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Species distribution models (SDMs) are increasingly being
used to address a diverse range of applied and theoretical
questions (Guisan and Thuiller 2005, Jeschke and Strayer
2008). Also known as ecological niche models, bioclimatic
envelopes, habitat models and resource selection functions,
SDMs are correlative models that use environmental and/or
geographic information to explain observed patterns of
species occurrences. Their expanding use means that models
are now being fitted to new forms of data, including a
recent focus on modelling occurrence records from mu-
seums or herbaria (Graham et al. 2004). For some
applications, such as climate change or invasive species
research, model predictions are extended beyond the
geographic or environmental region from which training
samples were drawn (Araújo et al. 2005). SDMs are also
being used in a variety of fields including evolutionary
biology, where they are used to study topics such as
speciation or hybrid zones (Kozak et al. 2008) and
epidemiology, where they are used to predict the spread
of disease (Peterson et al. 2002). As a result of these diverse
uses of SDMs that have been spurred on by advances in
geographic information systems (GTS, Foody 2008) and
data analysis (Breiman 2001a), new modelling methods
continue to be implemented. Model complexity has
generally increased over time from simple environmental
matching (e.g. BIOCLIM, Busby 1991; DOMAIN, Car-
penter et al. 1993) to fitting more complex non-linear
relationships between species presence and the environment
(e.g. generalised additive models, GAM, Hastie and
Tibshirani 1990, Yee and Mitchell 1991; and maximum
entropy modelling, MaxEnt, Phillips et al. 2006). Recent
emphases on machine-learning and Bayesian methods
indicate that new methods will continue to be developed
(Latimer et al. 2006).

This wide array of methods, data types and diverse
research questions imply firstly, that there are many
different requirements of modelling methods, and secondly,
that when choosing a method, knowledge is required about
which method is best suited to the available data and the
intended application. However, the criteria and advice that
would enable informed choice of method are currently

scattered throughout the literature, and are incomplete.
This makes it hard for most users to know whether it is
worth adopting newer methods and for newcomers to know
where to start.

How could species distribution modelling as a research
field provide clearer advice as to what methods are best for a
given application? To date research has focused on studies
that compare model performance across multiple methods,
address specific solutions to a given statistical or sampling
issue, or provide detailed treatments of particular models.
Some attempts have also been made to link ecological
theory to choice of method (Table 1). While this research
has provided information and guidance necessary for
selecting relevant methods, it is our opinion that we need
more syntheses of existing knowledge, more advice from
statisticians and computer scientists expert in the algo-
rithms, and a broader suite of evaluation methods that
target not just whether there are differences in predictive
performance, but why these differences occur. This forum
piece focuses on the third of these, and aims to demonstrate
the effectiveness of asking why.

There are various approaches for assessing why models
differ in predictive performance, including developing
strong theoretical knowledge of how a method works,
testing multiple parameter settings for the method and
observing effects on outputs, and using data with known
characteristics to test model fit and prediction. The latter
can be sets of data with known properties e.g. drawn from a
known distribution, created from a known equation
(Bio 2000, Moisen and Frescino 2002) or simulated
(artificial) species (Austin et al. 2006). Simulated species
are particularly useful if relevant features such as population
processes, competition, or typical landscape properties can
be included (Tyre et al. 2001, Reineking and Schröder
2006, Meynard and Quinn 2007, Kearney et al. 2008).
While we encourage the use of any approach that gives
insight into why methods differ, here we choose to use a
simulated species within a real landscape.

We evaluate three applications of distribution modeling:
1) understand the relationships between the species and its
environment; 2) predict which parts of the landscape are
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more or less suitable for the species by creating a map of
relative suitabilities; 3) extrapolate to environmental condi-
tions outside those in the sample space. Because simulated
species provide known species-environment relationships
and spatial distribution we can evaluate differences among
methods in relation to the truth and gain insight into why
these differences exist.

Simulating the species and sampling it

We created a simulated plant species and mapped it onto a
landscape in southern Australia. The species responds to
three variables: wetness, aspect (‘‘southness’’) and geology
and prefers wet and south-facing (shaded) sites and fertile
substrates. We created an interaction between the response
to wetness and the summed responses to southness and
geology, and weighted the terms so that wetness dominated
the final distribution (eq. 1 and Fig. 1, top panel). Note
from Fig. 1 that the responses to continuous variables are
non-linear; details of how each component (SI.wetness etc.)
was specified is presented in Supplementary material
Appendix S1.

