
Mac	 7
Linux	 7

Recipe 2 – creating a new project	 7
File formats supported by OpenRefine	 8

Recipe 3 – exploring your data	 10
Recipe 4 – manipulating columns	 12

Collapsing and expanding columns	 12
Moving columns around	 13
Renaming and removing columns	 14

Recipe 5 – using the project history	 14
Recipe 6 – exporting a project	 17
Recipe 7 – going for more memory	 19

Windows	 19
Mac	 20
Linux	 20

Summary	 20
Chapter 2: Analyzing and Fixing Data	 21

Recipe 1 – sorting data	 22
Reordering rows	 24

Recipe 2 – faceting data	 24
Text facets	 25
Numeric facets	 28

Table of Contents

[ii]

Customized facets	 30
Faceting by star or flag	 33

Recipe 3 – detecting duplicates	 34
Recipe 4 – applying a text filter	 36
Recipe 5 – using simple cell transformations	 38
Recipe 6 – removing matching rows	 41
Summary	 44

Chapter 3: Advanced Data Operations	 45
Recipe 1 – handling multi-valued cells	 46
Recipe 2 – alternating between rows and records mode	 49
Recipe 3 – clustering similar cells	 52
Recipe 4 – transforming cell values	 55
Recipe 5 – adding derived columns	 58
Recipe 6 – splitting data across columns	 60
Recipe 7 – transposing rows and columns	 61
Summary	 64

Chapter 4: Linking Datasets	 65
Recipe 1 – reconciling values with Freebase	 66
Recipe 2 – installing extensions	 69
Recipe 3 – adding a reconciliation service	 71
Recipe 4 – reconciling with Linked Data	 73
Recipe 5 – extracting named entities	 76
Summary	 80

Appendix: Regular Expressions and GREL	 81
Regular expressions for text patterns	 81

Character classes	 82
Quantifiers	 85
Anchors	 86
Choices	 86
Groups	 87

Overview	 87
General Refine Expression Language (GREL)	 88

Transforming data	 88
Creating custom facets	 90
Solving problems with GREL	 91

Index	 93

Preface

Data is often dubbed the new gold, as it is of tremendous value for today's
data-driven economy. However, we prefer to think of data as diamonds.
At first they're raw, but through great skills, they can be polished to become the
shiny assets that are so worthy to us. This is precisely what this book covers; how
your dataset can be transformed in OpenRefine so you can optimize its quality for
real-world (re)use.

As the vast amount of functionality of OpenRefine can be overwhelming to new
users, we are convinced that a decent manual can make the difference. This book
will guide you from your very first steps to really advanced operations that you
probably didn't know were possible. We will spend time on all different aspects of
OpenRefine, so in the end, you will have obtained the necessary skills to revive your
own datasets. This book starts out with cleaning the data to fix small errors, and ends
by linking your dataset to others so it can become part of a larger data ecosystem.

We realize that every dataset is different, yet learning is easiest by example.
This is why we have chosen the Powerhouse Museum dataset to demonstrate the
techniques in this book. However, since not all steps apply on your dataset, we have
structured the different tasks as recipes. Just like in a regular cookbook, you can just
pick the recipes you need for what you want to achieve. Some recipes depend on
each other, but this is indicated at the start of each chapter.

In addition, the example dataset in this book illustrates a healthy data culture; the
people at Powerhouse decided to bring it online even though they were aware that
there were still some quality issues. Interestingly, that didn't stop them from doing
it, and in fact, it shouldn't stop you; the important thing is to get the data out. Since
then, the data quality has significantly improved, but we're providing you with the
old version so you can perform the cleaning and linking yourself.

Preface

[2]

We are confident this book will explain all the tools necessary to help you get your
data in the best possible shape. As soon as you master the skill of polishing, the raw
data diamonds you have right now will become shiny diamonds.

Have fun learning OpenRefine!

Ruben and Max.

What this book covers
Chapter 1, Diving Into OpenRefine, teaches you the basic steps of OpenRefine, showing
you how to import a dataset and how to get around in the main interface.

Chapter 2, Analyzing and Fixing Data, explains how you can get to know your
dataset and how to spot errors in it. In addition, you'll also learn several techniques
to repair mistakes.

Chapter 3, Advanced Data Operations, dives deeper into dataset repair, demonstrating
some of the more sophisticated data operations OpenRefine has to offer.

Chapter 4, Linking Datasets, connects your dataset to others through reconciliation of
single terms and with named-entity recognition on full-text fields.

Appendix, Regular Expressions and GREL, introduces you to advanced pattern
matching and the General Refine Expression Language.

What you need for this book
This book does not assume any prior knowledge; we'll even guide you through the
installation of OpenRefine in Chapter 1, Diving Into OpenRefine.

Who this book is for
This book is for anybody who is working with data, particularly large datasets.
If you've been wondering how you can gain an insight into the issues within your
data, increase its quality, or link it to other datasets, then this book is for you.

No prior knowledge of OpenRefine is assumed, but if you've worked with
OpenRefine before, you'll still be able to learn new things in this book. We cover
several advanced techniques in the later chapters, with Chapter 4, Linking Datasets,
entirely devoted to linking your dataset.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Program code inside text is shown as follows: "The expression that transforms the
reconciled cell to its URL is cell.recon.match.id".

New terms are shown in bold. Words that you see on the screen, in menus or dialog
boxes for example, appear in the text like this: "After clicking on OK, you will see a
new column with the corresponding URLs".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[4]

Downloading the example files
You can download the raw data and OpenRefine projects to follow along with the
recipes in the book. Each chapter has its own example file which can be downloaded
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Diving Into OpenRefine
In this opening chapter, we will discover what OpenRefine is made for, why
you should use it, and how. After a short introduction, we will go through seven
fundamental recipes that will give you a foretaste of the power of OpenRefine:

•	 Recipe 1 – installing OpenRefine
•	 Recipe 2 – creating a new project
•	 Recipe 3 – exploring your data
•	 Recipe 4 – manipulating columns
•	 Recipe 5 – using the project history
•	 Recipe 6 – exporting a project
•	 Recipe 7 – going for more memory

Although every recipe can be read independently from the others, we recommend
that readers who are new to OpenRefine stick to the original order, at least for the
first few recipes, since they provide crucial information about its general workings.
More advanced users who already have an OpenRefine installation running can pick
our tricks in any order they like.

Introducing OpenRefine
Let's face a hard fact: your data are messy. All data are messy. Errors will always
creep into large datasets no matter how much care you have put into creating them,
especially when their creation has involved several persons and/or has been spread
over a long timespan. Whether your data are born-digital or have been digitized,
whether they are stored in a spreadsheet or in a database, something will always go
awry somewhere in your dataset.

www.allitebooks.com

http://www.allitebooks.org

Diving Into OpenRefine

[6]

Acknowledging this messiness is the first essential step towards a sensible approach
to data quality, which mainly involves data profiling and cleaning.

Data profiling is defined by Olson (Data Quality: The Accuracy Dimension, Jack E.
Olson, Morgan Kaufman, 2003) as "the use of analytical techniques to discover the true
structure, content, and quality of data". In other words, it is a way to get an assessment
of the current state of your data and information about errors that they contain.

Data cleaning is the process that tries to correct those errors in a semi-automated
way by removing blanks and duplicates, filtering and faceting rows, clustering and
transforming values, splitting multi-valued cells, and so on.

Whereas custom scripts were formerly needed to perform data profiling and
cleaning tasks, often separately, the advent of Interactive Data Transformation tools
(IDTs) now allows for quick and inexpensive operations on large amounts of data
inside a single integrated interface, even by domain professionals lacking in-depth
technical skills.

OpenRefine is such an IDT; a tool for visualizing and manipulating data. It looks like
a traditional, Excel-like spreadsheet software, but it works rather like a database, that
is, with columns and fields rather than individual cells. This means that OpenRefine
is not well suited for encoding new rows of data, but is extremely powerful when it
comes to exploring, cleaning, and linking data.

The recipes gathered in this first chapter will help you to get acquainted with
OpenRefine by reviewing its main functionalities, from import/export to data
exploration and from history usage to memory management.

Recipe 1 – installing OpenRefine
In this recipe, you will learn where to look in order to download the latest release of
OpenRefine and how to get it running on your favorite operating system.

First things first: start by downloading OpenRefine from http://openrefine.org/.
OpenRefine was previously known as Freebase Gridworks, then as Google Refine for
a few years. Since October 2012, the project has been taken over by the community,
which makes OpenRefine really open. OpenRefine 2.6 is the first version carrying the
new branding. If you are interested in the development version, you can also check
https://github.com/OpenRefine.

OpenRefine is based on the Java environment, which makes it platform-independent.
Just make sure that you have an up-to-date version of Java running on your machine
(available from http://java.com/download) and follow the following instructions,
depending on your operating system:

http://java.com/download

Chapter 1

[7]

Windows
1.	 Download the ZIP archive.
2.	 Unzip and extract the contents of the archive to a folder of your choice.
3.	 To launch OpenRefine, double-click on openrefine.exe.

Mac
1.	 Download the DMG file.
2.	 Open the disk image and drag the OpenRefine icon into the

Applications folder.
3.	 Double-click on the icon to start OpenRefine.

Linux
1.	 Download the gzipped tarball.
2.	 Extract the folder to your home directory.
3.	 In a terminal, enter ./refine to start.

It should be noted that, by default, OpenRefine will allocate only 1 GB of RAM to
Java. While this is sufficient to handle small datasets, it soon becomes restrictive
when dealing with larger collections of data. In Recipe 7 – going for more memory, we
will detail how to allow OpenRefine to allocate more memory, an operation that also
differs from one OS to the other.

Recipe 2 – creating a new project
In this recipe, you will learn how to get data into OpenRefine, whether by creating
a new project and loading a dataset, opening an existing project from a previous
session, or importing someone else's project.

If you successfully installed OpenRefine and launched it as explained in
Recipe 1 – installing OpenRefine, you will notice that OpenRefine opens in your default
browser. However, it is important to realize that the application is run locally: you do
not need an Internet connection to use OpenRefine, except if you want to reconcile
your data with external sources through the use of extensions (see Appendix, Regular
Expressions and GREL for such advanced uses). Be also reassured that your sensitive
data will not be stored online or shared with anyone. In practice, OpenRefine uses
the port 3333 of your local machine, which means that it will be available through the
URL http://localhost:3333/ or http://127.0.0.1:3333/.

Diving Into OpenRefine

[8]

Here is the start screen you will be looking at when you first open OpenRefine:

On the left, three tabs are available:

•	 Create Project: This option loads a dataset into OpenRefine. This is what
you will want when you use OpenRefine for the first time. There are various
supported formats, as shown in the preceding screenshot. You can import
data in different ways:

°° This Computer: Select a file stored on your local machine
°° Web Addresses (URLs): Import data directly from an online source*
°° Clipboard: Copy-paste your data into a text field
°° Google Data: Enable access to a Google Spreadsheet or Fusion Table*

*Internet connection required

•	 Open Project: This option helps you go back to an existing project created
during a former session. The next time you start OpenRefine, it will show
a list of existing projects and propose you to continue working on a dataset
that you have been using previously.

•	 Import Project: With this option, we can directly import an existing
OpenRefine project archive. This allows you to open a project that someone
else has exported, including the history of all transformations already
performed on the data since the project was created.

File formats supported by OpenRefine
Here are some of the file formats supported by OpenRefine:

•	 Comma-Separated Values (CSV), Tab-Separated Values (TSV), and other *SV
•	 MS Excel documents (both .XLS and .XLSX) and Open Document Format

(ODF) spreadsheets (.ODS), although the latter is not explicitly mentioned
•	 JavaScript Object Notation (JSON)

Chapter 1

[9]

•	 XML and Resource Description Framework (RDF) as XML
•	 Line-based formats (logs)

If you need other formats, you can add them by way of OpenRefine extensions.

Project creation with OpenRefine is straightforward and consists of three simple
steps: selecting your file , previewing the import, and validating to let OpenRefine
create your project. Let's create a new project by clicking on the Choose Files
button from the This Computer tab, selecting your dataset (refer to the following
information box), then clicking on Next.

Although we encourage you to experiment with OpenRefine on your own
dataset, it may be useful for you to be able to reproduce the examples
used throughout this book. In order to facilitate this, all recipes are
performed on the dataset from the Powerhouse Museum in Sydney,
freely available from your account at http://www.packtpub.com
(use the file chapter1.tsv). Feel free to download this file and load it
into OpenRefine in order to follow the recipes more easily. Files are also
present for the remaining chapters in a similar format for download. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

On the next screen, you get an overview of your dataset as it will appear in
OpenRefine. In the bottom-right corner, you can see the following parsing
options as shown in the following screenshot:

By default, the first line will be parsed as column headers, which is a common practice
and relevant in the case of the Powerhouse dataset. OpenRefine will also attempt
a guess for each cell type in order to differentiate text strings from integers, dates,
and URLs among others. This will prove useful later when sorting your data (if you
choose to keep the cells in plain text format, 10 will come before 2, for instance).

Diving Into OpenRefine

[10]

Another option demanding attention is the Quotation marks are used to
enclose cells containing column separators checkbox. If you leave it selected,
be sure to verify that the cell values are indeed enclosed in quotes in the original
file. Otherwise, deselect this box to ensure that the quotation marks are not
misinterpreted by OpenRefine. In the case of the Powerhouse collection, quotes are
used inside cells to indicate object titles and inscriptions, for instance, so they have
no syntactic meaning: we need to deselect the checkbox before going further. The
other options may come in handy in some cases; try to select and deselect them in
order to see how they affect your data. Also, be sure to select the right encoding to
avoid special characters to being mixed up. When everything seems right, click on
Create Project to load your data into OpenRefine.

Recipe 3 – exploring your data
In this recipe, you will get to know your data by scanning the different zones giving
access to the total number of rows/records, the various display options, the column
headers and menus, and the actual cell contents.

Once your dataset has been loaded, you will access the main interface of OpenRefine
as shown in the following screenshot:

Chapter 1

[11]

Four zones are seen on this screen; let's go through them from top to bottom,
numbered as 1 to 4 in the preceding screenshot:

1.	 Total number of rows: If you did not forget to specify that quotation marks
are to be ignored (see Recipe 2 – creating a new project), you should see a total
of 75814 rows from the Powerhouse file. When data are filtered on a given
criterion, this bar will display something like 123 matching rows (75814 total).

2.	 Display options: Try to alternate between rows and records by clicking on
either word. True, not much will change, except that you may now read
75814 records in zone 1. The number of rows is always equal to the number of
records in a new project, but they will evolve independently from now on. This
zone will also let you choose whether to display 5, 10, 25, or 50 rows/records
on a page, and it also provides the right way to navigate from page to page.

3.	 Column headers and menus: You will find here the first row that was parsed
as column headers when the project was created. In the Powerhouse dataset,
the columns read Record ID, Object Title, Registration Number, and so
on (if you deselected the Parse next 1 line as column headers option box,
you will see Column 1, Column 2, and so on instead). The leftmost column
is always called All and is divided in three subcolumns containing stars (to
mark good records, for instance), flags (to mark bad records, for instance),
and IDs. Starred and flagged rows can easily be faceted, as we will see in
Chapter 2, Analyzing and Fixing Data. Every column also has a menu (see the
following screenshot) that can be accessed by clicking on the small dropdown
to the left of the column header.

4.	 Cell contents: This option shows the main area displaying the actual values
of the cells.

Diving Into OpenRefine

[12]

Before starting to profile and clean your data, it is important to get to know them
well and to be at ease with OpenRefine: have a look at each column (using the
horizontal scrollbar) to verify that the column headers have been parsed correctly,
that the cell types were rightly guessed, and so on. Change the number of rows
displayed per page to 50 and go through a few pages to check that the values are
consistent (ideally, you should already have done so during preview before creating
your project). When you feel that you are sufficiently familiar with the interface, you
can consider moving along to the next recipe.

Recipe 4 – manipulating columns
In this recipe, you will learn how the columns in OpenRefine can be collapsed and
expanded again, moved around in any direction, or renamed and removed at leisure.

Columns are an essential part of OpenRefine: they contain thousands of values of the
same nature and can be manipulated in a number of ways.

Collapsing and expanding columns
By default, all columns are expanded in OpenRefine, which can be cumbersome if
there are many in the project. If you want to temporarily hide one or more columns
to facilitate the work on the others, click on the dropdown in any column to show the
menu and select View. Four options are available to you:

•	 Collapse this column
•	 Collapse all other columns
•	 Collapse columns to left
•	 Collapse columns to right

Chapter 1

[13]

Here is a screenshot of the Powerhouse dataset after navigating to View | Collapse
all other columns on the column Categories. To expand a column again, just click
on it. To expand all of them and go back to the initial view, see the Moving columns
around section in this recipe.

