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Abstract 

It is thought that species abundance is correlated with environmental suitability 

and that environmental variables, scale, and type of model fitting can confound 

this relationship. We performed a meta-analysis to (i) test whether species 

abundance is positively correlated with environmental suitability derived from 

correlative ecological niche models (ENM), (ii) test whether studies 

encompassing large areas within a species range (>50%) exhibited higher AS 

correlations than studies encompassing small areas within a species range 

(<50%), (iii) assess which modelling method provided higher AS correlation, 

and (iv) compare strength of the AS relationship between studies using only 

climatic variables and those that used both climatic and other environmental 

variables to derive suitability. We used correlation coefficients to measure the 

relationship between abundance and environmental suitability derived from 

ENM. Each correlation coefficient was considered an effect size in a random-

effects multivariate meta-analysis. In all cases we found a significantly positive 

relationship between abundance and suitability. This relationship was consistent 

regardless of scale of study, ENM method, or set of variables used to derive 

suitability. There was no difference in strength of correlation between studies 

focusing on large or small areas within a species’ range or among ENM 

methods. Studies using other variables in combination with climate exhibited 

higher AS correlations than studies using only climatic variables. We conclude 

that occurrence data can be a reasonable proxy for abundance, especially for 

vertebrates, and the use of local variables increases the strength of the AS 

relationship. Use of ENMs can significantly decrease survey costs and allow the 

study of large-scale abundance patterns using less information. Including only 
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climatic variables in ENM may confound the relationship between abundance 

and suitability when compared to studies including variables taken locally. 

However, modelers and conservationists must be aware that high 

environmental suitability does not always indicate high abundance.  

Key words: abundance spatial variation, habitat suitability, species distribution 

modelling. 
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INTRODUCTION 

For every species there should be one or a few most favorable sites 

within its geographic range where its abundance is highest and many other 

sites of lower quality where it is less abundant but still able to persist (Brown 

1984). Such a pattern reflects population response to local conditions (e.g. food 

resources and climatic conditions) in particular the extent to which local 

conditions meet species ecological requirements (Hutchinson 1957, Brown 

1984).  

There is a well documented correlation between distribution and 

abundance of species (Brown 1995, Gaston 2003). However, He and Gaston 

(2007) argue that "how best to estimate abundance from distribution largely 

remains an unsolved problem". One way of addressing spatial variation of 

abundance within a species range is interpolating local abundance data over a 

geographic domain of interest (Bahn and McGill 2007) relying on the 

assumption that abundance is spatially autocorrelated (Brown 1995). However, 

this approach does not allow inference about any ecological process that may 

mediate the role of environment on species abundance. Habitat selection or 

resource selection functions (RSF) can also be used to predict abundance 

(Manly et al. 2002, Boyce et al. 2016). RSFs are proportional to the probability 

of an area being used by an animal and link populations to their habitats (Boyce 

and McDonald 1999) and scale animal abundance to the probability of selecting 

a given habitat (Johnson and Seip 2008).  

Correlative ecological niche modelling (ENM) using occurrence data can 

also provide environmental suitability for a species based on environmental 

variables where areas with highest suitability could indicate areas that best 
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match a species’ ecological niche (Yackulic et al. 2013). The underlying 

mechanism is based on population demography. Within a species range it is 

expected that the intrinsic growth rate of populations is positive whereas outside 

a species range it is expected to be negative (Gaston 2003). However, within a 

species range the probability of occurrence can be positively or negatively 

related with the intrinsic growth rate of a population and positively related to the 

carrying capacity of a population (Thuiller et al. 2014). Therefore areas with high 

environmental suitability or probability of occurrence tend to harbor larger 

populations because favorability of local conditions increases birth and survival 

rates and decrease extinction rate (e.g. Morrison et al. 2006). In fact, probability 

of occurrence is negatively correlated with probability of extinction (Araújo et al. 