Suitability of a cell

�SI:wetness�0:5�(SI:southness� SI:geology)
where SI� suitability index (Supplementary material) (1)

The predictor variables (wetness, southness and geology)
existed as real mapped data; the species’ response to them
was invented. The mapped distribution based on these
relationships shows the suitability (scaled 0 to 1) of each
grid cell for the plant (Fig. 2, top left). Whilst these data
could be modelled as suitabilities, most species data exist as
presence-only or presence-absence records, so we made a
presence-absence realisation of the species. We used the
suitability value in each grid cell of the map as the success
rate for one sample of the binomial distribution, i.e. a cell
with a suitability of 0.6 has a 60% chance of being occupied
(rbinom function in R; R Development Core Team 2006).
The binomial realisation is consistent with an interpretation
of species relationships that says: ‘‘if the environment is only

partially suitable for the species, in some cases the species
will occur there and in some it will not’’. Our presence-
absence realisation of the simulated species occupied 12%
of the cells in the study region (Supplementary material Fig.
S2a).

To provide the data set for modelling we sampled from
the simulated presence-absence distribution by taking 1000
sites at random; these included 115 presences and 885
absences and together comprise what we will call the
presence-absence (PA) sample. This number of sites is
somewhat arbitrary, but is enough to fit models well, and is
consistent with some real data sets used in modelling.
Other protocols such as stratified sampling across environ-
mental gradients could be used instead of random
sampling. The PA sample is visualised in Fig. 3a. Note
that, consistent with the full data set (Fig. 3b), samples at
high wetness are relatively rare. For methods only requiring
presence data, the presence records in the PA sample were
used as presence-only (PO) data. In the online supplement
(Supplementary material Appendix S5) we describe addi-
tional data samples, in which 1000 or 3000 pseudo-
absences were selected and combined with the PO data, to
test the effect of using presences with pseudo-absences
instead of true absence data.

Modelling and evaluation methods

We chose five algorithms to demonstrate what simulated
data can show about differences between methods. For the
PA data we selected a generalised linear model (GLM;
McCullagh and Nelder 1989) as a standard regression
model and two more recent methods, boosted regression
trees (BRT; Friedman et al. 2000) and random forests (RF;
Breiman 2001b). For the PO data, we used MaxEnt and
GARP as featured in recent comparisons (Peterson et al.
2007, Phillips 2008). MaxEnt, GARP and RF are machine
learning (ML) methods. The version of BRT used here is a
ML method reinterpreted into a statistical paradigm. More
details and references for all algorithms are given in the
online supplement. These methods were selected because
they allow a number of contrasts including comparison of

Table 1. Examples of existing approaches addressing a variety of methodological, theoretical, statistical and applied questions.

Category Aim Examples

Comparative studies To quantify whether methods perform
differently (in terms of model fit or prediction)
and to search for any general patterns in the
differences

Moisen and Frescino 2002, Seguardo and Araújo 2004,
Reese et al. 2005, Elith et al. 2006, Hernandez et al. 2006,
McPherson and Jetz 2007a, b, Graham et al. 2008,
Loiselle et al. 2008

Specific methods for
treating specific
problems

To use an appropriate method for data (or for
a problem) that has characteristics violating
assumptions of common models

Models for data with imperfect detection (MacKenzie et al.
2002); models for zero-inflated data (Martin et al. 2005);
models that deal with spatial autocorrelation
(Dormann et al. 2007); subsampling data or accounting
for its bias

Detailed treatments of
methods

To explain a method clearly and inform users
of its characteristics, strengths and weaknesses
for ecological analyses

Generalised additive models (Yee and Mitchell 1991),
MaxEnt (Phillips and Dudik 2008), Resource Selection
Functions (Manly et al. 2002)

Linking ecological theory
to choice of method

To ensure the selected model is consistent with
known ecological theory

Methods appropriate for modelling realistic species
environment relationships (Austin 2002); quantile regression
for modelling limiting factors (Huston 2002); multiplicative
models for modelling interactions and overriding limitations
(McCune 2006)
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Figure 1. Partial responses to the 3 variables (left) and over co-varying wetness and southness (3D plots, right). The true responses (top
panel) were generated by using the equations that define the simulated species to predict to the evaluation strip, then plotting the results
(see Elith et al. 2005 for details). The blue vertical lines show the extent of the variable values in the mapped region; outside these the
models are extrapolating. The range on the wetness and southness axes of the 3D plots is that within the blue lines of the 2D ones, and
predictions range from 0 to 1.
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models developed on PA compared with PO data,
comparison of MaxEnt and GARP, and comparison of
two methods using ensembles of trees, BRT and RF. Each
of the methods is assumed capable for at least some of our
three posed applications, and they have all been used for
related tasks.