Moving columns around
In some cases, it might be useful to change the order of the columns from the original
file, for instance, to bring together columns that need to be compared. To achieve
this, enter the menu of the chosen column and click on Edit column. Again, four
options are available at the bottom of the submenu:

•	 Move column to beginning
•	 Move column to end
•	 Move column to left
•	 Move column to right

Diving Into OpenRefine

[14]

If you want to reorder the columns completely, use the first column called All. This
column allows you to perform operations on several columns at the same time.
The View option offers a quick way to collapse or expand all columns, while Edit
columns | Re-order / remove columns... is an efficient way to rearrange columns
by dragging them around or suppressing them by dropping them on the right, as
shown in the following screenshot:

Renaming and removing columns
Under the same Edit column menu item, you also have the possibility to:

•	 Rename this column
•	 Remove this column

You could use renaming to suppress the unnecessary dot at the end of the
Description column header, for instance. Removing a column is clearly more
radical than simply collapsing it, but this can nevertheless be reversed, as you will
learn by reading Recipe 5 – using the project history.

Recipe 5 – using the project history
In this recipe, you will learn how you can go back in time at any point in the project's
life and how to navigate through the history even if your project has been closed and
opened again.

Chapter 1

[15]

A very useful feature of OpenRefine is its handling of the history of all modifications
that affected the data since the creation of the project. In practice, this means that you
should never be afraid to try out things: do feel free at all times to fiddle with your
data and to apply any transformation that crosses your mind, since everything can
be undone in case you realize that it was a mistake (even if months have passed since
the change was made).

To access the project history, click on the Undo / Redo tab in the top-left of the
screen, just next to the Facet / Filter one, as shown in the following screenshot:

In order to turn back the clock, click on the last step that you want to be maintained.
For instance, to cancel the removal of the column Provenance (Production) and all
subsequent steps, click on 2. Rename column Description. to Description. Step 2
will be highlighted, and steps 3 to 5 will be grayed out. This means that the renaming
will be kept, but not the next three steps. To cancel all changes and recover the data
as they were before any transformation was made, click on 0. Create project. To
undo the cancellation (redo), click on the step up to which you want to restore the
history: for instance, click on 4. Reorder rows to apply steps 3 and 4 again, while
maintaining the suppression of step 5 (rows removing).

www.allitebooks.com

http://www.allitebooks.org

Diving Into OpenRefine

[16]

Be cautious, however, that going back and doing something else will erase all
subsequent steps. For instance, if you go back from step 5 to step 2 and then choose
to move the column Description on the left, step 3 will now read 3. Move column
description to position 1 and the gray steps in the preceding screenshot will
disappear for good: you cannot have two conflicting histories recorded at the same
time. Be sure to experiment with this in order to avoid nasty surprises in the future.

It is important to notice that only the operations actually affecting data are listed in
the project history. Visual aids such as switching between the rows and records view,
displaying less or more records on a page, or collapsing and expanding columns
again, are not really transformations and are therefore not saved. A consequence is
that they will be lost from one session to the other: when you come back to a project
that was previously closed, all columns will be expanded again, whereas renamed
and removed columns will still be the way you left them last time, along with every
other operation stored in the project history. In Chapter 2, Analyzing and Fixing Data,
we will see that this is also true for other types of operations: while cell and column
transformations are registered in the history, filters and facets are not.

Note that operation history can also be extracted in JSON format by clicking on
the Extract... button just under Undo / Redo. This will allow you to select the steps
you want to extract (note that only reusable operations can be extracted, which
excludes operations performed on specific cells), which will then be converted into
JSON automatically and can then be copy-pasted. Steps 1 and 2 from the preceding
screenshot would be expressed as:

[
 {
 "op": "core/column-move",
 "description": "Move column Registration Number to position
 1",
 "columnName": "Registration Number",
 "index": 1
 },
 {
 "op": "core/column-rename",
 "description": "Rename column Description. to Description",
 "oldColumnName": "Description.",
 "newColumnName": "Description"
 }
]

Downloading the example files

You can download the example files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Chapter 1

[17]

In the preceding code, op stands for operation, description actually describes
what the operation does, and other variables are parameters passed to the operation
(function). Steps that were previously saved as JSON in a text file can subsequently
be reapplied to the same or another project by clicking on the Apply... button
and pasting the extracted JSON history in the text area. Finally, in case you have
performed several hundreds of operations and are at a loss to find some specific step,
you can use the Filter field to restrict the history to the steps matching a text string.
A filter on remove, for instance (or even on rem), would limit the displayed history to
steps 3 and 5.

Recipe 6 – exporting a project
In this recipe, you will explore the various ways to save your modified data in order
to reuse them in other contexts, including templating that allows for any custom
export format to be used.

Although you may already have moved, renamed, or even removed columns,
none of these modifications have been saved to your original dataset (that is, the
chapter1.tsv file from Recipe 1 – installing OpenRefine has been left untouched).
In fact, unlike most spreadsheet softwares that directly record changes into the files
opened with them, OpenRefine always works in memory on an internal copy of the
data. While this is an extra safety catch, it also means that any modified data needs to
be exported before they are shared with others or injected in another application. The
Export menu in the top-right of the screen allows you to do just that:

Diving Into OpenRefine

[18]

Most options propose to convert the data back into the file formats that were used
during importation, such as CSV and TSV, Excel and Open Document, and different
flavors of RDF. Let's have a closer look at other choices though:

•	 Export project: This option allows you to export a zipped OpenRefine project
in its internal format that can be shared with other people and imported on
other machines or simply used for backup purposes.

•	 HTML table: This option comes in handy if you want to publish your
cleaned data online.

•	 Triple loader and MQLWrite: This option has advanced options that require
you to align the data to pre-existent schemas through the Freebase extension
(there is more about that in Appendix, Regular Expressions and GREL).

•	 Custom tabular exporter and templating: Maybe most interesting to you,
OpenRefine lets you have a tight control on how your data are effectively
exported by selecting and ordering columns, omitting blank rows and
choosing the precise format of dates and reconciliation results (see Appendix,
Regular Expressions and GREL again), and so on, as you can see in the
next screenshot:

Chapter 1

[19]

•	 Templating...: For even more control, you can use your own personal
template by typing the desired format once, which will then be applied to
all cells. In the following code, cells["Record ID"].value, for instance,
corresponds to the actual value of each cell in the Record ID column which is
then transformed into JSON, but could just as easily be formatted otherwise
as shown in the following code snippet:
{
 "Record ID" : {{jsonize(cells["Record ID"].value)}},
 "Object Title" : {{jsonize(cells["Object
 Title"].value)}},
 "Registration Number" : {{jsonize(cells["Registration
 Number"].value)}},
 "Description. " : {{jsonize
 (cells["Description. "].value)}},
 "Marks" : {{jsonize(cells["Marks"].value)}},
 "Production Date" : {{jsonize(cells["Production
 Date"].value)}},
 }

Recipe 7 – going for more memory
In this last recipe, you will learn how to allocate more memory to the application in
order to deal with larger datasets.

For large datasets, you might find that OpenRefine is performing slowly or shows
you OutOfMemory errors. This is a sign that you should allocate more memory to
the OpenRefine process. Unfortunately, this is a bit more complicated than the other
things we have done so far, as it involves a bit of low-level fiddling. But don't worry:
we'll guide you through it. The steps are different for each platform. A word of
caution: the maximum amount of memory you can assign depends on the amount of
RAM in your machine and whether you are using the 32 bit or 64 bit version of Java.
When in doubt, try to increase the amount of memory gradually (for instance, in
steps of 1024 MB) and check the result first.

Windows
On Windows, you will have to edit the openrefine.l4j.ini file in OpenRefine's
main folder. Find the line that starts with -Xmx (which is Java speak for "maximum
heap size"), which will show the default allocated memory: 1024M (meaning 1024 MB
or 1 GB). Increase this as you see fit, for instance to 2048 M. The new settings will be in
effect the next time you start OpenRefine.

Diving Into OpenRefine

[20]

Mac
The instructions for Mac are a bit more complicated, as this operating system hides the
configuration files from sight. After closing OpenRefine, hold control and click on its
icon, selecting Show package contents from the pop-up menu. Then, open the info.
plist file from the Contents folder. You should now see a list of OpenRefine settings.
Navigate to the Java settings and edit the value of VMOptions (these are the properties
of the Java Virtual Machine). Look for the part that starts with -Xmx and change its
default value of 1024 M to the desired amount of memory, for instance, -Xmx2048M.

Linux
This might come in as a surprise, but increasing allocated memory is easiest in Linux.
Instead of starting OpenRefine with ./refine as you usually would do, just type in
./refine -m 2048M, where 2048 is the desired amount of memory in MB. To make
the change permanent, you can create an alias in the hidden .bashrc file located in
your home folder by adding the following line at the end of the file:

alias refine='cd path_to_refine ; ./refine -m 2048M'

Here, path_to_refine is the relative path from your home folder to the OpenRefine
folder. Then, the next time you start OpenRefine with ./refine, it will be allocated
2 GB by default.

Summary
In this chapter, you have got to know OpenRefine, your new best friend for data
profiling, cleaning, transformation, and many other things that you are still to
discover. You now have an OpenRefine installation running and you know how to
import your data into it by creating a new project and how to export them again after
you are done. The mechanisms of rows and columns do not have any secrets for you
any longer, and you understand how to navigate in the project history. You have
also mastered memory allocation, which allows you to work on larger datasets.

Although it is always important to first have a good overview of what is in your
dataset before dirtying your hands, you may now be getting impatient to perform
actual changes on your data. If so, you are ready for Chapter 2, Analyzing and Fixing
Data, which will move on to teach you the ins and outs of all the basic operations
needed to analyze and fix your data.

Analyzing and Fixing Data
In this chapter, we will go deeper into OpenRefine and review most of its basic
functionalities intended for data fixing and analysis. We will cover the following
topics, spread over six recipes:

•	 Recipe 1 – sorting data
•	 Recipe 2 – faceting data
•	 Recipe 3 – detecting duplicates
•	 Recipe 4 – applying a text filter
•	 Recipe 5 – using simple cell transformations
•	 Recipe 6 – removing matching rows

Even more so than in Chapter 1, Diving Into OpenRefine, the recipes are designed to
allow readers to jump from one recipe to another in any way you like, depending
on your needs and interests. Flowing reading of the chapter is also possible of course,
but not mandatory at all.

Be warned that recipes are unequal in length; some are quite short and to the point,
but others could not be constricted to one or two pages. Recipe 2 – faceting data, for
instance, which covers the broad topic of faceting, runs over many pages and is
divided into subrecipes.

To follow the examples used throughout this chapter, we
recommend that you load the chapter2.openrefine.
tar.gz file directly by selecting Import Project at
startup. Alternatively, you can work with your own
OpenRefine project created from the chapter1.tsv file,
as explained in Chapter 1, Diving Into OpenRefine.

Analyzing and Fixing Data

[22]

Recipe 1 – sorting data
In this recipe, you will learn how to sort data as a visual aid and how to reorder rows
permanently as a prerequisite for more advanced operations.

Because sorted values are easier to explore and manipulate, sorting data is certainly
something you will want to do at some point when working with OpenRefine; you
can either use the sorted values as a visual aid or reorder your records permanently.
In order to sort your data by their Record ID, for instance, choose Sort... in the
column menu to access the following window:

Cell values can be sorted according to their type: text (case-sensitive or not),
numbers, dates, or Boolean values. For each type, we are offered two possible
sorting orders:

•	 Text: alphabetical (a to z) or reversed alphabetical (z to a)
•	 Numbers: smallest first or largest first
•	 Dates: earliest first or latest first
•	 Booleans: false then true or true then false

Chapter 2

[23]

Moreover, we can select where errors and blanks will be stored in relation to the
valid values by dragging them in the desired order. For instance, errors could be
sorted first (to spot them more easily) and blank values at the end (since they interest
us less) with valid (normal) values in the middle.

Sorting the data by Records ID by selecting numbers and smallest first, for instance,
will give the new ordering 7, 9, 14, and so on, where you formerly had 267220,
346260, 267098, and so on. The following screenshot illustrates the order before and
after sorting:

 Sorting as text would have produced a different ordering starting with 100, 1001,
10019, and so on. Notice, however, that this sorting has not been recorded in the
project history; you can check that yourself by clicking on the Undo / Redo tab in the
top-left of the screen.

This is because the default behavior of sorting in OpenRefine is not to affect the data,
but only to display them in any way you like, such as the rows/records alternation
or the collapsing of unwanted columns (you may also think of sort filters in
spreadsheet software). So every time you sort your data on a given column, you are
faced with three options: to remove your sorting and go back to the original order, to
keep it as a temporary visual aid, or to make the reordering permanent.

Analyzing and Fixing Data

[24]

These options cannot be selected in the original column menu, but are available in a
dedicated Sort menu appearing at the top as shown in the following screenshot:

Reordering rows
The Sort menu allows you to remove the sorting or to reorder rows permanently. In
addition, it reminds you of what columns were used for the sorting, which makes it
possible to combine various sort criteria (see the preceding screenshot). For instance,
you could sort your data first on Registration Number then on Object Title as a
double visual aid. Later, you could decide to remove the sort on the numbers only
(by navigating to Sort | By Registration Number | Remove sort) and make the sort
on the titles permanent. The individual sort submenus also let you reverse the sort
order with one click.

Be sure to make any reordering permanent if you need it for some other operation,
such as blanking or filling down cells, in order to avoid inconsistent results. In
Recipe 3 – detecting duplicates, we will see how to use sorting as a preliminary step to
removing duplicates.

Recipe 2 – faceting data
One of the functionalities of OpenRefine that you will use most often is faceting.
Facets do not affect the values of your data, but they allow you to get useful insights
of your dataset; you can think of facets as various ways to look at your data, just like
the facets of a gemstone that still have to be refined. Facets also allow you to apply
a transformation to a subset of your data, as they allow you to display only rows
corresponding to a given criterion.

Chapter 2

[25]

In this recipe, we will explore the various ways of faceting data depending on their
values and on your needs: text facets for strings, numeric facets for numbers and dates,
a few predefined customized facets, and finally how to use stars and flags. Most of the
power of OpenRefine lies in the ability to combine these different types of facets.

Text facets
If your dataset has a column containing cities or country names, for instance, you
will want to see at a glance what the different values are for that field and the
number of occurrences for each one. This is exactly what text facets are for. Of
course, faceting is only useful when a limited number of choices are at hand; it does
not make sense to list all the object titles or descriptions, as it is very unlikely that
they will appear twice (except in the case of duplicates, which will be dealt with in
the next recipe).

The best candidate for text faceting in the Powerhouse collection is obviously the
Categories column, as it contains keywords from a controlled vocabulary (called
the Powerhouse museum Object Name Thesaurus, if you are curious). To put it
simply, categories are a set of a few thousand terms used to describe the objects
in the collection.

So, let's try to get an overview of these categories by navigating to Facet | Text facet
in the Categories column menu. The result of this facet appears in the Facet/Filter
tab on the left of the screen. Too bad; OpenRefine informs us that there are a total
of 14,805 choices, which is far too much to display for memory's sake. In fact, the
default upper bound for facet choices is only 2,000. We could attempt to get over this
limitation by clicking on the Set choice count limit link and raising the upper limit
to 15,000, for instance, but beware that this is likely to slow down the application,
especially if you did not change the default RAM allocation (refer to Recipe 7 – going
for more memory, of Chapter 1, Diving Into OpenRefine).

If you choose to raise the limit in the pop-up window, what
OpenRefine really does is change the value of a Java variable
called ui.browsing.listFacet.limit. While in most
cases you will not need to bother about this barbaric name,
it might come in handy if you realize that you increased
the value too much and want to get it down again. In fact,
OpenRefine will always offer to step up when the choice
count oversteps the mark, but never the opposite. To do that,
go to the system preferences at http://127.0.0.1:3333/
preferences, edit the preference with key ui.browsing.
listFacet.limit, and set its value to something smaller.
To go back to the default 2000 value, you can also delete
this preference altogether.

www.allitebooks.com

http://www.allitebooks.org

Analyzing and Fixing Data

[26]

Instead, click on the Facet by choice counts link just below, which will open a second
facet under the first one. This new facet, which is also on the Categories column,
will allow you to restrict the range of categories to be displayed in the first text facet.
When it first opens, OpenRefine tries to show all categories, whether they appear
only once in the collection or several thousand times. Since there are too many
categories to display, it makes sense to focus on the most popular ones, in the first
phase at least.

Drag the left handle to increase the lower limit to 1000 instead of 0. The preceding
text facet refreshes automatically, and now the categories shown are only those that
are used to describe at least 1000 objects in the collection. There are only 7 of them,
which is a lot easier to display and to browse. To get an even better picture, you can
choose to sort them by count (from most frequent to least frequent) instead of by
name (alphabetically).

