download.file(url = "http://biogeo.ucdavis.edu/data/climate/worldclim/1_4/grid/cur/bio_10m_esri.zip",
destfile = "WorldClim_data/current_bioclim_10min.zip",
method = "auto")
unzip( zipfile = "WorldClim_data/current_bioclim_10min.zip",
exdir = "WorldClim_data/current",
overwrite = T)
list.files("WorldClim_data/current/bio/")
bioclim_world <- stack(list.files("WorldClim_data/current/bio", pattern ="bio_", full.names=T), RAT = FALSE)
plot(raster("bio_1.tif"))

plot(raster("bio_12.tif"))

bio_data<-read.table("biodata.csv",header=TRUE,sep=";")
head(bio_data)
## ID bio_1 bio_10 bio_11 bio_12 bio_13 bio_14 bio_15 bio_16 bio_17 bio_18
## 1 1 115 202 40 483 58 13 34 153 61 62
## 2 2 110 159 59 1394 146 71 18 419 250 250
## 3 3 144 186 104 969 141 25 43 385 110 136
## 4 4 109 173 45 801 82 55 12 225 170 195
## 5 5 102 154 49 1522 173 68 24 478 243 243
## 6 6 133 179 92 1144 161 31 42 451 127 151
## bio_19 bio_2 bio_3 bio_4 bio_5 bio_6 bio_7 bio_8 bio_9 decimalLatitude
## 1 133 113 37 6357 293 -8 301 99 200 40.22432
## 2 396 114 50 3895 238 10 228 84 159 -37.86285
## 3 323 60 39 3176 226 75 151 113 182 42.95462
## 4 183 130 47 4980 255 -18 273 105 52 -35.53403
## 5 469 114 49 4087 235 3 232 56 154 -37.81271
## 6 397 62 38 3361 223 63 160 101 175 42.97655
## decimalLongitude country
## 1 -5.148742 Spain
## 2 146.379080 Australia
## 3 -9.193672 Spain
## 4 149.240386 Australia
## 5 146.338105 Australia
## 6 -9.058642 Spain
summary(bio_data)
## ID bio_1 bio_10 bio_11
## Min. : 1.0 Min. : 71.0 Min. :113.0 Min. : 15.00
## 1st Qu.:108.2 1st Qu.:112.0 1st Qu.:173.0 1st Qu.: 51.25
## Median :215.5 Median :124.0 Median :184.0 Median : 60.00
## Mean :215.5 Mean :123.9 Mean :183.1 Mean : 63.87
## 3rd Qu.:322.8 3rd Qu.:131.0 3rd Qu.:191.0 3rd Qu.: 78.75
## Max. :430.0 Max. :181.0 Max. :251.0 Max. :128.00
## bio_12 bio_13 bio_14 bio_15
## Min. : 442.0 Min. : 47.0 Min. : 7.00 Min. : 9.00
## 1st Qu.: 766.5 1st Qu.: 85.0 1st Qu.:42.00 1st Qu.:14.00
## Median : 873.5 Median :100.0 Median :48.50 Median :22.00
## Mean : 925.7 Mean :108.3 Mean :49.13 Mean :22.31
## 3rd Qu.:1042.2 3rd Qu.:125.0 3rd Qu.:57.00 3rd Qu.:29.00
## Max. :1781.0 Max. :228.0 Max. :71.00 Max. :79.00
## bio_16 bio_17 bio_18 bio_19
## Min. :130.0 Min. : 47.0 Min. : 47.0 Min. :105.0
## 1st Qu.:227.0 1st Qu.:151.5 1st Qu.:174.0 1st Qu.:169.2
## Median :276.0 Median :170.0 Median :210.0 Median :213.5
## Mean :295.8 Mean :168.3 Mean :211.8 Mean :248.0
## 3rd Qu.:352.0 3rd Qu.:190.0 3rd Qu.:248.0 3rd Qu.:310.0
## Max. :633.0 Max. :263.0 Max. :419.0 Max. :633.0
## bio_2 bio_3 bio_4 bio_5
## Min. : 60.0 Min. :34.00 Min. :3032 Min. :180.0
## 1st Qu.:109.0 1st Qu.:46.00 1st Qu.:4253 1st Qu.:243.0
## Median :122.0 Median :47.00 Median :4720 Median :255.0
## Mean :115.8 Mean :46.07 Mean :4656 Mean :257.5
## 3rd Qu.:129.0 3rd Qu.:48.00 3rd Qu.:5068 3rd Qu.:274.0
## Max. :148.0 Max. :51.00 Max. :6694 Max. :331.0
## bio_6 bio_7 bio_8 bio_9
## Min. :-34.00 Min. :151.0 Min. : 34.0 Min. : 39.0
## 1st Qu.: -6.00 1st Qu.:232.0 1st Qu.: 84.0 1st Qu.: 72.0
## Median : 4.00 Median :254.0 Median :106.0 Median :123.0
## Mean : 10.04 Mean :247.4 Mean :120.2 Mean :126.8
## 3rd Qu.: 25.00 3rd Qu.:269.0 3rd Qu.:171.0 3rd Qu.:181.0
## Max. : 75.00 Max. :301.0 Max. :251.0 Max. :229.0
## decimalLatitude decimalLongitude country
## Min. :-42.99 Min. : -9.264 Australia:378
## 1st Qu.:-36.64 1st Qu.:145.714 Spain : 52
## Median :-35.34 Median :149.041
## Mean :-25.68 Mean :130.063
## 3rd Qu.:-32.76 3rd Qu.:149.561
## Max. : 43.42 Max. :151.863
aggregate(bio_data,by=list(bio_data$country),FUN=mean)#sin usar fórmula
## Group.1 ID bio_1 bio_10 bio_11 bio_12 bio_13
## 1 Australia 217.7698 122.6614 181.9868 61.72222 906.8968 104.7804
## 2 Spain 199.0000 133.0962 191.5000 79.46154 1062.5385 134.1154
## bio_14 bio_15 bio_16 bio_17 bio_18 bio_19 bio_2 bio_3
## 1 50.05026 21.27513 286.8333 168.5079 215.0979 235.7566 121.26720 47.23280
## 2 42.42308 29.84615 360.9808 166.3846 188.2115 337.2885 75.98077 37.61538
## bio_4 bio_5 bio_6 bio_7 bio_8 bio_9 decimalLatitude
## 1 4690.029 259.2831 5.145503 254.1376 123.74603 118.3201 -35.08138
## 2 4405.942 244.2500 45.596154 198.6538 94.30769 188.5962 42.65719
## decimalLongitude country
## 1 148.391126 NA
## 2 -3.170822 NA
boxplot(bio_1~country,data=bio_data)