For details of model building methods see Table 2 and
Supplementary material Appendix S2, S3 and S4. In those
appendices the settings for some methods are tested in
detail; this reflects our need to explore the effect of a range
of settings for some methods, either because we were
relatively inexperienced with that method or because the
recommended settings did not produce good results.

The first of our applications was to understand the
relationships between the species and its environment. The
second � mapped predictions � would also benefit from
knowledge of the modelled relationships, for understanding
differences between the maps. However, not all methods
provide visualization of fitted functions, so we created a
second set of environmental grids with an evaluation strip
inserted, following Elith et al. (2005). The strip is a simple
data arrangement that holds two of the three environmental
variables at a constant value (here, a value achieving
maximum suitability for the species) whilst varying the
value of the third environmental variable across its
numerical range. To visualise interactions (and to check
that results do not depend on the value at which variables
are held constant), pairs of variables can be covaried. For

this, we included a comprehensive set of combinations of
wetness and southness for each of the four classes of
geology. Predictions were made to the evaluation strip and
then plotted, to illustrate the partial response to one or two
variables while holding other variables constant. This
method is analogous to the partial plots from standard
regression methods (see Elith et al. 2005 for details). To
determine how the models extrapolate we included values
for variables in the evaluation strip that were outside the
variable range in the study area for both wetness and
southness. We acknowledge that this approach only
measures one aspect of extrapolation, and that other
possibilities exist including creating landscapes or evaluation
data with new combinations of variables. The simple test of
extrapolation outside limits will suffice here, as a first
exploration of extrapolation behaviour.

Finally, to evaluate a method’s ability to predict
habitat, mapped predictions were visually and quantita-
tively assessed. Summary statistics were calculated across
predictions in all 80 000 cells, and then used to compare
the presence-absence realisation and the true suitabilities.
Analyses using presence-absence data as truth focussed on:
1) the area under the receiver operating characteristic curve
(AUC; Hanley and McNeil 1982); 2) the remaining
per-observation deviance (i.e. the variation left unex-
plained, as measured by the mean binomial deviance
across sites; Elith and Leathwick 2007); 3) the point
biserial correlation coefficient (a Pearson correlation, Elith

Figure 2. Mapped distributions of the virtual species (top left) and predictions of relative suitabilities from the methods detailed in the
text, legend: whiteB0.1, cream 0.1�0.5, blue-light, blue-green-orange-vermillon at steps of 0.1 from blue (0.5�0.6) to vermillon (0.9�1).
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et al. 2006, COR.pa); and 4) elements of the confusion
matrix for predictions converted to binary values, using a
threshold described later. Predictions were compared with
true suitabilities with a Pearson correlation coefficient
(COR.si).

It is important to use more than one metric to assess
model performance because each quantifies a different
aspect of predictive performance (see Murphy and Winkler

1987 and Pearce and Ferrier 2000 for interesting discus-
sions of this topic). Amongst the measures tested against PA
observations, AUC measures the ability of predictions to
discriminate between observed presence and absence,
regardless of the absolute value of the predictions. COR.pa
also measures discrimination, but includes consideration of
the actual value of the prediction, and how it compares to
the observation. Deviance puts more emphasis on the

Figure 3. (a) The data samples for presence-absence models. Samples are shown at their original true suitability value (vertical axis), but
were converted to presence (blue) or absence (orange) as described in the text. (b) The location of all 80 000 grid cells in environmental
space. The pale yellow mesh shows the full suitability surface from the simulated species, for geology class 1. The points of varying colours
show sites in the four geology classes. Note the few sites with high wetness values.

Table 2. Details of model fitting procedures and settings.

Method Name for model Data Settings and notes on further tests

Genetic algorithm for
ruleset prediction

GARP PO Used v 1.1.6. Details in Supplementary material Appendix S2 on tests to
compare effects of different settings. Results presented here from: species data�
115 PO samples plus pseudo-absences selected by GARP. 50% data used for
training, 50% for extrinsic evaluation. Created 500 models each with a
convergence limit of 0.01 and 1000 maximum iterations. Allowed all rule types.
From the 500 models chose 20% with mid extrinsic omission error and from
those 20 with mid commission error. Final prediction is mean of these. For
predicting to evaluation strip projected to grids with strip inserted.