The following screenshot shows what you should now have in your two facets:

Chapter 2

[27]

If you want to export these seven top categories, just click on the 7 choices link and
you will get them as nice tab separated values (TSV), ready to copy and paste in your
favorite text editor or spreadsheet. However, most of these categories are looking
very suspicious. As a matter of fact, Photographic prints|Photographs is not a single
category, but rather two categories separated by a vertical bar, or pipe character (|).

This is exactly why we had so many choices in the first place. As a result,
Glass plate negatives|Gelatin dry plate negatives|Photographs, Glass plate
negatives|Photographs, and Glass plate negatives are all listed as distinct choices
even though they contain the same category. This, however, is the plague of multi-
valued cells, and we are not ready for dealing with them right now. We will have to
wait until Chapter 3, Advanced Data Operations, where we will also learn more about
this intriguing Cluster button that we have ignored purposefully for the time being.

As the faceting of categories was somewhat skewed, let's have a quick look at
another text facet before moving on to numeric ones. The choice of column is less
obvious, but we can see that the Height field does not contain only numbers, but
also numbers followed by units of measurement, such as 990 mm. This means
that we will not be able to apply a numeric facet to this column (or at least, not
straightforwardly), but we can try with a text facet, hoping that there will not be too
many different values to display.

Fortunately, navigating to Facet | Text facet from the Height column menu informs
us that there are 1313 choices, well under the 2000 default limit. Sorting them by
count instead of name reveals the surprising fact that 1368 objects in the collection
have a height of exactly 164 mm, whereas the second most frequent size of 215 mm is
only found in 400 objects. These values can be found in the following screenshot:

Analyzing and Fixing Data

[28]

At the bottom of that list, we can also see that 45501 objects have a blank value for
Height, which means that no height has been recorded for them. However, we will
not linger with them now, since OpenRefine offers us a special facet for dealing with
blank rows which we will discover when we talk about customized facets.

Numeric facets
Finding a column that is relevant for a numeric facet is quite easier than for text
facets, as several of them contain numerals. Numbers are easily spotted as they are
colored in green, assuming the Parse cell text into numbers, dates..., checkbox was
selected at the time of the project creation. The Record ID column is as good a choice
as any, as a facet will allow us to have an overview of the distribution of IDs, and to
check that all objects have one.

In the Record ID column menu, navigate to Facet | Numeric facet and look at
what appears in the Facet/Filter tab on the left. Whereas a text facet returned a list
of different choices, numeric facets yield ranges of values, just like the one we had
when faceting by choice counts.

We can see that the values for the Record ID column range from 0 to 510,000, with
a small gap between 270,000 and 280,000, and a larger one between 410,000 and
500,000. By sliding the handles, we can have a closer look at the 533 rows that have
an ID superior to 500,000, for instance.

Under the graph, the values are divided into four categories: Numeric, Non-numeric,
Blank, and Errors resulting from a problematic operation. No errors were found since
we did not modify these values yet, and no blanks were found either, which means
that all objects in the collections have been assigned a record ID. However, three rows
have a non-numeric value, which is unexpected for an ID. Let's find out more about
these rows by deselecting the Numeric checkbox, leaving only the Non-numeric
one checked.

Chapter 2

[29]

On the right, we can now see the three matching rows. Not only do they lack a
record ID, but all other columns are blank too, except for a persistent link to the
object and the license information that were generated automatically. These rows do
not represent actual objects, they are simply void rows that can be safely removed
(we will see how in the last recipe of this chapter).

However, something is amiss here; if these rows are truly blank, why were they
categorized as non-numeric instead of being counted up under the Blank checkbox?
Whitespace is the culprit here, as we can verify by editing one of the three cells. To
do that, just hover with the mouse over one of them under the Record ID column
and a small edit button will appear. Now click on it and observe for yourself that
they contain a single space, as pictured in the following screenshot:

To correct this, remove the problematic whitespace by hitting the Backspace or Delete
key then click on the Apply to All Identical Cells button below or press Ctrl + Enter.
OpenRefine informs you on top of the screen in a yellow box that three cells have
been mass-edited in the column Record ID. As a result, the facet on the left refreshes
and the three cells in question switched to the Blank box.

Before moving to customized facets, let's quickly mention two other ways for
faceting that are related to the numeric facet: the timeline facet and scatterplot facet.

A timeline facet requires dates, so text strings such as 17/10/1890 need to be
converted to the date format first. You can try that on the Production Date column,
but notice that real dates are a minority, since it also contains years such as 1984 and
ranges such as 2006 to 2007. We can nonetheless navigate to Edit cells | Common
transforms | To date in that column menu, transforming 79 cells into date format;
for instance, 17/10/1890 will be converted to 1890-10-17T00:00:00Z, with the zeros
indicating the time of day in hours, minutes, and seconds.

Analyzing and Fixing Data

[30]

Clearly, 79 cells out of a total of 75,814 is not a lot, but a timeline facet on these
values would still show objects created on a given date range from 26 February,
1880 to 31 January, 1952, while most values are either not time expressions (19,820)
or blank (55,915).

The following screenshot shows what can be obtained with a timeline facet on the
Production Date column after converting dates to OpenRefine's internal time format:

Finally, scatterplot facets allow for a graphical representation of numerical values.
We won't go into the details of this particular facet, but do try it yourself if you are
curious about it.

Customized facets
We have now seen the two main types of facets, text facets and numeric facets, but
many and more of them exist, and you could think of almost any way of faceting the
data depending on your needs. Custom facets allow you to do just that; defining your
own facets, whether text ones (for instance, faceting on the first character of a string),
or numeric ones (for instance, faceting on the square root of a number). However,
they require a basic understanding of the General Refine Expression Language
(GREL), which will be introduced in Appendix, Regular Expressions and GREL.

Chapter 2

[31]

Yet, OpenRefine also provides a few customized facets; these are predefined custom
facets that have proved to be of a common use to many users. In what follows, we
will browse these facets, paying particular attention to the most useful of them. Let's
first have a quick look at the Customized facets submenu, which can be accessed
from any column:

Word facet lists all the different words used in a field, a word being simplistically
defined as a text string between two whitespace characters. This is something you
will want to try on a subset of your data, as the number of choices can quickly grow
very large; a word facet on the column Description, for instance, would display
212,751 different words, which is a sure way to crash the application.

Word facets could be used to refine your list of categories. For instance, while a
simple text facet will tell you how many objects were described as cocktail dresses,
a word facet will split that category into two words, and let you browse separately
the various dresses on one hand and the objects related to cocktail (including cocktail
glasses for instance) on the other hand.

Duplicates facet allows you to detect duplicate values; so we will keep that for the
next recipe.

Numeric log facet is a shortcut to display the logarithm of numbers instead of their
actual values, which can be useful if your data follows a power law distribution.
The 1-bounded numeric log facet is the same, except that it does not accept values
under one.

Analyzing and Fixing Data

[32]

Text length facet organizes the objects according to the number of characters contained
in some string, the Object Title for instance. Navigating to Facet | Customized facets
| Text length facet in that column menu will show you that the titles range from 0 to
260 characters. You can then focus on the 92 titles that are shorter than 10 characters
(no more than a word in most cases, and not very informative) or on the 2007 titles that
are longer than 250 characters (which are often redundant with descriptions).

Speaking of descriptions, an analysis of their length is also of interest, but the
distribution is so large (ranging from 0 to 4,100 characters, although 85 percent of the
descriptions are shorter than 500 characters) that it is quite difficult to make sense of
it. This is where the log of text length facet (the following screenshot) comes into the
picture, allowing for a much clearer chart:

The Unicode char-code facet does not compute a string's length, but lists all the
characters used in the string. Try that on the Object Title column for instance; most
English characters are under 128, but accented letters from other European languages
can range up to 256, or even higher for Arabic or Chinese characters, for instance. If
you notice suspiciously high values, however, it could mean that OpenRefine did
not recognize your dataset's encoding properly. In this case, start again with a new
project and select the right encoding manually.

Chapter 2

[33]

Finally, you can facet your data by error (assuming they contain any), or facet them
by blank. This last option is very useful to know what proportion of the collection
has been filled for a given field, and can often be used in combination with another
facet. A quick glance at the Marks column shows that the first few cells are empty,
so we could navigate to Facet | Customized facets | Facet by blank to learn more
about it. This facet informs us that 18,968 values are false (that is, not blank), and
56,846 are true (that is, blank). In other words, only a quarter of the objects have
some marks described in the file.

Even more significant is that the column Weight (on the right, use the horizontal
scrollbar to view it) has only been filled for 179 objects, leaving it empty in 99.998
percent of cases. And faceting by blank on the object titles shows that 118 records
are dummies; they got a record ID along with a persistent link and some fake license
information based on this ID, but all the other columns are empty, so they do not
really refer to an object.

Faceting by star or flag
In Chapter 1, Diving Into OpenRefine, we briefly mentioned the existence of stars and
flags in the special All column on the left. It is now time to see how these can be
used as well to facet your data in meaningful ways. Stars can be used to mark good
rows or favorite rows that you want to pick up in order to come back to them later;
conversely, flags can be used to indicate bad rows or problematic rows that will need
special attention further on. Note that this is just a suggestion; you could use stars
and flags to mean something completely different.

To star or flag a single row, just click on the corresponding symbol on the left. Most
of the time, however, you will want to mark multiple rows in one go. To do that, you
first need to isolate these rows in the display, often by using another facet. For instance,
you could detect empty rows by going to the Registration Number column menu and
navigating to Facet | Customized facets | Facet by blank, and clicking on true on the
left in order to display the 118 matching (empty) rows only. To flag them all, open the
All column menu and navigate to Edit rows | Flag rows. The same works for stars,
and you can unflag and unstar multiple rows as well in the same menu.

Analyzing and Fixing Data

[34]

Now imagine that you want to display the rows that have some information about
the diameter or their weight. If you facet by blank on both columns at the same time
and click on false twice, you will end with only 29 matching rows which correspond
to those having a diameter and a weight recorder in the dataset. To achieve what we
want, the solution is to proceed in two steps: facet by blank on the column Diameter,
and select the 2106 rows marked as false (that is, for which the diameter is present)
and star them with All | Edit rows | Star rows. Clear the facet and repeat these
steps with the 179 rows from the Weight column (you may notice that only 150 rows
are effectively starred, the 29 remaining ones having already been starred since they
have both measurements). Clear the facet again and display what we were looking
for by navigating to All | Facet | Facet by star. The same works for flags, of course.

Hooray, we have reached the end of this long recipe at last! It may have felt
somewhat disproportionate, but facets are really the ABC of OpenRefine, so it
was worth the effort.

Recipe 3 – detecting duplicates
In this recipe, you will learn what duplicates are, how to spot them, and why
it matters.

The only type of customized facet that we left out in the previous recipe is the
duplicates facet. Duplicates are annoying records that happen to appear twice (or
more) in a dataset. Keeping identical records is a waste of space and can generate
ambiguity, so we will want to remove these duplicates. This facet is an easy
way to detect them, but it has a downside; it only works on text strings, at least
straightforwardly (to learn how to tweak it to work on integers as well, have a look
at Appendix, Regular Expressions and GREL).

Too bad then; we cannot use a duplicate facet on the Record ID column. The next
best thing is to run it on the registration numbers, which are an internal classification
of objects in the collection, though they are not as reliable as the IDs, since they
have an extrinsic meaning for collection managers. Anyway, let's give it a try by
navigating to Registration Number | Facet | Customized facets | Duplicates facet;
281 rows are marked as duplicates, and we can display them by clicking on the word
true in the facet on the left.

Now scroll down some rows to have a look at those duplicates. We see there is a
problem; the duplicates facet included all the blank rows which are indeed the same,
but not duplicates of an object since they do not represent any. To exclude these
118 empty rows, we need another facet that can be accessed through Registration
Number | Facet | Customized facets | Facet by blank. Click on false to keep the
163 real duplicates and notice that the first facet above refreshes automatically.

Chapter 2

[35]

Finally, add a third facet, a simple text facet this time, to list the different registration
numbers that feature more than once in the dataset. Sorting by count, we can see that
out of the 79 choices, 77 are indeed strict duplicates (values present twice), whereas
one value appears thrice (2008/37/1), and one as many as six times (86/1147-3). The
three facets can be seen in the following screenshot:

Now back to our record IDs. Since the duplicates facet is of no use on integers, we
will use a workaround to detect duplicates in that column. To achieve that, we will
first sort the data on their IDs by navigating to Record ID | Sort... and toggling
numbers and smallest first. As you may recall from Chapter 1, Diving Into OpenRefine,
sorting is but a visual aid, so the reordering needs to be made permanent by going to
the Sort menu that has just appeared (right of Show: 5 10 25 50 rows), and clicking
on Reorder rows permanently. If you forget to reorder the rows, further operations
will ignore the sorting and yield unexpected results.

www.allitebooks.com

http://www.allitebooks.org

Analyzing and Fixing Data

[36]

Now that the rows are sorted by ID, duplicates will necessarily be grouped together,
so we can navigate to Record ID | Edit cells | Blank down to replace the IDs of
duplicate rows by blanks (every original row will keep its ID, only subsequent ones
will lose them). Faceting the blanked rows by navigating to Record ID | Facet |
Customized facets | Facet by blank will display the 86 redundant rows (or maybe
84 if you already removed blank rows) including one row from each pair, two of
the triplet, and five of the sextuplet. These 86 rows are the real duplicates without
the original rows to be preserved, and we will learn how to remove them in
Recipe 6 – removing matching rows.

Recipe 4 – applying a text filter
In this recipe, you will learn about filters that allow you to search for values
displaying some patterns.

When you want to find rows matching a certain string, it is easier to rely on a simple
text filter than on cumbersome facets. Let's start with a simple example. Suppose you
want to filter all titles relating to the United States. Navigate to Object Title | Text
filter and watch the filter box open on the left, in the same tab where facets appear.
Now type in USA. OpenRefine tells you that there are 1,866 matching rows. Select the
case sensitive checkbox to eliminate happenstance matches, such as karakusa and
Jerusalem, and we are down to 1,737 rows:

Chapter 2

[37]

Still, we cannot be sure that there is no noise left in these matches; there could
be occurrences of JERUSALEM in capital letters for instance. To get around this
problem, we could try to add spaces to either side of USA, but at the risk of losing
cases, such as [USA] or /USA, along with occurrences of the beginning or the end of
a title. As a matter of fact, the filter USA with whitespace only returns 172 matches,
about one-tenth of all occurrences of USA, which is a lot of silence.

On the other side of the coin, our simple text filter does not account for spellings
such as U.S.A. (201 matches), U S A (29 matches), or U.S.A (22 matches). It can
quickly become a nightmare to keep track of all the variants, and you will need to
star the rows individually in order to group them all together later.

This is where regular expressions come into the picture. Regexes, as they are often
called, are extremely powerful, but they demand a basic understanding of their
peculiar syntax before they can be used fruitfully. For instance, an expression
such as \bU.?S.?A\b (with the regular expression box selected) would match
all preceding relevant cases while excluding problematic ones, and would return
1,978 matching rows.

It is beyond the scope of this recipe to teach you how to master regexes, but
Appendix, Regular Expressions and GREL, is waiting for you to explain the basics.

Another useful thing we can do with text filters is checking the aptness of separators.
In the Categories column, pipe characters (|) are used to single out categories.
Let's add a text filter on that column and start by typing a single pipe. OpenRefine
displays 71105 matching rows, which means that most of the objects are described
with at least two categories (since a single category does not need a pipe separator).

Now add a second pipe to get ||; nine problematic rows are detected containing a
double pipe instead of a single one. In Chapter 3, Advanced Data Operations, we will
see how to use the GREL to fix this issue. Another problem is cells beginning or
ending with a pipe, but finding them requires the use of regular expressions as well,
so that will have to wait until Appendix, Regular Expressions and GREL.

Analyzing and Fixing Data

[38]

Recipe 5 – using simple cell
transformations
In this recipe, you will learn how to use OpenRefine's built-in transformations to
modify subsets of your data.

When playing with facets and filters, we have essentially displayed the data in
various ways, but we have not really affected them. Now comes the time to modify
your data at last, and this means entering the powerful Edit cells menu. While we
already used Blank down in order to detect duplicates, other transformations, such
as splitting and joining multi-valued cells or clustering and editing values, are more
advanced, so we will delay their discussion until the next chapter. Other transforms
are easier to grasp; however, we will focus now on those available through the
Common transforms submenu pictured in the following screenshot:

Chapter 2

[39]

Trimming whitespace at the beginning and end of a string is a good first step
to improve the quality of your data. It will ensure that their identical values will
not differ by leading and trailing whitespace only, which can be quite tricky to
detect, making your data more consistent. It can also help reduce the size of your
dataset by eliminating unnecessary characters; while a small space does not weigh
much, several thousands of them can make a difference and cause hidden havoc.
Remember the blank values that were categorized as non-numeric because of a single
whitespace character.