t.test(bio_1~country,data=bio_data)
##
## Welch Two Sample t-test
##
## data: bio_1 by country
## t = -6.2393, df = 115.6, p-value = 7.461e-09
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -13.747369 -7.122188
## sample estimates:
## mean in group Australia mean in group Spain
## 122.6614 133.0962
hist(bio_data$bio_1,main="Histograma")

aggregate(bio_data,by=list(bio_data$country),FUN=mean)#sin usar fórmula
## Group.1 ID bio_1 bio_10 bio_11 bio_12 bio_13
## 1 Australia 217.7698 122.6614 181.9868 61.72222 906.8968 104.7804
## 2 Spain 199.0000 133.0962 191.5000 79.46154 1062.5385 134.1154
## bio_14 bio_15 bio_16 bio_17 bio_18 bio_19 bio_2 bio_3
## 1 50.05026 21.27513 286.8333 168.5079 215.0979 235.7566 121.26720 47.23280
## 2 42.42308 29.84615 360.9808 166.3846 188.2115 337.2885 75.98077 37.61538
## bio_4 bio_5 bio_6 bio_7 bio_8 bio_9 decimalLatitude
## 1 4690.029 259.2831 5.145503 254.1376 123.74603 118.3201 -35.08138
## 2 4405.942 244.2500 45.596154 198.6538 94.30769 188.5962 42.65719
## decimalLongitude country
## 1 148.391126 NA
## 2 -3.170822 NA
boxplot(bio_12~country,data=bio_data)

t.test(bio_12~country,data=bio_data)
##
## Welch Two Sample t-test
##
## data: bio_12 by country
## t = -4.0668, df = 61.063, p-value = 0.0001388
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -232.16813 -79.11514
## sample estimates:
## mean in group Australia mean in group Spain
## 906.8968 1062.5385
hist(bio_data$bio_1,main="Histograma")

ggplot(bio_data,aes(x=bio_12,fill=country))+geom_histogram()

ggplot(bio_data,aes(x=bio_12,fill=country))+geom_density()

ggplot(bio_data,aes(x=bio_12))+geom_density()+facet_grid(.~country)

library(factoextra)
## Welcome! Related Books: `Practical Guide To Cluster Analysis in R` at https://goo.gl/13EFCZ
library(FactoMineR)
pca_adealbata<-PCA(bio_data[2:19])


fviz_pca(pca_adealbata,col.ind=bio_data$country)