Maximum entropy MaxEnt PO Used ver. 3.2.1 from the command line. Modelled the 115 PO samples and
allowed MaxEnt to select a random 10000 background samples (the default). All
other settings were the defaults except: flagging geology as a categorical
variable, providing a separate set of grids to project to that contained the
evaluation strip, and using the ‘‘-d’’ flag (see help file for MaxEnt). The -d flag
forces MaxEnt to calculate the probability distribution over the background
samples alone (rather than the default, which calculates it over the joint
background and presence data), and providing it with the best chance to be well
calibrated. For predicting to evaluation strip projected to grids with strip
inserted.

Generalised linear models GLM.pa PA Used R1 and function GLM. Created all possible subsets of models with the
options for each variable being: exclude, or (if continuous): linear, quadratic or
cubic fits. Used AIC to select the best model.

Boosted regression trees BRT.pa PA Used R1 and function GBM with custom scripts of Elith et al. 2008 to build an
ensemble of regression trees. Selected tree complexity of 3, learning rate of
0.001, using prevalence-stratified cross-validation to determine optimal number
of trees (4250). See Supplementary material Appendix S4 for details.

Random forests RF.pa PA Used R1 and function random forest to build an ensemble of classification trees.
Tests of a range of settings are presented in Supplementary material Appendix
S3. Model presented here had 500 trees with one variable randomly selected
from the 3 candidates at each split. No class weights.

1R Development Core Team 2006.
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model calibration i.e. on whether predictions reliably
predict frequencies of occurrence.

Results

Relationship of species to environment

Figure 1 shows the modelled responses to the 3 variables
when others are held at their optima, and in the right
column, the response to co-varying wetness and southness
for geology class one. Here we analyse the results for the
ranges of the variables in the data � i.e. within the blue
vertical lines of Fig. 1. In the later section ‘‘Extrapolation’’
we deal with predictions outside the range of the data.

We would not expect any of the methods to fully retrieve
the species environment relationship of the simulated
species because a relatively small sample of a binary
realisation of the data was used to build the models (Fig.
3a). Nonetheless, several of the methods were able to fit
reasonably accurate functions. This was an easier task for
the methods using smoothed functions (GLM and Max-
Ent), given that the true relationships were smooth.

All methods except GARP modelled geology correctly
(Fig. 1, left column). GARP’s modelled response to geology
varied across different data samples, runs, and summaries of
the data (Supplementary material Appendix S2). GARP
might be expected to model categorical data properly
because it uses logistic rules, but the implementation is a
genetic algorithm version of logistic regression and has not
been coded to properly deal with unordered categorical
variables (Elith unpubl. and Peterson pers. comm.). How-
ever, the atomic rules provide some opportunity to model
geology correctly, and in some cases (Supplementary
material Fig. S3 and S6) the result was better than the
one presented.

The low suitability of dry areas (wetnessB15) was
correctly captured by all methods (Fig. 1, second and fourth
columns). At higher levels of wetness, where the data are
more sparse, BRT modelled the overall shape of the
response most accurately, followed by MaxEnt (slightly
reduced amplitude), RF (smaller amplitude) and GLM
(unnecessary complexity around wetness of 50) and last,
GARP (small amplitude and wrongly predicted that high
wetness was unsuitable). Whilst the general form of the
fitted function was correct for BRT, it was overfitted to the
sample, producing a dip in the response at wetness �30. At
this level of wetness the sample was sparse and happened to
contain more zeros than would be expected for the
suitabilities. RF showed even more overfitting (note the
more uneven surface, Fig. 1, right column), which was only
fractionally reduced by using more trees in the ensemble
(Supplementary material Appendix S3).

Southness (Fig. 1, third and fourth columns) was
difficult to model well, probably partly because the
response included an interaction between southness and
wetness, and also because it was less dominant than
wetness in the suitability equation. RF, BRT and MaxEnt
did best, GLM was reasonable but gave an increasing
response at low values of southness and, without an
interaction, could not capture the response to southness at
high wetness (see right side of 3D plot). GARP did not

manage to model the true response or anything close to it,
and this result was consistent across all tests (Supplemen-
tary material Appendix S2).

Mapped predictions; visual assessments

Differences between the methods were also evident based
on the mapped predictions. We present the results as maps
and plotted data so that any arbitrary impressions intro-
duced by choice of legend in the map (Fig. 2, 4) can be
checked against the plotted results (Fig. 5). Note that the
COR.si in Table 3 acts as a summary measure of the plotted
data in Fig. 5.