Unique identifiers should not contain spaces either; let's check if all is well by
navigating to Registration Number | Edit cells | Common transforms | Trim
leading and trailing whitespace. 2,349 cells are affected by the operation, which
means it was well needed. Note that we cannot do the same on the Record ID
column, since trimming only works on strings, not on integers; the result would be to
suppress all IDs!

Consecutive whitespace is also common when typing too fast, and we would expect
to find some in long text fields such as object titles or descriptions. Surprisingly,
these are not to be found in these columns, whereas running Collapse consecutive
whitespace on the column Production Date reveals 7671 values affected, but these
are mostly integers being converted to strings. Do try these two transformations on
other columns for yourself; they are safe and can only prove beneficial for your data.

If your data were exported from some web application, it is likely that they will
contain HyperText Markup Language (HTML) code. In HTML, special characters
are escaped (that is, protected) by a number or with custom shortcuts known as
HTML entities. For instance, the French é character (e with an acute accent) would be
encoded either as é or as é depending on the paradigm used.

While these are useful on the Web to avoid encoding problems in your browser,
they can make reading difficult when they are not properly unescaped (unescaping
é for instance would mean transforming it back into é). So, if you spot some
of those values beginning with an ampersand (&) and ending with a semi-colon (;),
go to Edit cells | Common transforms | Unescape HTML entities and watch your
data being transformed into something legible.

Analyzing and Fixing Data

[40]

The next family of transforms is case transformations; we can convert text strings to
lowercase, UPPERCASE, or Titlecase. For instance, we could check that no lowercase
letters are present in the registration numbers by navigating to Registration Number
| Edit cells | Common transforms | To uppercase. 2,349 cells are transformed,
which could mean huge quality issues, but it is in fact much ado about nothing.
The values transformed were simply integers that were converted to strings in
the process (since numbers do not have a case). You can check that for yourself
by adding a numeric facet on the Registration Number column first, then launch
the case transform and watch the numeric values vanish, replaced by a message
informing you that no numeric values are present.

Similarly, we can use To lowercase to verify that no capital letters are present in
the persistent link URL or To titlecase to standardize the spelling of categories,
smoothing the difference between Didactic Displays and Didactic displays
for instance. However, To titlecase only keeps capital letters after whitespace,
so Spacecraft|Models|Space Technology would be transformed into
Spacecraft|models|space Technology, which is far from ideal. Do not bother too
much about that now, though, as Chapter 3, Advanced Data Operations, will introduce
a better and more powerful way of dealing with such cases: clustering.

Chapter 2

[41]

In Recipe 2 – faceting data, we used one of the type transformations available. In fact,
you may remember that temporal expressions had to be converted to dates (that is,
OpenRefine's internal format for dates, which is yyyy-mm-ddThh:mm:ssZ) before we
could use a timeline facet on them. The same works for converting values to text
or to numbers. We could transform record IDs into text, for instance, in order to
be able to use a duplicates facet on them, but then we will need to convert them to
numbers again before sorting them (to avoid 10 being put before 2) or working with
numeric facets.

The last transformation predefined for us by OpenRefine is pretty blunt; Blank out
cells does just that; it deletes all values in a given column. Of course, this is best used
on a subset of the rows, not on the whole dataset. A useful combination would be to
flag rows with problematic values for a given field, navigate to All | Facet | Facet by
flag, and then blank out the cells from the matching rows.

We are now done with the common transforms, but be assured that this is only
the tip of the iceberg; the possibilities of transformations are countless, as you will
discover in Chapter 3, Advanced Data Operations and Appendix, Regular Expressions and
GREL. In fact, Edit cells | Transform... opens the Custom text transform window,
which lets you define your own transformation with GREL. This may sound
frightening at first, but trust us that it is worth the trouble.

Recipe 6 – removing matching rows
In this recipe, you will learn how to suppress problematic rows that have been
previously singled out through the use of facets and filters.

Detecting duplicates or flagging redundant rows is fine, but it is only part of the job.
At some point, you will want to cross the mark between data profiling (or analysis)
and data cleaning. In practice, this means that rows that have been identified as
inappropriate during the diagnosis phase (and probably flagged as such) will need
to be removed from the dataset, since they are detrimental to its quality.

To remove rows, be sure to have a facet or filter in place first, otherwise you will
remove all rows in the dataset. Let's start from the clean project again (import it for
a second time or toggle the Undo / Redo tab and select 0. Create project to cancel
all modifications) and see what we can do to clean up this dataset. Also, check that
OpenRefine shows your data as rows, not records.

Analyzing and Fixing Data

[42]

We will first remove the rows lacking a record ID. To do that, navigate to Record ID
| Facet | Numeric facet and deselect the Numeric checkbox from the facet opening
in the left pane. This leaves us with only Non-numeric checked and three matching
rows. Remember that Facet by blank would not have worked, since these three
rows are not really blank, but have a single whitespace character in the Record ID
cells. Now go to All | Edit rows | Remove all matching rows and watch the
rows disappear.

Well done, the dataset is three rows shorter, no non-numeric record IDs are left
(as you can see in the facet that has been refreshed), and data quality has already
been improved. Clear the facet and check that the total is down to 75,811 rows.

Next, we will handle rows without a registration number that are also suspicious in a
museum collection. No spaces are in the way here (you can check that with a simple
text filter on the column Registration Number by typing in a single whitespace
character; no matching rows are found), so we can navigate to Registration Number
| Facet | Customized facets | Facet by blank. Click on true on the left to select the
115 corresponding rows; they are all empty as well, so we can select Remove all
matching rows again.

As you can see, removing blank rows is quite easy; we will now focus on duplicate
rows. Duplicates are a bit trickier, as you may recall from Recipe 3 – detecting duplicates,
but we want to get rid of them nonetheless. Start by navigating to Registration
Number | Facet | Customized facets | Duplicates facet and click on true to see the
163 matching rows. The problem is, if we suppress all these rows, we will not only
delete duplicates, but also original values. In other words, if a row appears twice in
the dataset, removing all matching rows will delete both of them instead of just one.
If this happens, remember you can always go back in the project history.

Chapter 2

[43]

So, we need a way to remove duplicates while safeguarding original rows. This can
be achieved in the following manner: sort on column Registration Number, selecting
text and a-z as options (the case sensitive box need not be checked since there are
only uppercase letters in this field), then reorder the rows based on that sorting by
navigating to Sort | Reorder rows permanently. Finally, replace repeated values
with a blank by navigating to Registration Number | Edit cells | Blank down,
which should affect 84 cells.

If you left the duplicates facet open, you will witness it refreshed to display these 84
matching rows. What happened is that the original values (that were part of the 163)
are now singled out, so they are no longer considered duplicates and swung to false.
The real duplicates, however, have been blanked down, so they all have one and the
same value now: blank. It is as if it were a big duplicate cluster of 84 rows. In any
case, you can now remove these matching rows, leaving the original ones untouched.

If all went well, you should now be left with 75,612 rows. We could go on with other
removals, but you probably have got the general idea by now, so we will leave it
to you to experiment with other columns. Have a look at the project history in the
Undo / Redo tab to review to steps that we have been through.

Analyzing and Fixing Data

[44]

We first removed three blank rows followed by 115 further rows that were nearly
blank but for their record ID. In order to remove the 84 duplicates, we had to reorder
the rows and to blank them down on the column Registration Number. In total, we
have deleted 202 rows, leaving our dataset that much cleaner. Notice that the text
facets and sorting operations are not listed in the history, since they did not affect the
data but only served as visual aids for performing the removals.

Summary
During the course of this chapter, we have learned how to master the basics of
OpenRefine in order to analyze and fix datasets, essential components of data
profiling and cleaning.

Analyzing data involved sorting and the use of various facets, but also the
application of text filters and the detection of duplicates.

Fixing data was accomplished through reordering, cell transformations, and deletion.

In the next chapter, we will bring our understanding of the inner workings of
OpenRefine to another level by venturing into advanced data operations.

Advanced Data Operations
In the previous chapter, we introduced you to the basic data operations in the
OpenRefine universe. While this provides you with the skills to analyze your data
methodically and perform basic editing activities, the true power of OpenRefine only
emerges when you dive into its more advanced features. This chapter will therefore
shed light on the following:

•	 Recipe 1 – handling multi-valued cells
•	 Recipe 2 – alternating between rows and records mode
•	 Recipe 3 – clustering similar cells
•	 Recipe 4 – transforming cell values
•	 Recipe 5 – adding derived columns
•	 Recipe 6 – splitting data across columns
•	 Recipe 7 – transposing rows and columns

Feel free to jump directly to the recipes you like. This chapter starts out from the
cleaned dataset, which can be downloaded from the Packt website. Following any
of these recipes will turn you into an advanced OpenRefine user. Caution: some
hardcore data operations ahead.

www.allitebooks.com

http://www.allitebooks.org

Advanced Data Operations

[46]

Recipe 1 – handling multi-valued cells
It is a common problem in many tables: what do you do if multiple values apply to a
single cell? For instance, consider a Clients table with the usual name, address, and
telephone fields. A typist is adding new contacts to this table, when he/she suddenly
discovers that Mr. Thompson has provided two addresses with a different telephone
number for each of them. There are essentially three possible reactions to this:

•	 Adding only one address to the table: This is the easiest thing to do, as it
eliminates half of the typing work. Unfortunately, this implies that half of the
information is lost as well, so the completeness of the table is in danger.

•	 Adding two rows to the table: While the table is now complete, we now
have redundant data. Redundancy is also dangerous, because it leads
to error: the two rows might accidentally be treated as two different Mr.
Thompsons, which can quickly become problematic if Mr. Thompson
is billed twice for his subscription. Furthermore, as the rows have no
connection, information updated in one of them will not automatically
propagate to the other.

•	 Adding all information to one row: In this case, two addresses and two
telephone numbers are added to the respective fields. We say the field is
overloaded with regard to its originally envisioned definition. At first sight,
this is both complete yet not redundant, but a subtle problem arises. While
humans can perfectly make sense of this information, automated processes
cannot. Imagine an envelope labeler, which will now print two addresses
on a single envelope, or an automated dialer, which will treat the combined
digits of both numbers as a single telephone number. The field has indeed
lost its precise semantics.

Note that there are various technical solutions to deal with the problem of multiple
values, such as table relations. However, if you are not in control of the data model
you are working with, you'll have to choose any of the preceding solutions.

Luckily, OpenRefine is able to offer the best of both worlds. Since it is also an
automated piece of software, it needs to be informed whether a field is multi-valued
before it can perform sensible operations on it. In the Powerhouse Museum dataset,
the Categories field is multi-valued, as each object in the collection can belong to
different categories. Before we can perform meaningful operations on this field, we
have to tell OpenRefine to somehow treat it a little different.

Chapter 3

[47]

Suppose we want to give the Categories field a closer look to check how many
different categories are there and which categories are the most prominent. First,
let's see what happens if we try to create a text facet on this field by clicking on the
dropdown next to Categories and navigating to Facet | Text Facet as shown in
the following screenshot. As you might remember from Chapter 2, Analyzing and
Fixing Data this doesn't work as expected because there are too many combinations
of individual categories. OpenRefine simply gives up, saying that there are 14,805
choices in total, which is above the limit for display. While you can increase the
maximum value by clicking on Set choice count limit, we strongly advise against
this. First of all, it would make OpenRefine painfully slow as it would offer us a
list of 14,805 possibilities, which is too large for an overview anyway. Second, it
wouldn't help us at all because OpenRefine would only list the combined field values
(such as Hen eggs|Sectional models|Animal Samples and Products). This does
not allow us to inspect the individual categories, which is what we're interested in.

To solve this, leave the facet open, but go to the Categories dropdown again and
select Edit Cells | Split multi-valued cells… as shown in the following screenshot:

OpenRefine now asks What separator currently separates the values?. As we can see
in the first few records, the values are separated by a vertical bar or pipe character,
as the horizontal line tokens are called. Therefore, enter a vertical bar | in the dialog.
If you are not able to find the corresponding key on your keyboard, try selecting the
character from one of the Categories cells and copying it so you can paste it in the
dialog. Then, click on OK.

Advanced Data Operations

[48]

After a few seconds, you will see that OpenRefine has split the cell values, and the
Categories facet on the left now displays the individual categories. By default, it
shows them in alphabetical order, but we will get more valuable insights if we sort
them by the number of occurrences. This is done by changing the Sort by option
from name to count, revealing the most popular categories.

One thing we can do now, which we couldn't do when the field was still multi-valued
is changing the name of a single category across all records. For instance, to change the
name of Clothing and Dress, hover over its name in the created Categories facet and
click on the edit link, as you can see in the following screenshot:

Enter a new name such as Clothing and click on Apply. OpenRefine changes all
occurrences of Clothing and Dress into Clothing, and the facet is updated to reflect
this modification.

Once you are done editing the separate values, it is time to merge them back
together. Go to the Categories dropdown, navigate to Edit cells | Join multi-valued
cells…, and enter the separator of your choice. This does not need to be the same
separator as before, and multiple characters are also allowed. For instance, you could
opt to separate the fields with a comma followed by a space.

Chapter 3

[49]

Recipe 2 – alternating between rows and
records mode
Now let's have a look at how OpenRefine gives you access to multi-valued cells.
When we follow the instructions of the previous recipe to split a column's values, we
see that OpenRefine does two things. On one hand, it takes the first of the different
values of a cell and puts it in the original row. On the other hand, it takes each of the
remaining values and puts all of them in a cell of their own on an otherwise empty
row. For instance, in the following screenshot, you can see that the record with
ID 9 has been stretched out over three rows, each of which contains a category name.
Only the first category is on a row that contains the other values of the field; the
others are empty except for the category value (some columns have been hidden
for clarity).

A row is a single line of data in your dataset.

A record consists of all rows that belong to a single object.
The first row of a record starts with non-null cells that
identify the record; in subsequent rows, those identifying
values are blank to indicate they belong to the same record.

Advanced Data Operations

[50]

While this avoids duplication of information and the errors that can occur because of
that, it makes it difficult to see which categories belong to which object. For instance,
if we create a text facet on Categories (see the previous recipe), we can click on each
of the category names within the facet to see the rows that contain this category.
However, if we do this, we will see a lot of empty rows:

The reason for this is that OpenRefine indeed shows us all the rows where the
category value is Numismatics, which includes the empty rows for all those objects
where Numismatics was not the first category. However, it does not include the
other rows that belong to the same object. This poses a problem if we are interested
in all the rows of an object. For instance, we might want to star all objects in the
Numismatics category so we can perform operations on them. Let's try this now and
see what happens.

With Numismatics highlighted in the text facet, click on the All dropdown and
navigate to Edit rows | Star rows. Now click on reset on the facet to see what has
happened. We notice that only the rows with Numismatics in them are starred,
but not the rows of the object to which these rows belong. Clearly we are missing
something. So, let's undo the starring operation by reverting to the previous state
from the Undo / Redo tab.

OpenRefine allows you to treat all rows that belong to the same object as a single
record. That way, you have the benefits of splitting multi-valued cells to different
rows while still being able to treat them as a whole. To switch to records mode,
change the Show as setting on the top bar from rows to records. You will notice
immediately that the alternate coloring scheme of OpenRefine changes. Instead
of shading every other row, it now shades every other record, depending on the
number of rows per record.

Chapter 3

[51]

If we apply the Numismatics filter from the Categories facet now, while still in records
mode, we see that all the fields of objects within the Numismatics category are selected
instead. If we star those records using the All dropdown now, by navigating to Edit
rows | Star rows, we see that all rows belonging to the object become starred:

This indicates that, while in records mode, all operations happen on the entire record
for which at least one row is matching. To summarize, we can say that rows mode
shows you all individual rows that match your selection criteria, whereas records
mode shows you all objects that have a matching row.

Matching records that fit multiple criteria

What if we want to match all records that are in the category Numismatics
and also in the category Medals? To do this, we make sure that we are in
records mode and we add a second text facet on the Categories field. In
the first facet, we select Numismatics, and in the second facet, we select
Medals. We now see all the records that are in both categories.

Now what happens if we switch back to rows mode? Suddenly, zero
records are matching our selection. This seems strange at first, but it is
actually pretty logical: no single row has a category which is equal to
Numismatics and Medals at the same time; each row contains at most
one of these two. Therefore, complex selections such as this one should be
made in records mode.

Also, make sure you are back in rows mode for the other recipes in this book, or
you might get totally unexpected results. If something inexplicable happens, always
check first whether you are in the correct mode. This can save you a lot of headaches.

Advanced Data Operations

[52]

Recipe 3 – clustering similar cells
Thanks to OpenRefine, you don't have to worry about inconsistencies that slipped
in during the creation process of your data. If you have been investigating the
various categories after splitting the multi-valued cells, you might have noticed
that the same category labels do not always have the same spelling. For instance,
there is Agricultural Equipment and Agricultural equipment (capitalization
differences), Costumes and Costume (pluralization differences), and various other
issues. The good news is that these can be resolved automatically; well, almost. But,
OpenRefine definitely makes it a lot easier.

The process of finding the same items with slightly different spelling is called
clustering. After you have split multi-valued cells, you can click on the Categories
dropdown and navigate to Edit cells | Cluster and edit…. OpenRefine presents you
with a dialog box where you can choose between different clustering methods, each
of which can use various similarity functions. When the dialog opens, key collision
and fingerprint have been chosen as default settings.

After some time (this can take a while, depending on the project size), OpenRefine
will execute the clustering algorithm on the Categories field. It lists the found
clusters in rows along with the spelling variations in each cluster and the proposed
value for the whole cluster, as shown in the following screenshot:

Chapter 3

[53]

Note that OpenRefine does not automatically merge the values of the cluster.
Instead, it wants you to confirm whether the values indeed point to the same
concept. This avoids similar names, which still have a different meaning, accidentally
ending up as the same.

Before we start making decisions, let's first understand what all of the columns mean.
The Cluster Size column indicates how many different spellings of a certain concept
were thought to be found. The Row Count column indicates how many rows contain
either of the found spellings. In Values in Cluster, you can see the different spellings
and how many rows contain a particular spelling. Furthermore, these spellings are
clickable, so you can indicate which one is correct. If you hover over the spellings, a
Browse this cluster link appears, which you can use to inspect all items in the cluster
in a separate browser tab. The Merge? column contains a checkbox. If you check it,
all values in that cluster will be changed to the value in the New Cell Value column
when you click on one of the Merge Selected buttons. You can also manually choose
a new cell value if the automatic value is not the best choice.

So, let's perform our first clustering operation. I strongly advise you to scroll
carefully through the list to avoid clustering values that don't belong together. In
this case, however, the algorithm hasn't acted too aggressively: in fact, all suggested
clusters are correct. Instead of manually ticking the Merge? checkbox on every single
one of them, we can just click on Select All at the bottom. Then, click on the Merge
Selected & Re-Cluster button, which will merge all the selected clusters but won't
close the window yet, so we can try other clustering algorithms as well.

OpenRefine immediately reclusters with the same algorithm, but no other clusters
are found since we have merged all of them. Let's see what happens when we try
a different similarity function. From the Keying Function menu, click on ngram-
fingerprint. Note that we get an additional parameter, Ngram Size, which we
can experiment with to obtain less or more aggressive clustering. We see that
OpenRefine has found several clusters again. It might be tempting to click on the
Select All button again, but remember we warned to carefully inspect all rows in the
list. Can you spot the mistake? Have a closer look at the following screenshot:

Advanced Data Operations

[54]

Indeed, the clustering algorithm has decided that Shirts and T-shirts are similar
enough to be merged. Unfortunately, this is not true. So, either manually select
all correct suggestions, or deselect the ones that are not. Then, click on the Merge
Selected & Re-Cluster button.

Apart from trying different similarity functions, we can also try totally different
clustering methods. From the Method menu, click on nearest neighbor. We again
see new clustering parameters appear (Radius and Block Chars, but we will use
their default settings for now). OpenRefine again finds several clusters, but now, it
has been a little too aggressive. In fact, several suggestions are wrong, such as the
Lockets / Pockets / Rockets cluster. Some other suggestions, such as "Photocopiers"
and "Photocopier", are fine. In this situation, it might be best to manually pick the
few correct ones among the many incorrect clusters.

Assuming that all clusters have been identified, click on the Merge Selected & Close
button, which will apply merging to the selected items and take you back into the
main OpenRefine window. If you look at the data now or use a text facet on the
Categories field, you will notice that the inconsistencies have disappeared.

What are clustering methods?

OpenRefine offers two different clustering methods, key collision
and nearest neighbor, which fundamentally differ in how they
function. With key collision, the idea is that a keying function is used
to map a field value to a certain key. Values that are mapped to the
same key are placed inside the same cluster. For instance, suppose we
have a keying function which removes all spaces; then, A B C, AB C,
and ABC will be mapped to the same key: ABC. In practice, the keying
functions are constructed in a more sophisticated and helpful way.

Nearest neighbor, on the other hand, is a technique in which each
unique value is compared to every other unique value using a
distance function. For instance, if we count every modification as
one unit, the distance between Boot and Bots is 2: one addition
and one deletion. This corresponds to an actual distance function in
OpenRefine, namely levenshtein.

In practice, it is hard to predict which combination of method and function is the
best for a given field. Therefore, it is best to try out the various options, each time
carefully inspecting whether the clustered values actually belong together. The
OpenRefine interface helps you by putting the various options in the order they are
most likely to help: for instance, trying key collision before nearest neighbor.

Chapter 3

[55]

Recipe 4 – transforming cell values
In Chapter 2, Analyzing and Fixing Data, we saw that OpenRefine can automatically
change the contents of all cells in a column, such as trimming whitespace. In
the previous recipe, we learned that clustering is another method to perform
column-wide value changes. However, these operations are part of a more general
mechanism for transforming cell contents. You can change the value of each cell in
various complex ways. Although this looks a bit like Excel formulas, it is surprising
to see how much can be done with just a little.

For instance, suppose you don't like the vertical bar as a separator in the Categories
field and want to have a comma followed by a space instead. While this could be
solved by first splitting the multi-valued cell and then joining it back together,
we can do this actually in a single transformation step. Click on the Categories
dropdown and navigate to Edit cells | Transform…. The transformation dialog
appears as follows:

www.allitebooks.com

http://www.allitebooks.org

Advanced Data Operations

[56]

The heart of this dialog is Expression, a small script that explains OpenRefine how
each of the values should change. The Language list allows us to choose the language
for the expression, with current support for the General Refine Expression Language
(GREL), Jython (Python implemented in Java), and Clojure (a functional language
that resembles Lisp). If you are familiar with the latter two, you might find it easier to
write expressions in those languages. However, GREL was specifically created with
simple transformations in mind, which is why we will use it in this book.

In the Preview tab, you see the values of the first few cells before and after the
transformation. This allows you to iteratively change your transformation expression
while seeing its result in real time. The History tab keeps track of expressions that
you have used in the past, which is handy to recycle previous transformations.
Expressions that you use a lot can be starred in the History tab, which makes them
also appear in the Starred tab for even faster access. Finally, the Help tab gives an
overview of the most important expression constructs.

At the bottom of the dialog, you can decide what happens if your expression results
in an error for a particular cell value. You can opt to keep the value as it was, to make
the cell blank, or to store the error in the cell. Furthermore, you can also choose to
apply the transformation expression repeatedly, which can be useful if the result of
the transformation is to be inspected again. For instance, if you have an expression
that removes the first word that starts with a capital letter, you can repeat it until no
words with capital letters are left.

Back to our mission: changing vertical bars into commas followed by a space. The
default expression is value, but as you might have guessed, this is equivalent to
the initial cell value. Let's try a simple example first and see what happens; so, enter
1234 as the new cell value. The preview is updated and shows that the new value
of each cell will now be 1234. Not very helpful, but you get the idea. What we
actually want is to start from the original value and perform some replacements.
In the Help tab, we can see that the corresponding GREL function for this is called
replace. Since we want to replace vertical bars by commas, we enter the expression
value.replace("|", ", "). Note that we add quotation marks around the
characters since they are strings, not numbers. The preview gets updated with the
new cell values and the result is indeed what we expect, so we click on OK. In an
amazingly short timespan, OpenRefine has transformed all cells in the Categories
column, and all the vertical bars are now gone.

Always be careful when you change separators, because this
can have unintended side-effects if the new separator occurs as
part of the value. In fact, this is also the case here: the category
Cup, saucer and plate sets contains a comma. So, if the field is
to be processed again, this will likely cause mistakes. However,
we will continue here with the comma for the sake of example.

Chapter 3

[57]

To increase our confidence in cell transformations, we should probably try it again.
Suppose we want to change semicolons into commas in the Provenance column.
Click on the Provenance (Production) dropdown, Edit cells, Transform…, and type
in the expression value.replace(";", ","). The expression itself looks fine, but
we see several error messages in the preview pane. This might be an opportunity to
test the different On error settings (and I encourage you to do this), but we should
actually reflect on what went wrong. The error messages read: Error: replace expects
3 strings, or 1 string, 1 regex, and 1 string; so somehow, our expression is passing the
wrong input to replace. If we look at the values where this error message occurs,
we see that null values are the culprit. Indeed, null is not a string, so we cannot
replace characters inside of it. We need to tell OpenRefine that only non-empty cells
must be transformed. Close the dialog by clicking on Cancel, click on the Provenance
(Production) dropdown, and choose Text filter. Although we might have opted
to select Facet by blank, we can save a little processing time by only transforming
those cells that actually contain a semicolon. Enter ; in the text filter, which will
filter out all other values. Now retry the cell transformation and you will see that the
transformation is only applied to the selected cells without causing any errors.

Finally, to show the power of cell transformations, we are going to do something
really sophisticated. Although the vertical bars have now been changed into commas,
there is still a problem with the Categories field. Indeed, several objects have the same
category more than once, such as Record 14: Didactic displays, Pearl shells, Buttons,
Didactic displays. Unfortunately, we cannot solve this the same way we eliminated
duplicate rows before, because the duplicates here occur within one row. Luckily,
GREL can help us. Open the transformation dialog on the Categories column and
enter the following expression: value.split(", ").uniques().join(", "). This
expression looks complicated, but it is easy to understand the different parts: first, the
value is split on every , (a comma followed by a space), then the unique values are
retained with the uniques function, and finally they are joined back together. When
you click on OK, OpenRefine will apply the transformation and inform you how
many cells have been affected.

Mastering GREL is easy

This recipe introduced a few examples, but what if
that doesn't fulfill your needs? Appendix A, Regular
Expressions and GREL will introduce you to GREL so
you can learn how to build expressions yourself.

Advanced Data Operations

[58]

Recipe 5 – adding derived columns
Sometimes you do want to transform the contents of a cell, but also keep the original
value. While you can go back to a cell's previous state using the Undo / Redo tab
if something went wrong, it could be useful to see both the original value and the
transformed value at the same time. Therefore, OpenRefine enables you to add a
column based on another one.

Suppose we want to have a separate field that counts the number of categories
per record. Click on the Categories dropdown, click on Edit column and Add
column based on this column… A dialog very similar to the cell transformation
dialog pops up; however, this time it additionally asks for a column name. Enter
Category Count into the New column name field. Now, we have to create the
expression that will count the number of categories. Since all categories are separated
by a character (a vertical bar, or a comma if you followed the last recipe), we can
simply split them and count the number of segments. This expression does the trick:
value.split(",").length(). The Preview pane shows the result for the first view
cells, and it looks alright, so click on OK.

OpenRefine has now created a new column. We can now use the Category Count
column to analyze our data. For instance, we can create a facet by clicking on the
Category Count dropdown and navigating to Facet | Text facet. Note that a text
facet is easier here, even though the data is numeric, because we don't want to select
ranges, but rather we want to inspect the individual counts. The facet appears on the
left, informing us of how many objects have a specific number of categories assigned
to them as shown in the following screenshot:

Chapter 3

[59]

We also note something strange: one of the values is (blank). If we click on it, we
see that all corresponding records have an empty Categories field. Why doesn't the
Category Count column just display that there are 0 categories? The answer is that
for those empty cells, the transformation expression has resulted in an error because
there was no value to split. As in the previous recipe, we could have filtered out
those rows before we started the transformation. Instead, let's fix these rows. With
the (blank) choice still highlighted in the facet, click on the Category Count column
dropdown and navigate to Edit cells | Transform…. If we enter 0 as the expression
and click on OK, the blank cells now contain 0. Don't be confused if you don't see
any rows now: the blank filter is still active in the facet. Click on the 0 filter (or any
other one) and you will see the data you expect.

From a data analysis standpoint, it is now interesting to see what numbers of
categories per record are common. In the Category Count facet, set the Sort by:
setting to count. We can now conclude that 2 categories per record is the most
common case. Note that these numbers are all the more adequate if you have
clustered the values and then removed duplicates, as indicated in the previous
recipes. Once again, GREL has saved the day.

Advanced Data Operations

[60]

Recipe 6 – splitting data across columns
We started this chapter by showing how you could split multiple values in a single
cell across different rows. However, this might not always be what you want. In the
examples so far, each of the different values had an identical role: one category is
just like any other, and their order is interchangeable. The situation is different when
a field is overloaded with different types of values. This can happen, for instance,
when a Clients table contains a telephone field but no e-mail field and a contact
person has provided both pieces of information. As a result, the person's telephone
number and e-mail address could end up in the same field, separated by a slash.

We see a similar situation happen in various columns of the Powerhouse Museum
Collection data. For instance, in the Provenance field, we see information about
designers, makers, and various other things. It could be meaningful to put those
in different columns so we can analyze them separately. To do this, click on the
Provenance (Production) dropdown and navigate to Edit column | Split into
several columns…. We then see a dialog with various splitting options:

We can chose between splitting by separator, which is what we have done so far, or
by field lengths. The latter is meaningful if your field contains structured data such
as 1987 en-us,X/Y, where there are no fixed separators (or none at all). However,
our data uses a simple separator. An interesting option is to set a limit, as there might
otherwise be a lot of columns, so it might be wise to set it to something like 5. Don't
forget to match the separator with the one of the data, which is the vertical bar | in
our case. You can choose to let OpenRefine guess the cell type after the split (in case
you have numeric values for instance) and to remove the original column.

Chapter 3

[61]

After you click on OK, you will see that OpenRefine has replaced the one column
called Provenance (Production) with several numbered columns called Provenance
(Production) 1, Provenance (Production) 2, and so on, which can later be
renamed according to the values they contain. Not all of the columns contain a value;
values are found only in those records that had at least 5 items in the field. Although
splitting will never create more columns than the limit you have set, it is possible that
less columns are created if not as many values actually occur within a cell.

Another candidate for splitting is the Object Title column. We see that in some
fields, the title is preceded by a number. It would prove interesting to split the
number from the actual title. First, let's filter out the columns that start with a
number. Click on the Object Title dropdown and click on Text filter. We need to
write starts with a number in this field, which we can express with the regular
expression ^\d. This tells the filter to start at the beginning (^) and look for any digit
(\d). Don't forget to tick the regular expression checkbox though, or OpenRefine will
try to find that expression literally. We now only see titles that start with a number.

Click on the Object Title dropdown again and navigate to Edit column | Split into
several columns…. We now use a single space as a separator, indicate that we want
at most 2 columns, and then click on OK. The description number and title have
moved to separate columns.

Splitting columns is far more powerful than splitting multi-valued cells as you have
several configuration options. You can even use a regular expression to define the
separator, which can then be different depending on the context. By the way, if
this recipe made you curious about regular expressions, don't forget to check out
Appendix A, Regular Expressions and GREL, which introduces them in more detail.

Recipe 7 – transposing rows and
columns
Sometimes data is not arranged into rows and columns the way you like. Indeed,
there are different ways of arranging what belongs where, and the choices depend
on the situation. In the Powerhouse Museum dataset, for instance, there are separate
columns for several dimensions: Height, Width, Depth, Diameter, and Weight.
However, not many objects have data for these columns, so the cost of maintaining
them might be high with respect to the value they add. An alternative would be
to transform these five columns into two columns: one that contains the name
of the dimension (for instance, Height or Weight) and another that contains the
measurement (for instance, 35mm or 2kg).

Advanced Data Operations

[62]

What we want to do here is to transpose the columns into rows. To do this, click on
the Height dropdown and navigate to Transpose | Transpose cells across columns
into rows…, which will bring up the following dialog:

On the left, you can choose from the From Column, the column from which to start
the transposition. The Height column is already selected because we used it to bring
up the transposition dialog. The To Column is where the transposition stops. The
range between those two settings are the columns that will be transformed (so you
have to bring them next to each other first, should they be separated). Here, we will
select Weight, so those two columns and everything in between will be included in
the transposition operation.

On the right-hand side, we can choose what will happen to the transposed columns.
The first option, Two new columns, allows us to have one Key column, the one that
will contain the original column name (Height, Weight…), and the Value column,
which will contain the original cell values (35mm, 2kg…). You can choose the names
for both columns, for instance, Dimension and Measurement. Alternatively, the
One column option lets you merge the keys and values into a single cell; however,
this can be more difficult to analyze later on. When the options have been set, click
on Transpose to start the operation. The five columns are now rearranged into two
as shown in the following screenshot:

Chapter 3

[63]

Note how OpenRefine has again used records to keep related information together.
So, if for a certain row different measurements were present, they have been spread
across several rows. Maybe you would like to see all five values, even if some
of them are empty. To achieve this, deselect the Ignore blank cells option in the
transpose dialog.

Performing the reverse operation is also possible by navigating to the Transpose |
Columnize by key/value columns… command. However, this operation is sensitive
to blank cells, so proceed with caution. With some skill, you might be able to
transform the Provenance columns which contain key/value pairs into full columns.