Because all methods predicted the response to low
wetness correctly, they all correctly predicted absence at
dry sites (the white areas on the maps, Fig. 2). Modelling
this part of the response accurately meant that all methods
produced a broadly correct mapped pattern. GARP tended
to predict high values across any areas that had at least some
suitability for the species, whereas the other methods
predicted gradations in suitability more accurately (Fig. 2
and related close-up, Fig. 4). The overprediction can be
traced to the errors in retrieving the true underlying species-
environment relationships, and particularly the dominance
given to the incorrectly modelled response to southness. In
other words, why GARP overpredicts is partially answered;
GARP could not retrieve the true relationships in the data.
This is only a partial answer because we do not know what
features of the algorithm cause this overprediction. Simu-
lated data like these could be used to explore whether
another simulated species or different settings for GARP
improve model performance. We were unable to improve
GARP model performance substantially when we used
different settings or methods to combine individual GARP
runs (Supplementary material Appendix S2). Nonetheless,
the results of the different trials shown in the Supplemen-
tary material, are interesting in that they suggest that means
of all runs of GARP are slightly better for these data than
the subsets that are generally advised. They also demon-
strate considerable run-to-run variation (where one run is
500 models and summaries thereof).

As expected, none of the methods perfectly retrieved the
true mapped suitabilities; sample size, characterising the
response with binary data rather than suitabilities, and
algorithmic limitations all contribute to this result. MaxEnt
recreated the general mapped pattern of the simulated
species well and was only worse than the best method, BRT,
with respect to calibration (Fig. 2, 4). Perfect calibration
would have resulted in all records in Fig. 5 sitting on the
diagonal, but a presence-only method cannot be perfectly
calibrated unless information on the species prevalence in
the region is available (but note that proportional calibra-
tion is possible for a PO method � records would follow a
straight line, but the gradient and intercept would not be 1
and 0 respectively). In contrast, the three methods trained
on the PA data should be properly calibrated. The results
for these methods are all reasonable, with BRT predictions
slightly less dispersed than RF and GLM (Fig. 2, 4, 5). We
tested various settings for RF (seven combinations are
presented in Appendix S4); the ones we present here are
those that would have been selected from the out-of-bag
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error estimates, are consistent with those used in other
published studies, and appear close to optimal (Supple-
mentary material Appendix S4).

Before leaving the topic of calibration we note that, with
PO data, MaxEnt calibration results may not always be as
good as those presented here. Our simulated species was
created to vary in suitability from 0 to 1. This range
corresponds to that used in the MaxEnt logistic output
(Phillips and Dudik 2008), so the MaxEnt predictions for
this simulated species were reasonably well calibrated.
However, if our truth was rescaled (say, by multiplying all
suitabilities by 0.5), MaxEnt predictions would be more
poorly calibrated (S. Phillips pers. comm.). This problem is
not restricted to MaxEnt, as shown in Supplementary

material, Appendix S5, where BRT and GLMs are fitted
with PO data. There the choice of the number of pseudo-
absences, and the optional weighting of them, affected
calibration. Together, these issues demonstrate an inherent
problem for models using PO data; they cannot be well
calibrated without information on species prevalence (Ward
et al. in press).

Mapped predictions; quantitative analyses

The summary statistics presented in Table 3 focus on
predictions as continuous values (i.e. in their default format,
such as probabilities). These demonstrate some differences

Figure 4. Close-up of predictions from Fig. 2. Choice of location was via random number selection for centre grid position. Predictions
in greyscale, from white (zero) to black (one); fine grid lines are in the same position on each map.
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between the methods, with the extent of the difference
varying with the statistic. Note that the first row in Table 3
(‘‘Truth’’) indicates the best possible performance for AUC,
Deviance and COR.pa, because it measures the relationship
between the true presence-absence realisation (sampled for
modelling) and the true suitability. The AUC indicated that
all models discriminated the broad patterns of presence and
absence reasonably well, but there was some variation
between methods. The broad success in discriminating
between presence and absence locations probably results
from the correct modelling of dry conditions, because all
the pair-wise comparisons between predictions in these
areas and ones in the wetter areas would have been correctly
ranked. Measures that include consideration of the actual
value of the predictions (all others) emphasise more clearly
that MaxEnt, BRT and GLM all do well, followed by RF
then GARP (Table 3). Note that it is difficult to make a fair
comparison across all methods, because the 3 models fitted