Advanced Data Operations

[64]

Summary
This chapter has introduced recipes for advanced data operations. We have looked
at multi-valued cells in different ways: when they had values of equal importance,
we split them across several rows; when they had a different function, we split them
across columns. We have also seen that OpenRefine has a special mode for working
with multi-valued cells spread over different rows called records mode. In records
mode, multiple rows that belong to the same object can be treated as one, giving you
powerful search and manipulation options.

We also introduced you to clustering, which is really helpful if some of your cell
values need to be consistent but are actually a bit messy. You can even go further
and define your own transformation operations on cell values, and even create a
new column based on an existing one. Finally, you have learned how to move data
flexibly across rows and columns. Therefore, this chapter has given you access to the
advanced possibilities offered by OpenRefine, which are hidden just a little deeper in
the interface. By now, you can almost call yourself an OpenRefine master.

Linking Datasets
Your dataset is not an island. Somewhere, related datasets exist, even in places
where you might not expect them. For instance, if your dataset has a Country of
Origin column, then it is related to a geographical database that lists the total area
per country. An Author column in a book dataset relates to a list of authors with
biographical data. All datasets have such connections, yet you might not know about
them, and neither does the computer which contains your dataset. For instance, the
record for The Picture of Dorian Gray might list Wilde, O. as its author, whereas
a biographical dataset might only have an entry for Oscar Wilde. Even though they
point to the same person, the string values are different, and it is thus difficult to
connect the datasets. Furthermore, it would be really impractical to link all possible
datasets to each other, as there are a huge number of them.

Instead, the approach is to find unique identifiers for cell values, and in particular, a
URL (Uniform Resource Locator). Instead of identifying Oscar Wilde by his name,
we identify him with a URL such as http://en.wikipedia.org/wiki/Oscar_Wilde.
Not only does this URL uniquely identify the writer Oscar Wilde (and not other people
who happen to have the same name), it can also be visited in a browser to find more
information about him, such as related datasets. Therefore, URLs allow us to connect
different datasets together. In this chapter, we will learn methods to transform field
values into URLs of the concepts they identify using the following recipes:

•	 Recipe 1 – reconciling values with Freebase
•	 Recipe 2 – installing extensions
•	 Recipe 3 – adding a reconciliation service
•	 Recipe 4 – reconciling with Linked Data
•	 Recipe 5 – extracting named entities

As usual, you can go straight to the recipe you're interested in. However, be sure
to learn how to install OpenRefine extensions first before you continue to the last
three recipes. Every recipe starts from the cleaned Powerhouse Museum dataset, in
which the Categories column has been spread across several rows.

http://en.wikipedia.org/wiki/Oscar_Wilde
http://en.wikipedia.org/wiki/Oscar_Wilde

Linking Datasets

[66]

Recipe 1 – reconciling values with
Freebase
When you want to transform your cell values from simple strings to URLs, different
choices are possible. After all, a given concept can be identified with many URLs as
there are many pages on the Web about the same topic. This need not be a problem
as long as each URL unambiguously identifies a single concept. However, we
must choose which URL we want to use. On the Web, there are many databases
of concepts, the most well-known being Wikipedia. In addition to databases for
humans, there are also several databases targeted at machines. One example is
Freebase, a collaborative knowledge base in which machine-readable facts about
virtually every topic are stored.

Before OpenRefine was called Google Refine, it was owned
by Freebase creator MetaWeb and called Freebase Gridworks.
As a tool for manipulating large datasets, it fitted nicely in the
Freebase philosophy of making structured data available.

Therefore, we will reconcile our cell values with Freebase URLs. Since Freebase
reconciliation is built in OpenRefine, we can try it right away. Note that we're
starting from the Powerhouse dataset in which the Categories column has been split
across rows. This is important, as each cell should contain a single value that matches
a Freebase topic. A full-text field such as Description is thus not a good candidate for
reconciliation (it is, however, a good candidate for named-entity extraction, as you
can see in the last recipe of this chapter).

To start reconciliation, go to the Categories dropdown and navigate to Reconcile |
Start reconciling…. OpenRefine shows the reconciliation dialog. On the right side of
the dialog, you see all possible reconciliation services. Two Freebase reconciliation
services are built-in:

•	 Freebase Query-based Reconciliation: This is useful if your column values
are already Freebase IDs (such as /en/solar_system) or GUIDs
(hexadecimal identifiers).

•	 Freebase Reconciliation Service: This offers a more general approach for
terms that are not necessarily related to Freebase identifiers.

Chapter 4

[67]

Clearly we are in the second case here, so select Freebase Reconciliation Service.
After some processing, OpenRefine loads the options of this service on the
right-hand side:

The services in your OpenRefine installation might be
different from the ones you see in the screenshot. That's
because you can add reconciliation services yourself, as
we'll show you in one of the next recipes.

There are three options you can set now. First, you have to decide against what
type of records you want to reconcile. This can restrict the search to specific topics,
which is handy if your column contains only city or person names for instance. This
way, reconciliation can happen faster, and there is a lower chance of finding a false
positive. During the processing step after you have selected the service, OpenRefine
has contacted the service with part of your data to try to guess the type of your
column data. Unfortunately for us, it offers two options that are not relevant to the
Categories field: persons and locations. Luckily, we also have the option to choose
a type ourselves with Reconcile against type. However, as we're not sure whether
the categories in our dataset actually belong to a single specific type, we just select
Reconcile against no particular type.

Linking Datasets

[68]

The second option we can choose is Auto-match candidates with high confidence.
Reconciliation services also return a match score that indicate how confident they
are that the match is the right one. The auto-match option is on by default, and it
means that if the score is sufficiently high, OpenRefine will assume it has made the
right choice and declare it a match. For other cell values (or if you have unticked the
checkbox), you will have to confirm the match manually. Our advice would be to
leave this one ticked, as it saves you a considerable amount of work.

The third and final option allows you to send additional data to the reconciliation
service. Instead of basing the match on a single column value, it is possible to
consider different columns. For this, you will have to indicate the property name.
For the Powerhouse Museum dataset, no such other relevant column exists. But if
you had a dataset of country names with country codes, it could be helpful to send
both to the reconciliation service.

With Reconcile against no particular type ticked, click on Start Reconciling.
The reconciliation process might take some time, as OpenRefine will now ask
the reconciliation service to find a URL for each unique cell value. The yellow
information bar on top of the window will tell you how much has been done.

This might be the moment to take a coffee break or to do another task on your
computer and let reconciliation run in the background. When the process has
finished, you will notice that OpenRefine has automatically created a judgement
and a best candidate's score facet for you.

The judgement facet allows you to partition the dataset in rows that have been
reconciled and rows that have not, as well as rows that have a blank value for the
Categories cell and were thus not reconciliation candidates. What you see here
might surprise you, there are only (blank) and none filters in the facet. Where are
the reconciled rows?

Chapter 4

[69]

It turns out that, unfortunately, reconciliation with Freebase has not been successful
no single match was found. Does this mean we did something wrong? No, we did
not, it just happens that the terms in our database are apparently not the kind of
topics that Freebase covers. Does that mean that Freebase is not a good candidate
for reconciliation? Not at all, it just so happens that our dataset is not a good fit. You
might have more luck with other datasets, so definitely try that.

Let's undo the unsuccessful reconciliation by removing the facets with the Remove
All button and by going a step back in the Undo / Redo menu. (You can get them
back by going to the Categories dropdown | Reconcile | Facets.) The next recipes
will show you how to try other reconciliation services.

Sometimes you just want to try out reconciliation with a certain
service to see how it works. Does that mean you have to sit
through the whole reconciliation process every time? Not if you
make clever use of facets! We tend to try reconciliation first on a
small part of the dataset and then decide whether we want to run
it on all rows. To make a more or less random selection, we can
for instance add a text filter on the Record ID column and enter
a digit such as 4. Given an equal distribution of digits in all IDs,
this would select about 10 percent of the rows. If that's still too
much, just keep adding digits until the number of rows has come
down to a few hundred. For instance, 413 did the trick for us.

Recipe 2 – installing extensions
While OpenRefine allows you out-of-the-box to add new reconciliation services,
these are only services that work in a certain way under the hood. However, there
are several other types of services out there, and if you want to use them, you will
need to add some functionality to OpenRefine in the form of extensions. So, before
we can show you how to add those services, we first have to explain how to install
OpenRefine extensions. Not all extensions offer reconciliation services, so this
recipe describes the general installation procedure. At the time of writing, several
OpenRefine extensions are available, including the following points:

•	 The RDF extension by Digital Enterprise Research Institute (DERI), which
adds support for RDF export and reconciliation with SPARQL endpoints.
We'll explain both terms in the next recipe.

•	 The Named-Entity Recognition (NER) extension written by one of the
authors of this book, which allows you to extract URLs from full-text fields.
Usage of this extension is covered in detail in the last recipe of this chapter.

Linking Datasets

[70]

Like OpenRefine, all extensions are available freely. An up-to-date list of available
extensions is maintained at https://github.com/OpenRefine/OpenRefine/wiki/
Extensions, which also includes their download locations. As the extensions are
very diverse, it might look tricky to install them. However, this recipe will show you
the technique to install any extension.

First, you will have to find the path where extensions need to be installed. This
depends on your operating system, but OpenRefine can help you find it. At the
bottom of the starting page, there is a link called Browse workspace directory.

If you click on this link, you will end up in the OpenRefine application folder
(at least on Windows and Mac; for Linux, read on). In this folder, you have to create
a new folder called extensions if it doesn't exist yet. This will be the path in which
you need to add the extensions. For the different operating systems, it should look
like the following points:

•	 Windows: C:\Documents and Settings\(your username)\Application
Data\OpenRefine\extensions or possibly in the Local Settings folder
instead at C:\Documents and Settings\(your username)\Local
Settings\Application Data\OpenRefine\extensions

•	 Mac OS X: /Users/(your username)/Library/Application Support/
OpenRefine/extensions or, starting from your home folder, in /Users/
(your username)/Library/Application Support/OpenRefine/
extensions

•	 Linux: /home/refine/webapp/extensions

https://github.com/OpenRefine/OpenRefine/wiki/Extensions

Chapter 4

[71]

The next step is to download an extension and to place it in the folder. For
instance, let's install the RDF extension. Download the extension from
http://refine.deri.ie/; this will get you a ZIP file in your downloads
folder. Unpack the contents of this ZIP archive in the way you're used to.
Depending on the software you use, additional folders might be generated,
but the folder we are interested in is called rdf-extension.

Move this folder to the OpenRefine's extensions folder we found earlier. In the
extensions folder, you should now see a folder called rdf-extension, which in
turn contains other folders, such as images, MOD-INF, scripts, and styles.

Now restart OpenRefine to make the extension active. Just closing the browser
window is not enough; you have to actually close the OpenRefine application itself
by right or control-clicking on its icon on the bottom of your screen and choosing
Close. Then, start OpenRefine again as usual and open a project. When the project
has loaded, a new RDF button in the top-right tells you that the installation has
been successful:

If you don't see the button, make sure that the right extension folder has been placed
in the correct location and that OpenRefine has been properly restarted.

You can repeat the steps in this recipe for other extensions as well. In the next
recipes, we will use the RDF extension, so make sure to install it. In a later recipe,
we will also need the NER extension, so you should install that as well while
you're at it.

Recipe 3 – adding a reconciliation
service
For this recipe, you need to have installed the RDF extension. If you didn't, have
a look at the previous recipe. If you did, you might wonder what the terms RDF
and SPARQL mean, as they are used throughout this extension. This will become
clear right now.

Linking Datasets

[72]

The Resource Description Framework (RDF) is a model for data that can be
interpreted by machines. While humans can read HTML on the Web, machines do
not understand natural language and must therefore be given information in another
form. Disambiguation is an important aspect; does Washington refer to the city or
the person? And which person? To express this, information in RDF is referred to by
URIs or URLs, just like we do with reconciliation in OpenRefine. This is why RDF
comes in handy for reconciliation.

The SPARQL Protocol and RDF Query Language (a recursive acronym for
SPARQL) is a language for querying RDF datasources. Traditional relational
databases use SQL as a query language; RDF databases and important for us,
reconciliation services, communicate in SPARQL.

If you want to reconcile your data with an RDF datasource, then you must tell
OpenRefine how it must communicate with this datasource. When you installed the
RDF extension, you already added support for SPARQL to OpenRefine. However,
before we can reconcile our cell values to URLs, we must configure the datasource.
To do this, click on the new RDF button in the top-right and navigate to Add
reconciliation service | Based on SPARQL endpoint…. Note that you can also
reconcile with a local RDF file, which is handy if you have your own dataset of URLs.
OpenRefine shows you the Add SPARQL-based reconciliation service dialog.

Chapter 4

[73]

This dialog allows you to choose a name for the SPARQL endpoint, to add the
endpoint's details (where it is located and how it works), and what kind of
information is used to match the cell value to a URL. You can use a SPARQL
endpoint of your own or any of the publicly available endpoints listed at
http://www.w3.org/wiki/SparqlEndpoints.

For this example, we will use an endpoint that we have set up. It includes
a processed version of the publicly available Library of Congress Subject
Headings (LCSH) dataset. To use this endpoint, fill out the details as follows:

•	 Name: LCSH
•	 Endpoint URL: http://sparql.freeyourmetadata.org/
•	 Graph URI: http://sparql.freeyourmetadata.org/authorities-

processed/

•	 Type: Virtuoso
•	 Label properties: tick only skos:prefLabel

The Endpoint URL is the address where the endpoint is located, and the Graph
URI identifies which dataset within this endpoint should be used. The Type of the
endpoint is used to indicate the underlying endpoint software; it is not mandatory
to specify this, but knowing the correct type enables low-level tricks that greatly
improve the reconciliation speed. Finally, the Label properties indicate names of
fields that can be used to look up the cell value. In RDF, these properties usually
have common names (which are in fact mostly URLs themselves). Once these
properties have been set, click on the OK button.

As nothing happens right now, you might be curious to know how you can check
whether the new reconciliation has been added properly. You can verify this by
bringing up the reconciliation dialog by going to the Categories dropdown and
navigating to Reconcile | Start reconciling…. On the left-hand side, you will see the
newly added service. Now read on to the next recipe if you can't wait to start using it!

Recipe 4 – reconciling with Linked Data
In the previous recipe, we talked about RDF and SPARQL without sketching the
broader context in which these technologies were created, so let's introduce them
now. Around the year 2000, web researchers and engineers were noticing that
humans were no longer the only consumers of the Web; more and more machine
clients, and thus pieces of software, started using the Web for various purposes.
However, every such piece of software had to be hardcoded for a particular task,
and they could not parse the natural language in documents on the human Web.
Therefore, a vision called the Semantic Web was coined, a Web in which information
would also be interpretable for machines. This was the start of RDF and SPARQL.

http://www.w3.org/wiki/SparqlEndpoints
http://www.w3.org/wiki/SparqlEndpoints

Linking Datasets

[74]

However, the vision was rather abstract and difficult to many people. Several of the
concepts relied on concepts such as ontologies and reasoning, which can become
very complex rapidly. Tim Berners-Lee, inventor of the Web and one of the creators
of the Semantic Web vision, realized this and launched the Linked Data principles
(http://www.w3.org/DesignIssues/LinkedData.html). These principles shifted
the focus of the Semantic Web to the creation of data that was interlinked with other
datasets. The principles are as follows:

1.	 Use URIs as names for things
2.	 Use HTTP URIs so that people can look up those names
3.	 When someone looks up a URI, provide useful information using the

standards (RDF, SPARQL)
4.	 Include links to other URIs so that they can discover more things

So, the first principle asks to use unambiguous identifiers for your concepts and
the second principle asks specifically for HTTP URIs, which are thus URLs. These
principles have been used in the datasets we will use for reconciliation. The third
principle is concerned with how your data is published. In fact, the RDF extension
allows us to export our dataset as RDF, so that's covered as well. The fourth principle
is about linking to other datasets, which is exactly what reconciliation will do for us.

Without further ado, let's start reconciliation. Like in Recipe 1 – reconciling values
with Freebase, go to the Categories dropdown and navigate to Reconcile | Start
reconciling…, which will bring up the reconciliation dialog on your screen. This
time, however, select the LCSH reconciliation service from the left-hand side which
you installed in the previous recipe. OpenRefine will now try out some of the cell
values to see if it can determine its type. After a few seconds, it suggests that the
values have type skos:Concept. This is indeed true, as all Category values are in
fact concepts. You can leave all settings as they are and click on Start Reconciling.

As indicated previously, you might want to try this on a
subset of the dataset to avoid a long waiting time. Or, you
can get a cup of tea now.

When the reconciliation is done, you will notice three things. First, OpenRefine has
created the two facets that help us find matched and unmatched rows. Second, you
see a green bar on top of the Category column, which indicates how many of the cell
values have been reconciled. Third, the cell values are displayed differently; some of
them are in blue and others have new options.