to the PA data had more information than the PO methods,
and this information allows the models to estimate
probabilities and hence to be better calibrated. This
particularly affects remaining deviance (Table 3). Never-
theless, for this exercise MaxEnt does well without this
information (but see the earlier discussion about the scaling
of suitabilities and its effects on calibration in MaxEnt).
The fact that, for PA methods, the order of model
performance is consistent across metrics shows that errors
in prediction are related to both discrimination and
calibration. Given that the general shapes of the fitted
functions for RF are reasonable, it is likely that its reduced
performance in these summary metrics results from the
noisier fit compared with BRT (Fig. 1, right column) and
the slightly poorer calibration.

It is possible that using predictions as continuous values
unfairly discriminates against GARP, because GARP works
by producing a presence-absence prediction, and non-
binary predictions are achieved from summaries across
multiple runs. Because of this, the predictions for all
methods were thresholded and a test of binary predictions
applied. We did this without biasing the results towards
methods with good calibration, by using thresholds that
gave the same prevalence across the landscape for all
methods (following Phillips et al. 2006). This meant that
we used a threshold of 1 for GARP (to get prevalence as
close to truth as possible and to restrict the overprediction
of GARP), then set others in relation to that. The results
(Table 4) are consistent with other results, though the
differences are less extreme. Note that this thresholding
method likely disadvantages methods other than GARP

Figure 5. Predictions (y axis) versus the true suitability for all 80 000 grid cells in the maps in Fig. 2, covering five modelling methods
described in Table 1. The blue diagonal line shows the 1:1 relationship.

Table 3. Comparison of model results with truth, as realised by the
presence-absence map (columns 2, 3 and 4) and the suitability
values (column 5). For all statistics except deviance, higher is better.

Model AUC Remaining
deviance

COR.pa COR.si

Truth (suitabilities) 0.872 0.514 0.508 1.000
GARP 0.822 3.391 0.401 0.793
MaxEnt 0.861 0.612 0.467 0.922
GLM.pa 0.863 0.546 0.480 0.941
BRT.pa 0.862 0.537 0.485 0.954
RF.pa 0.834 0.736 0.448 0.875
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because others are likely to have lower optimal thresholds
when set independently.

Information on BRT and GLM models fitted to the
presence � pseudo-absence data are presented in Supple-
mentary material Appendix S5. These show that in some
(but not all) cases the fitted functions are reasonably
accurate, and that across methods different ways of
sampling and weighting the pseudo-absences have different
effects on the discrimination and calibration of the models.
We note that alternative implementations of BRT that are
better suited to the presence/pseudo-absence data structure
will be available soon (Ward et al. in press).

Extrapolation

The extrapolation behaviours of the models are presented in
Fig. 1, in which the responses to the highest and lowest
values for the wetness and southness, outside the blue
dashed lines, are where the models are extrapolating to
unsampled conditions outside the range of these variables in
the mapped region. The nonsensical negative values of
wetness and southness don’t matter here � the important
question is how the models would extrapolate beyond the
sampled values of data. We had no prior knowledge of
GARP behaviour, and in this example extrapolation was
either a stepped decline (at extremes of southness) or a
constant value. The selected rules in the best-subsets models
would explain this behaviour, but they are not accessible in
the desktop program so could not be analysed. Extrapola-
tion patterns varied in GARP according to the dataset, the
particular run, and the selected subsets (Supplementary
material Fig. S3). By contrast, MaxEnt acts consistently and
by default is ‘‘clamped’’ so it extrapolates in a horizontal
line from the fit at the most extreme environmental value in
the training data, both presence and background. As
expected from the way polynomials behave, a GLM fitted
with cubic and quadratic functions extrapolates by con-
tinuing the fitted trend beyond the last observation,
sometimes with unwanted results. For example, here the
projected increase in suitability at the lower values of
southness is not sensible; north-facing (low southness) sites
should be least suitable for the species. Classification and
regression trees always extrapolate at a constant value from
the last ‘‘known’’ site, as seen for BRT and RF.

Reflections on the simulation

Before considering the wider implications of this simula-
tion, we want to first emphasise what it does not do. Whilst
we built our simulated species to be somewhat ecologically
realistic (the species is affected by more than one variable,
and reacts to predictors in non-linear and non-additive
ways), it is more simple than reality. We do not see that as a
problem, though, if we appropriately restrict our conclu-
sions to ones about the link between the algorithm, data
and fitted functions. Other types of simulations could be
used to test modelling abilities for other aspects of what
influences species distributions in natural populations (e.g.
interactions between species, sink and source habitats). We
also only tested some of the many ways of fitting these
methods � for example, a GLM can include interactions
and use natural splines instead of polynomials to control
behaviours at the extremes of the sample ranges. Finally, we
did not attempt a comprehensive study, though we hope
that our simulation inspires other explorations.

What then does this simulation demonstrate? First,
knowing what an algorithm is doing can give insights
into various features that are apparent in its predictions; it
helps to answer why particular patterns are observed. We
summarise in Table 5 some insights from this study, and
some of the remaining open questions. Testing an
algorithm’s performance using a simulated species approach
and multiple evaluation criteria reveals unique behaviours
of the modelling methods we explored and therefore should
help developers and modellers to understand and improve
model performance. The systematic studies in Supplemen-
tary material Appendix S2, S3 and S5 demonstrate that
carefully evaluating model performance across parameter
settings reveals the effect of those parameters.

Second, our example clearly illustrates the value of
evaluating models from several viewpoints. The summary
statistics indicated which algorithm gave the best mapped
predictions and, when taken together, the metrics gave some
hints about why performance varied. AUC only measures
rank so did not reveal the more extreme differences between
methods that were more related to model calibration. We do
not believe that this means that any of these statistics are
misleading (Lobo et al. 2008), but simply that different
statistics measure different aspects of performance, and that
appropriate statistics relevant to the application of the model
need to be selected. Being able to visualise fitted functions
not only satisfied our application of exploring modelled
relationships, but also allowed us to understand what caused
differences among the methods and how different fitted
functions influenced mapped predictions.

Third, comparing the results for the partial responses
with the quantitative assessments gives some useful insights.
For example, even though the GLM modelled unnecessary
complexity in the wetness response (giving the wave-like
forms in the 3D plots), the evaluation statistics implied it
did nearly as well as BRT. This is in spite of the fact that
BRT had a better controlled fit overall. The distribution of
environments (Fig. 3b) gives the key; there are relatively few
sites in the places where the GLM failed to model the true
response. Similarly, the environmental distribution of the
training data (Fig. 3a) explains why several methods (GLM,
BRT and RF) tended to model a declining response (even if

Table 4. Comparisons among methods when predictions are
reduced to binary results. Because GARP overpredicted, the highest
possible GARP threshold (1) was used to convert GARP predictions
to binary form, then thresholds were selected for all other methods
that gave identical prevalence in the landscape (17.3%, compared
with truth 11.9%). The values in the tables are the proportions of
predictions that fell into each category (true negative etc.) when
cross-tabulated with truth.

Prediction: true
negative

true
positive

false
negative

false
positive

GARP 0.771 0.064 0.056 0.109
MaxEnt 0.778 0.071 0.049 0.102
GLM 0.780 0.073 0.047 0.100
BRT 0.780 0.073 0.047 0.100
RF 0.777 0.070 0.050 0.103

74



only a small trough) to wetness at values early on the
plateau of the true response � the samples are sparse in some
parts of this environment, and several have been realised as
‘‘absence’’ in this particular sample. These results demon-
strate that understanding the environmental distribution of
the data in the region of interest, in the sample, and in
regions that might be used for projection, is a critical part
of understanding the implications for modelling and
prediction.

Finally, the demonstration prompts a range of questions
about what characteristics we want from models in certain
situations. For example, when using species distribution
models to predict how species ranges will shift with climate
change or how they will extrapolate to new regions it is
critical that we understand how the algorithm performs
when projected into new environmental combinations not
sampled by the training data. In other words, is the way that
the algorithm extrapolates appropriate from an ecological
perspective? Different behaviours are apparent in the
implementations of the methods that we tested, but the
choice as to which (if any) is correct is as much an ecological
and/or a physiological question, as a statistical one. In fact,
operationally there are more choices than we demonstrated
� for example, GLMs can include natural splines in which
knots can be specified and extrapolation controlled;
MaxEnt has options to predict zero outside the range of

the data. For a full investigation of extrapolation or
forecasting behaviour a much larger range of tests is
required including prediction to new combinations of
environments. The important point is that we need to first
recognise what different modelling applications require of
SDMs and then research the best means for achieving what
they require. Understanding how the models work and
devising evaluation criteria that are closely matched to the
questions being asked can inform decisions about the best
modelling approach.