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html

Chapter 4

[75]

Let's first focus on the reconciled values displayed in blue. The more of them you
see, the more successful the reconciliation has been (and thus, the greener the bar
on top of the column will be). They are blue because they are in fact links; if you
click on them, you end up on the page with the URL the term has been reconciled
to. For instance, if we click on the Specimens link, we are directed towards
http://id.loc.gov/authorities/subjects/sh87006764.html, which is indeed
the entry for Specimens in the Library of Congress Subject Headings. So this is how
we create Linked Data; instead of just the string Specimens, which looks like nine
random characters to a computer, OpenRefine reconciled the value with a URL. This
URL can be interpreted by a machine, as that URL in turn links to other URLs that
help define its meaning.

When you see unreconciled values in black, you have not been so lucky for this
particular term. They are not links, so OpenRefine has not been able to find a
matching URL automatically. There are two cases of unreconciled values; first,
those where some suggestions have been found, but OpenRefine was not able to
find the right one. In that case, it will list several alternatives for you. If any of those
alternatives is correct, you can either click on the single checkmark, which will
replace only the current cell value by the chosen term, or the double checkmark,
which will replace all cells that have the same value. Be careful when replacing all
identical values though, as some might actually refer to another term. Note that you
can also click on the suggestions, which will bring you to their corresponding web
page for more information.

The other case with unreconciled values is when OpenRefine did not find any
suggestions. In that case, you're out of luck. Maybe the term in question does not exist
in the dataset you're reconciling against, or maybe it is named differently. In any case,
the only thing you can do is assign a URL manually. To do this, click on the search for
match link, which will show you a dialog that helps with finding the correct match.

Linking Datasets

[76]

A final option is to create a new topic for the cell value by clicking on the Create
new topic link, or by choosing the New Topic button from the Search for Match
dialog. This will not create a new URL in the LCSH dataset (as you don't have the
permission to do that), but it will mark the cell value as new. This will enable you to
select all those cells in the judgement facet so you will be able to do something else
with them. For instance, you could reconcile all new values with another dataset to
see if you find matches there.

You'll probably wonder how you can get the URLs that reconciliation has brought
us. Yet, at the same time, we still want to keep the original category names. So,
the right way to do this would be to create a new column based on the Categories
column as we've done before. Click on the Categories dropdown and navigate to
Edit Column | Add column based on this column…. We will call this column
Category URLs. The expression that transforms the reconciled cell to its URL is
cell.recon.match.id. This piece of GREL selects the cell, takes its reconciliation
information, gets out the accepted reconciliation match, and extracts the ID (the URL
in this case). The cells that do not have a match will result in an error, so make sure
that for error, the set to blank option is chosen. After clicking on OK, you will see a
new column with the corresponding URLs.

When you're done with the reconciliation process and have extracted the URLs that
you need, you might want to give the Categories column back its old appearance.
After all, the reconciliation data is still there and this can be distracting. To clear it,
go to the Categories dropdown one more time, navigating to Reconcile | Actions
| Clear reconciliation data. The categories column is now a regular column again.
Additionally, you can remove the facets by clicking on Remove All on top of the
left sidebar.

Recipe 5 – extracting named entities
Reconciliation works great for those fields in your dataset that contain single terms,
such as names of people, countries, or works of art. However, if your column
contains running text, then reconciliation cannot help you, since it can only search
for single terms in the datasets it uses. Fortunately, another technique called
named-entity extraction can help us. An extraction algorithm searches texts
for named entities which are text elements, such as names of persons, locations,
values, organizations, and other widely-known things. In addition to just extracting
the terms, most algorithms also try to perform disambiguation. For instance, if the
algorithm finds Washington in a text, it will try to determine whether the city or
the person is mentioned. This saves us from having to perform reconciliation on the
extracted terms.

Chapter 4

[77]

OpenRefine does not support named-entity recognition natively, but the Named-Entity
Recognition extension adds this for you. Before continuing with this recipe, download
the extension from http://software.freeyourmetadata.org/ner-extension/ and
follow the Installing extensions recipe. If the installation was successful, you are greeted
by the Named-entity recognition button in the top-right of your screen after restarting
OpenRefine.

For this recipe, you might want to start from the dataset
where the categories have not been split over several rows,
as named-entity recognition will create new rows if multiple
terms have been found for a single record. That can become
confusing if you already have multiple rows per record.

Looking at the Powerhouse Museum dataset, we see that the Descriptions column is
a good candidate for named-entity extraction as it contains running text. If we want
to link this field to other datasets, we must extract entities first. To do this, click on
the Descriptions dropdown and choose Extract named entities… at the bottom. The
Extract named entities dialog appears on your screen.

Linking Datasets

[78]

The extension itself does not contain any named-entity recognition algorithms but
uses existing services instead, just like the reconciliation functionality also relies
on external reconciliation services. This allows you to choose the services that you
prefer. However, in contrast with the reconciliation services, which are open, some
of the named-entity recognition services require that you create an account. While
all supported services have a free option, some of them also offer premium accounts
that give you additional benefits, such as faster or unlimited extraction.

The DBpedia Spotlight service does not require an account, and is thus already
available. Therefore, tick on its checkbox in the dialog and choose Start extraction.
OpenRefine will now start the extraction process, which can take some time.
Therefore, as we explained before, it might be interesting to try the extraction on a
subset first. Premium services might offer faster extraction. However, if you tick on
multiple checkboxes to perform the extraction with multiple services at once, the
extraction is only as fast as the slowest service.

When named-entity recognition has finished, you see that OpenRefine has created a
new column next to the Description column called DBpedia Spotlight.

In this new column, you see the extracted terms. If multiple terms were found, they
are split across several rows, so you can switch between the rows and records modes
of OpenRefine. The screenshot shows that DBpedia Spotlight found two terms in
record 162, no terms in record 173, and one term in record 184. As you can see, the
terms are displayed in blue, indicating that they are in fact links. For instance, if you
click on Leeds Town Hall, you arrive at a page about this building with links to
related resources. This is Linked Data at its best; what used to be a human-only text
field now has machine-interpretable links to the concepts it contains.

Chapter 4

[79]

However, you might be disappointed to see that not all cell values have associated
terms. So, let's see if other services do a better job. For that, we have to add our
account information for each of those services. To do this, click on the Named-entity
recognition button in the top-right and choose Configure API keys…. The
following dialog shows you the supported services and the configuration parameters
they require:

For instance, if you want to perform named-entity recognition with Zemanta, add
your Application programming interface (API) key to the corresponding field. If
you don't have an API key yet, click on the configuration instructions link. This will
take you to a page that lists the steps to obtain an API key with Zemanta. All services
have a free option, so you can just register for an account to try out the service on
your data. In addition to that, some services can be configured with additional
parameters that determine the service's functionality. The configuration instructions
can be very helpful here.

Linking Datasets

[80]

When you have configured additional services and have tried named-entity
extraction on the Description column again, you will now be able to select multiple
services at once. The results of each separate service will be added to a new column,
so you could have additional Zemanta and AlchemyAPI columns, each of which
will contain extracted terms. Depending on the dataset, you might have more success
with one service or another, so be sure to experiment!

Summary
In this chapter, we have seen how your dataset can be transformed from an
isolated island into a connected collection of data. On one hand, you can perform
reconciliation on columns that contain simple field values. Therefore, the text in
the cells is given meaning by adding a URL to it which can be looked up online.
You can either use the built-in Freebase reconciliation or install the RDF extension
which allows reconciliation against Linked Data sources. On the other hand, you can
perform named-entity recognition on cells that contain flowing text, again with an
extension. This lets OpenRefine search for concepts inside the cell values, and it will
try to find a URL for each of them. In the end, your dataset becomes enriched with
links to other datasets, which is a valuable asset when you're publishing your dataset
on the Web.

Regular Expressions
and GREL

Two more utilities are available in the advanced OpenRefine user's toolbox: regular
expressions and GREL. Regular expressions are patterns for matching and replacing
text that come in very handy when dealing with large quantities of data. The General
Refine Expression Language, GREL, gives you access to a bit of programming
power for those cases where a specialized manipulation is necessary. This appendix
will introduce you to both techniques.

Regular expressions for text patterns
OpenRefine offers many ways to find the data you need. But what if you don't know
the exact text, or more commonly with large datasets, what if the text slightly varies
from cell-to-cell? While finding all cells with a value that contains the letter a is easy,
finding values that contain a number (or worse, the letter a followed by a number) is
more difficult. This is where regular expressions come in handy.

The purpose of a regular expression is to define a pattern of text instead of a precise
chunk of text. It allows you to say things such as "a letter followed by a number" and
many more complex things. Regular expressions are built from character classes that
represent the characters you are looking for woven together by quantifiers, anchors,
choices, and groups.

Regular Expressions and GREL

[82]

OpenRefine allows you to try out regular expressions in an easy way. Create a text
filter on any column (the Object Title column in the Powerhouse Museum dataset
is especially interesting) by clicking on its dropdown and choosing Text filter. In
the newly created filter, tick the regular expression checkbox and you're ready to
go (refer to the following screenshot). The data will now be filtered according to the
expression you enter:

Character classes
Regular expressions use character classes (letters, numbers, whitespace) as an
indication for the character you are looking for. For instance, if you are looking for
letters or numbers, you can type them directly:

•	 The pattern Aar will look for all texts that contain a capital A followed by a
small a and r. If the case sensitive box is not ticked, the capitalization will
not matter.

•	 The pattern 123 finds all texts that contain this number. Note that texts with
the number 41235 are also matched, since 123 is a textual part of that.

•	 As you can see, this does not differ from regular text matching yet. With
regular expressions, we can also say that we expect any letter or any number.
We can give a set of characters from which can be chosen by surrounding
the alternatives with square brackets []. We can indicate a character range in
those brackets by separating the limits with a hyphen.

•	 The pattern [0123456789] matches all texts that contain a number.
•	 The pattern [0-9] does the same, only it is more condense. It says everything

between 0 and 9 is fine.
•	 Similarly, the pattern [a-z] matches all lowercase letters (and also uppercase

if the case-sensitive option is not used). [A-Z] matches uppercase letters and
[a-zA-Z] matches all letters, regardless of the case-sensitive option.

•	 If you want to look for numbers and letters, use [0-9a-zA-Z]. Read this as
"every character between 0 and 9, between a and z, or between A and Z".

•	 As in the earlier examples, we can put several matchers next to each
other. analy[sz]e will match both American (analyze) and British
(analyse) spellings.

Appendix

[83]

•	 Similarly, the expression [0-9][a-z] will find numbers directly followed
by at least one letter. The expression [a-z][0-9][0-9][0-9] finds letters
directly followed by at least three numbers.

•	 If you want to find measurements such as 1 cm or 25 in, you will not
find them with the preceding expressions because of the space in between.
Luckily, a space is also a symbol, so the expression [0-9] [a-z] will find
them. Note the space in between the bracket pairs, and note the fact that
this will even find longer measurements such as 12345 meters. Indeed, the
expression matches a number followed by a space and a letter, so in this case,
5 m. It doesn't matter whether other numbers or letters are also present.

•	 If you're just looking for measurements in inches, the expression [0-9] in
will do the job.

•	 It might be a bit cumbersome to write [0-9] in full every time. This is why
shorthand character classes were introduced. They are symbols that stand
for a set of characters. For instance, the symbol \d stands for any digit and is
thus equivalent to [0-9], but a lot faster to write. The opposite is \D, which
means anything that is not a digit and includes letters as well as symbols.
Unfortunately, there is no shorthand for any letter, but there is a shorthand
for any letter, number, or underscore, which is \w, which stands for any word
character. Again, the opposite is \W, which matches for all non-letters and
non-numbers that are not underscores either.

•	 \d [a-z] will again match for texts with measurements: any number
followed by a space and a letter.

•	 \d\d\d matches texts with numbers with a length of at least three.
•	 \D\D matches texts that have at least two consecutive non-numbers. If you're

surprised to see texts with numbers as well, think about it: the expression only
says that the text should contain a non-number followed by a non-number;
it doesn't say that there should be no numbers at all. However, if a text field
only contains numbers, it won't be matched. To rephrase, the expression
means "I'm looking for two non-numbers in a row, do you have them?"

•	 You might wonder how \D works. Does it then translate to a huge set that
includes everything but numbers? The answer is more simple: using a caret ^
as the first character in braces means none of the characters should be present
in the pattern. Therefore, \D stands for [^0-9].

•	 The expression [^a-zA-Z0-9] looks for texts that contain something which
is not a letter or number. Most texts will match, as for instance spaces and
punctuation marks are still allowed. However, empty fields will not match,
as there must be at least one character which is not a letter or number.

Regular Expressions and GREL

[84]

•	 The expression [^a-zA-Z0-9]\d[^a-zA-Z0-9] means any digit surrounded
by non-letters or non-numbers. For instance, we see that single digits in
parentheses are matched. Note that items such as (123) will not be matched,
but (3) will, as we explicitly say that it should be a single digit.

If you really want to match any character, the dot . is what you need. This symbol
matches anything (except newlines, which are \n). While that might not seem useful
by itself, it is very useful when combined with other character classes:

•	 The pattern a.a.a matches any text where an a is followed by any character,
another a, any character, and another a. For instance, texts with the words
dulcamara, alabaster, and salamander will match.

•	 The pattern 19.. (there is a space before and after) will match years in the
20th century.

•	 However, you should be careful with the dot: the last pattern also matches
19th and 19M$, because a dot really means anything. If a year is what you
want, 19\d\d is more accurate.

Now, you might wonder what to do if you want to match an actual dot, actual
square brackets, or an actual backslash followed by a "d". The trick is to tell in the
regular expression when you don't want a symbol to be recognized as something
special. For letters, numbers, spaces, and a few other characters, this is the default.
Characters that have a special meaning need to be escaped by preceding them with
a backslash \. A literal dot is thus represented as \.; the backslash itself as \\.

•	 To find texts that have three consecutive dots in them, use \.\.\.. (This can
actually be done in a more handy way, as we'll see in the next section.)

•	 To find texts with a backslash, use \\. (There are none in the dataset.)
•	 Texts that contain an opening or a closing square bracket are found with [\

[\]]. This looks complicated, but it is quite logical: the first and last bracket
say "choose any of the things within". And the things within are actual
square brackets, but they have to be escaped, so they become \[and \].

•	 With [2], you find texts that contain the number 2 ("choose any of the things
within", and the only thing within is a 2). With \[2\], you find texts with
the number 2 surrounded in square brackets, as the brackets are escaped this
time and thus have no special meaning anymore.

Appendix

[85]

Quantifiers
So far, we've seen ways in regular expressions to indicate that we want to encounter
certain characters. However, we cannot yet express if we want to see characters a
certain number of times without this number being known in advance. For instance,
how can we say "a number within single quotes"? We could start with '\d', but that
would show us only texts that contain 0, 1, 5, and so on, but not multidigit numbers
such as 23 or 478. Indeed, computers follow the expression slavishly: one single
quote, one digit, one single quote.

Quantifiers can express repetition. There are three simple quantifiers: a plus sign +,
which means one or more times, an asterisk *, which means zero or more times, and
a question mark ?, which means zero or one time. They only exert an effect on the
symbol that is directly to the left of them:

•	 bre+d matches texts that contain bred, breed, or breeed with any number of
e, as long as at least one e is present.

•	 bre*d matches texts that contain brd, bred, breed, or breeed with any
number of e, even without. Note how brd is matched with the asterisk, but
not with the plus sign.

•	 bre?d matches brd and bred, but not breed or any other number of es. Put
simply, it makes the e optional.

•	 Combinations are also possible. br?e+d matches bed, bred, beed, breed,
beeed, breeed, and so on.

•	 In addition, you can be explicit about the number of times you would like
a symbol to occur by using curly braces {min,max}. You can specify the
minimum and maximum number of times it can occur. Either one can be
empty, in which case there is no minimum or maximum. Leave the comma in
so OpenRefine knows whether you specified the minimum or the maximum.
If you just supply a single number without a comma, the exact number of
times will be matched.

•	 N\d{5,8}, matches texts that contain a code that starts with N followed by
five, six, seven, or eight digits, and then a comma.

•	 N\d{5,}, matches texts that contain a code that starts with N, at least five
digits, and then a comma.

•	 N\d{,8}, matches texts which contain a code that starts with N, at most eight
digits, and then a comma.

•	 N\d{5}, matches texts which contain a code that starts with N, exactly five
digits, and then a comma. This is equivalent to N\d\d\d\d\d but much more
compact (especially if numbers get large).

Regular Expressions and GREL

[86]

•	 Needless to say, the quantifiers and braces are special symbols, so if you
want to match them literally, you should escape them with a backslash.
For instance, question marks can be matched with \?.