Conclusion

We suggest that the SDM literature has not yet matured to
the point that it provides clear guidance for selecting
relevant methods. Additional model comparison studies
may not be fruitful unless they start to ask why certain
methods perform better than others. Deeper insights into
the causes of varying model performance require an
expansion of model evaluation approaches (Araújo and
Guisan 2006), syntheses of existing knowledge, and con-
tributions from experts. Given that applications of SDM
have grown and are likely to continue to proliferate, insight
into the characteristics of models that influence model
performance is essential. For instance, there are applications

Table 5. Information learnt from the case study, including explanations relating to ‘‘why’’.

What Why (demonstrated, postulated, or inferred) What can be learnt?

Categories were modelled well
with most methods

All algorithms, with the exception of GARP could
identify the pattern correctly. GARP’s logistic
regression rules treat categories as ordered data.
Atomic rules should be able to model categorical
values but must not have done so in our example, or
might have been overwhelmed by logistic rules.

Categorical data such as soil type or land-use can be
used in most methods. Don’t use categorical data
with GARP, or present it as ordered categories or in
binary format.

Wetness modelled reasonably
but there was some variation
across methods

Wetness was the dominant driver for the distribution
so was probably the easiest to model correctly. All
methods were capable of modelling non-linear
trends but MaxEnt modelled amplitude imperfectly
(i.e. it was not well calibrated) because it had no
information on prevalence. When sampling was
sparse (wetness �30) GLM responds with a strong
incorrect "trough" in predictions, a consequence of
the complexity of fit allowed, and BRT and RF both
overfit the response. MaxEnt did not model the
detail in the sparse area, probably because the
regularization was strong enough to model a
smoother trend.

Presence-absence data gives more information
for calibration than presence-only. Strong
environmental trends are easiest to model.

If there are "troughs" in fitted functions think about
whether they make sense ecologically and look at
data sparsity. Ignore small fluctuations in fitted
functions for ensemble methods because they likely
represent peculiarities of the sample, and watch for
their effect on predictions. Produce error estimates
to see where data sparsity creates uncertainty.

Southness harder to model Southness was less dominant in the model, and
interactions complicate the response. GLM is likely
to have done better if we modelled the interactions.

It is possible to model weaker trends, but this varies
more across methods. Need to test if GARP’s
tendency to overpredict stems from an inability to
capture all but the strongest trends.

Failing to allow interactions will compromise
models.

Mapped predictions differ Mapped predictions differ because the underlying
fitted functions differ.

Also some clues about why they differ can be
gleaned from the various evaluation stats � e.g.
models with higher unexplained deviance should
produce maps less consistent with the true pattern.

Differences in maps can be understood by looking
at underlying models. It would be useful to develop
tools to link the map to the functions to show, for
any grid cell, what part of the function is relevant.
This would be part of the more comprehensive
evaluation toolbox that is needed.

Extrapolations differ Extrapolations differ because of how the functions
are or are not constrained at the edges of the
environmental response variables.

Knowledge is required about 1) what a method is
doing when extrapolating into novel environments,
and 2) what is sensible. Again, it would be useful to
have tools to link maps to fitted functions for
exploring what is behind the predictions.
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that do not satisfy the underlying assumptions of species
equilibrium with environment (Dormann 2007) such as
range shifts with climate, or species invasions into a new
area. Likewise, there is an increased demand for models that
capture realistic species-environment relationships for the-
oretical studies in both ecology (i.e. niche differentiation
among related species) and evolution (i.e. trait conservatism
and its influence on species distributions). For each case,
what methods are particularly suitable for the intended use?
By providing an example that we believe gives useful insight
into model performance, we hope that both developers and
users will increasingly question what their models are doing
and whether that is most appropriate for the intended
applications and outcomes.

Acknowledgements � Many thanks to Steven Phillips, Mark Burg-
man, John Leathwick, Yung En Chee, Stephen Baines, Michael
Kearney, and Town Peterson for comments on various drafts of
the manuscript, and to Mike Austin, Simon Ferrier and Simon
Barry for asking challenging questions that were the starting points
for several of the ideas. The reviewers and editors gave important
direction and we appreciate their efforts. Jane Elith was funded
by ARC grant DP0772671 and the Australian Centre of
Excellence for Risk Analysis. The colours used in the figures are
from a palette developed for colour-blind people; thanks to its
author for such a good idea: /<http://jfly.iam.u-tokyo.ac.jp/html/
color_blind/#stain/>.

References
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