Anchors
Sometimes, you don't only want to say how many characters to match, but also
where they should be matched. This is possible with anchors. A caret ^ indicates that
the match should happen at the beginning of a line, while a dollar sign $ indicates
that the match should stop at the end of a line. (Don't confuse this with the caret
inside square brackets to indicate a negation; it has a different meaning if it occurs
outside of brackets.) Additionally, we can indicate that the match should begin or
end at a word boundary with the anchor \b:

•	 ^\d matches all texts that begin with a number.
•	 \d$ matches all texts that end with a number.
•	 ^\d.*\d$ matches all texts that begin and end with a number. Read this

expression as: start of the text, a number, zero or more times any character
(the dot), a number, end of the text. If we would use ^\d+$ instead, we
would have all texts that contain only a number (of any length).

•	 \b\d{3}\b searches for texts that contain at least one number of exactly
three digits, since the \b anchor matches at word boundaries. If the text
contains four-digit numbers but no three-digit numbers, it does not match.
(If we would remove the \b anchors, it would.)

•	 ^\d{3}\b finds texts that start with a three-digit number.

Choices
We have already seen a mechanism for indicating choices. Square brackets give regular
expressions the possibility to choose one of the many characters: [a-z123] searches for
texts with at least one lowercase letter or any of the digits 1, 2, and 3. Often, the choices
are larger, as they can be several letters or words long. For this, the or operator | was
introduced. It works as an OR operator between several alternatives:

•	 glass|wood|steel will match texts that contain glass, wood, or steel.
•	 \d+|many|few matches either a number, many or few.
•	 N\d{5},|N\d{8}, matches either five-digit or eight-digit numbers that start

with an N and end with a comma, but nothing in between (so no six-digit
numbers for instance).

Appendix

[87]

Groups
The only things we haven't covered so far are groups. If you want to use quantifiers
on a group of characters instead of on a single character, you have to enclose them
in parentheses ():

•	 While la+ matches texts that contain la, laa, laaa, and so on, the expression
(la)+ finds texts that contain la, lala, lalala, and so on.

•	 The expression analyz|se would match texts that contain analyz and texts
that contain se. This is probably not that useful. On the other hand, the
expression analy(z|s)e matches both analyze and analyse. Note that
in this case, this is equivalent to analy[zs]e because the choice consists of
a single letter. However, this would not be the case with analyz(e|ing),
which would match analyze and analyzing.

As parentheses have a special meaning, they need to be escaped as well. \(and \)
match parenthesis literally.

Overview
The following table provides an overview of the special symbols in
regular expressions:

Symbol Meaning
ABC… abc… Match the corresponding letters literally
123… Match the corresponding numbers literally
[xyz] Match one of the characters inside the braces
[^xyz] Match any character that is not inside the braces
[0-9] Match one of the characters inside the range
\d Match a digit
\D Match a non-digit
\w Match a letter, number, or underscore
\W Match anything that is not a letter, number, or underscore
. Match any character except a newline
\n Match a newline
\. Match an actual dot (the backslash escapes the next character)
? Match the preceding item zero or one time
* Match the preceding item zero or more times
+ Match the preceding item one or more times

Regular Expressions and GREL

[88]

Symbol Meaning
{3} Match the preceding item three times
{3,6} Match the preceding item three to six times
{3,} Match the preceding item at least three times
{,6} Match the preceding item up to six times
^ Match at the beginning of the text
$ Match at the end of the text
\b Match at a word boundary
cat|dog|cow Match one of the alternatives

General Refine Expression
Language (GREL)
The true power of regular expressions emerges if we can use them not only for
finding data, but also for manipulating data. GREL enables that and a lot of other
functionality as well. It is a simple language designed for easily manipulating values.
It consists of a set of built-in functions as well as several variables that are available
through OpenRefine. We've briefly touched upon it in several recipes and we will
show you the way to build your own GREL expressions here.

Transforming data
One place where GREL comes in handy especially is when you need to transform
the values in your cells. You can either change cells in-place (by navigating to the
respective column dropdown and then to Edit cells | Transform…) or make a
new column with the transformed values (by navigating to the respective column
dropdown and then to Edit column | Add column based on this column…). We
will try some examples on the Object Title column here.

When you open any of the transformation dialogs, you see a first GREL expression.
It is simply called value and gives back the original value of the cell. That is not
really useful, but we can start from there to learn some tricks. For instance, the GREL
expression "TITLE: " + value + "." adds the text TITLE: before the value and
appends a dot to the end. Note that literal text must be surrounded by single or
double quotes so OpenRefine doesn't confuse it with commands. You can see the
preview get updated as you build the expression.

Appendix

[89]

Something more useful is to change some text. For instance, we can replace the
string stone by stones in each cell using value.replace("stone", "stones").
The replace function is called here on the value with the dot notation. We're telling
OpenRefine to take the cell value and to replace all occurrences of stone with stones.

It gets all the more powerful if we combine this with regular expressions. As you
can see, some of the cell values start with a number. We can remove this number by
doing value.replace(/^\d+ /, ""). Note how the regular expression is enclosed
in slashes //, whereas the replacement string is enclosed in double quotes "".

We can even go further by using groups. Not only are those used within regular
expressions to treat several characters as a single unit, they also save the matched
contents for later reuse. Therefore, we can replace the numbers at the start with
something more meaningful. For instance: 234 becomes Object 234:. This is possible
with the following expression: value.replace(/^(\d+) /, "Object $1: "). You
identify a group with a dollar sign followed by its number. The first group is called
$1, and the special identifier $0 is used for the result of the entire expression.

The functionality is only limited by the complexity of your expressions.
A more difficult example we have noticed before is that cells in the multi-valued
Categories column sometimes contain empty values. For instance, a value such as
"|Stones||Bones|||Buildings" actually only contains three values, but if you
split on the vertical bar, you will get seven of them (including four empty ones)
because there are six divider bars. We can get rid of all these fake bars. Bars at the
beginning must be removed, so we first do value.replace(/^\|/, ""). This looks
a little more complicated than it is because the bar has to be escaped as it has a
special meaning in regular expressions. To change multiple occurrences into a single
one, we can do value.replace(/\|+/, "|"). Note how the vertical bar is escaped
in the regular expression, but not in the replacement string, as it has no special
meaning there.

OpenRefine has other methods than replace, as you can see in the useful Help tab
of the expression editor, or in the overview at https://github.com/OpenRefine/
OpenRefine/wiki/GREL-Functions. One example is the split method. When used
on the Categories field, we can count how many different values are present in each
cell as follows: value.split("|").length(). Here, we instruct OpenRefine to split
the value whenever it encounters a vertical bar, and then uses the length function
to count the number of resulting values. You can even build more complicated
expressions such as value.split("|").uniques().join("|"), which, as we've
seen in Chapter 3, Advanced Data Operations, removes duplicate values from the field.

Regular Expressions and GREL

[90]

Creating custom facets
Now it is time to teach you something that we have been hiding for a long time:
every time you create a facet, you actually execute a GREL expression. For instance,
let's create a simple facet by clicking on the Object Title dropdown and navigating
to Facet | Customized Facets | Facet by blank. Now click on the change link at
the top-right of the newly created facet. OpenRefine will reveal the underlying
expression just underneath the facet title and will show you a dialog box to
customize the facet as shown in the following screenshot:

We see that the expression for a blank facet is isBlank(value). Indeed, the
isBlank function returns true if its value is blank and false if its value is not.
We change this now to a different facet, for instance, if we want to know whether
or not the title starts with the number 1. The expression for that would be value.
startsWith("1"). That gives us a facet where true starts with 1 and false does not
start with 1 (and (error) indicates that the value was empty).

This is a great opportunity to learn about GREL. As every
facet has an underlying GREL expression, you can study
them to learn how they work. For instance, a Duplicates
facet will teach you the function facetCount. If you're
in doubt, remember that all dialogs that allow you to edit
expressions also have a Help tab with an overview and
explanation of all available functions.

Appendix

[91]

If you want a facet of your own, you don't have to start with any of the pre-made
facets. For instance, if we want to filter on the number of categories, we can create a
custom facet by going to the Categories dropdown and clicking on Facet, Custom
text facet…. Enter the expression value.split("|").length() and click on OK.
You see a new Categories facet on the left-hand side which lets you choose the
number of categories. If, like here, the output of your expression is a number, you
might want to create a numeric facet instead. Follow the same steps, but navigate to
Facet | Custom numeric facet… this time. This allows you to filter your records in a
numeric way. Custom facets are a great way to explore your dataset in detail without
touching your data.

Solving problems with GREL
Finally, some knowledge of GREL comes in handy in those places where something
doesn't quite work the way you expect. For instance, we saw in Chapter 2, Analyzing
and Fixing Data, that the duplicates facet works fine on the Registration Number
column, but not on Record ID. Let's see if we can fix that. Create a duplicates facet
by clicking on the Record ID dropdown and navigating to Facets | Customized
facets | Duplicates facet.

Be sure to try this with the original dataset that has not been
cleaned, otherwise the duplicates have already been removed.

As you might recall, OpenRefine does not find duplicates. So, let's edit the expression
to update that. When we click on the Change link, we see the original expression:

facetCount(value, 'value', 'Record ID') > 1

The problem here is that value is a number and facetCount only works with
strings. The solution is to convert value to a string, like this:

facetCount(value.toString(), 'value', 'Record ID') > 1

This will correctly indicate the duplicate rows in the facet.

You might be wondering: how could I ever have found this out myself? The secret
is practice and exploration. The more datasets you analyze, clean, and link in
OpenRefine, the better you will get at it. Also, you'll gain more and more experience
with regular expressions and GREL as you gradually begin to master the basics. From
that point onwards, it is a small step to the things that are increasingly complex. This
book has tried to show you the direction; now it's time to go your own way.

Index
A
anchors 86

C
case transformations 40
cells

clustering 52-54
cell values

transforming 55-57
character classes 82-84
choices 86
Clojure 56
clustering 52
columns

collapsing 12
expanding 12
manipulating 12
moving 13, 14
removing 14
renaming 14
transposing 61
transposing, into rows 62, 63

consecutive whitespace 39
customized facets 30-33

D
data

exploring 10, 11
faceting 24, 25
sorting 22, 23
splitting, across columns 60, 61

data cleaning 41 6
data profiling 41 6

DBpedia Spotlight service 78
derived columns

adding 58
distance function 54
duplicate facet

detecting 34-36

E
extensions. See OpenRefine extensions

F
faceting

about 24
star or flag used 33, 34

facets
about 24
customized facets 30
numeric facets 28
text facets 25
types 25

file formats, OpenRefine 8, 9
Freebase Gridworks 66

G
General Refine Expression

Language. See GREL
GREL

about 30, 56, 81, 88
custom facets, creating 90, 91
data, transforming 88, 89
used, in problem solving 91

groups 87

[94]

H
HyperText Markup Language (HTML)

code 39

I
Interactive Data Transformation

tools (IDTs) 6

J
Jython (Python implemented in Java) 56

K
key collision 54
keying function 54

L
Library of Congress Subject Headings

(LCSH) 73
Linked Data

principles 74
reconciling with 73-76

Linux
OpenRefine, installing 7

M
Mac

OpenRefine, installing 7
matching rows

removing 41-44
memory, OpenRefine

on Linux 20
on Mac 20
on Windows 19

multi-valued cells
handling 46-48

N
named entities, Powerhouse Museum

dataset
extracting 76-80

Named-Entity Recognition extension
URL 77

Named-Entity Recognition (NER)
extension 69

nearest neighbor 54
numeric facets 28-30

O
OpenRefine

about 5
cell values, transforming 55
columns, manipulating 12
columns, transposing 61
columns, transposing into rows 62
data, exploring 10
data, faceting 24
data, sorting 22
data, splitting across columns 60, 61
derived columns, adding 58, 59
downloading 6
duplicate facet, detecting 34
GREL 81
installing 6
installing, on Linux 7
installing, on Mac 7
installing, on Windows 7
matching rows, removing 41
memory, allocating 19
multi-valued cells, handling 46, 47
project, creating 7, 8
project, exporting 17
project history, using 14
regular expressions 81
rows and records mode, alternating 49
rows, transposing 61
similar cells, clustering 52
simple cell transformations, using 38
supported file formats 8
text filter, applying 36

OpenRefine extensions
for Linux 71
for Mac OS X 71
for Windows 70
installing 69-71

P
Powerhouse collection 25
Powerhouse Museum dataset

[95]

Linked Data, reconciling with 73-75
named entities, extracting 76-78
reconciliation service, adding 71
values, reconciling with Freebase 66-69

project
creating 7
exporting 17, 18

project history
accessing 15, 17

Q
quantifiers

about 85
asterisk * 85
plus sign + 85
question mark ? 85

R
RDF 72
RDF extension

downloading 71
installing 71

reconciliation service
adding 71

record 49
records mode

alternating, with rows mode 49-51
regular expressions

about 81
overview 87, 88

regular expressions, for text patterns
about 81
anchors 86
character classes 82
choices 86
groups 87
quantifiers 85

Resource Description Framework. See RDF
row mode

alternating, with records mode 49-51
rows

about 49
reordering 24
transposing 61

S
Semantic Web 73
shorthand character classes 83
simple cell transformations

using 38-41
SPARQL 72

T
tab separated values (TSV) 27
text facets 25-28
text filter

applying 36, 37
timeline facet 29

U
Unicode char-code facet 32
URL (Uniform Resource Locator) 65

W
whitespace

trimming 39
Windows

OpenRefine, installing 7

Thank you for buying
Using OpenRefine

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Instant Weka How-to [Instant]
ISBN: 978-1-78216-386-2 Paperback: 80 pages

Implement cutting-edge data mining aspects in
Weka to your applications

1.	 Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results

2.	 A practical guide with examples and
applications of programming Weka in Java

3.	 Start with the basics and dive deeper into the
more advanced aspects of Weka

4.	 Learn how to include Weka's machinery in
your Java application

Instant Pentaho Data Integration
Kitchen [Instant]
ISBN: 978-1-84969-690-6 Paperback: 68 pages

Explore the world of Pentaho Data Integration
command-line tools which will help you use
the Kitchen

1.	 Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results

2.	 Understand how to discover the repository
structure using the command line scripts

3.	 Learn to configure the log properly and how
to gather the information that helps you
investigate any kind of problem

4.	 Explore all the possible ways to start jobs and
learn transformations without any difficulty

Please check www.PacktPub.com for information on our titles

Apache Mahout Cookbook
ISBN: 978-1-84951-802-4 Paperback: 300 pages

A fast, fresh, developer-oriented dive into the world
of Mahout

1.	 Learn how to set up a Mahout development
environment

2.	 Start testing Mahout in a standalone
Hadoop cluster

3.	 Learn to find stock market direction using
logistic regression

4.	 Over 35 recipes with real-world examples
to help both skilled and the non-skilled
developers get the hang of the different
features of Mahout

Machine Learning with R
ISBN: 978-1-78216-214-8 Paperback: 330 pages

Learn to use R to apply powerful machine learning
methods and gain insight into real-world application

1.	 Harness the power of R for statistical
computing and data science

2.	 Use R to apply common machine learning
algorithms with real-world applications

3.	 Prepare, examine, and visualize data
for analysis

4.	 Understand how to choose between machine
learning models

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Authors
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Diving Into OpenRefine
	Introducing OpenRefine
	Recipe 1 – installing OpenRefine
	Windows
	Mac
	Linux

	Recipe 2 – creating a new project
	File formats supported by OpenRefine

	Recipe 3 – exploring your data
	Recipe 4 – manipulating columns
	Collapsing and expanding columns
	Moving columns around
	Renaming and removing columns

	Recipe 5 – using the project history
	Recipe 6 – exporting a project
	Recipe 7 – going for more memory
	Windows
	Mac
	Linux

	Summary

	Chapter 2: Analyzing and Fixing Data
	Recipe 1 – sorting data
	Reordering rows

	Recipe 2 – faceting data
	Text facets
	Numeric facets
	Customized facets
	Faceting by star or flag

	Recipe 3 – detecting duplicates
	Recipe 4 – applying a text filter
	Recipe 5 – using simple cell transformations
	Recipe 6 – removing matching rows
	Summary

	Chapter 3: Advanced Data Operations
	Recipe 1 – handling multi-valued cells
	Recipe 2 – alternating between rows and records mode
	Recipe 3 – clustering similar cells
	Recipe 4 – transforming cell values
	Recipe 5 – adding derived columns
	Recipe 6 – splitting data across columns
	Recipe 7 – transposing rows and columns
	Summary

	Chapter 4: Linking Datasets
	Recipe 1 – reconciling values with Freebase
	Recipe 2 – installing extensions
	Recipe 3 – adding a reconciliation service
	Recipe 4 – reconciling with Linked Data
	Recipe 5 – extracting named entities
	Summary

	Appendix: Regular Expressions
and GREL
	Regular expressions for text patterns
	Character classes
	Quantifiers
	Anchors
	Choices
	Groups

	Overview
	General Refine Expression
Language (GREL)
	Transforming data
	Creating custom facets
	Solving problems with GREL

	Index