2002). Extinction events are more common in areas with lower probability of 

occurrence than in areas with higher probability of occurrence. Spatial 

autocorrelation in presence data occurs because species exhibit greater 

aggregations (i.e. high abundance) where the environment is more suitable 

(Araújo et al. 2002). Therefore, areas of high environmental suitability should 

also exhibit high abundances. This hypothesis relies on the assumption that 

population dynamics are in equilibrium with the environment. If populations are 

changing rapidly, we may not expect to find real and meaningful correlations 

between abundance and environmental suitability. 

Despite environmental determinism being commonly claimed to explain 

aggregations of individuals of a species, other factors may also play a role on 

species abundance such as demography (Ehrlén and Morris 2015), philopatry 

(Stacey and Ligon 1991) or neutral processes (Hubbell 2001). However, even 

demographic and philopatric processes can be affected by the environment 
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because species only occur at high densities where the environment is suitable 

(Araújo et al. 2002). To this end, there should be a positive abundance-

suitability (AS) relationship and ENM should provide an effective proxy for 

spatial variation in abundance over geographic space. Furthermore, 

understanding the AS relationship may elucidate how species respond to 

environmental conditions, especially under climate change scenarios. 

The AS relationship has been tested across a number of different 

organisms and has also been used for various ecological applications. For 

example, Mellin et al. (2012) modelled the distribution of two marine mollusks 

species. They assessed the AS relationship and used it to estimate the potential 

effects of global change on mollusk populations. If the AS relationship holds 

true, identifying areas of high environmental suitability will improve our ability to 

find populations of rare species with narrow habitat requirements (e.g. Gogol-

Prokurat, 2011). In addition, such an approach also enables researchers to 

forecast areas more prone to biological invasions (Januchowski-Hartley et al. 

2011, Kulhanek et al. 2011). 

Studies using correlative ENM to relate predicted species abundance 

with environmental suitability have found varying support for the AS 

relationship. Some authors have found strong and positive correlations (e.g. 

Ready et al. 2010, Kulhanek et al. 2011, Oppel et al. 2012, Weber and Grelle 

2012), while others have found only moderate (e.g. Seoane et al. 2005, 

Elmendorf and Moore 2008, Tellería et al. 2012, Tôrres et al. 2012) or low to 

non-significant correlations (e.g. Pearce and Ferrier 2001, Nielsen et al. 2005, 

Filz et al. 2013). When AS correlations are low, ENM’s are not good predictors 

of abundance (Jiménez-Valverde et al. 2009). However, a comprehensive 
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analysis encompassing numerous tests addressing the AS relationship is still 

lacking. Such analysis represents an important step towards formulating 

generalizations regarding the relationships between suitability derived from 

ENM’s and actual abundance of organisms in nature.  

One potential explanation for some weak AS relationships is that spatial 

scale at which occurrence and abundance are actually measured may affect the 

strength of the relationship (Nielsen et al. 2005). Indeed, scale can be a key 

consideration when estimating spatial variation of abundance from occurrence 

data (He and Gaston 2007). Varying the size of the study area can generate 

different abundance estimates (Aebischer et al. 1993). Studies carried out over 

small areas within a species’ range may not include enough environmental 

variation experienced by a species to find a strong AS relationship. In such 

cases, environmental variables might vary within a relatively small range of 

values and such incomplete sampling may reduce power of tests (Nielsen et al. 

2005, Van Couwenberghe et al. 2012). On the other hand, studies including a 

large area within a species’ geographic range encompass more environmental 

variation experienced by that species and will likely produce higher correlations 

than studies considering only small portions of a range (see Tôrres et al. 2012, 

Weber and Grelle 2012). In addition, not covering the entire species range, or at 

least a large portion of it, decreases the probability of sampling sites with high 

abundance because few areas harbor many individuals and most areas harbor 

few individuals (Brown et al. 1995, Martínez-Meyer et al. 2013). So far there has 

been no analysis examining the AS relationship using different proportions of 

species ranges (e.g. small vs. large areas within ranges). 
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Other methodological issues may affect the strength of AS correlations. 

For example, there are three different approaches used to model ecological 

niches: 1) statistical models, 2) similarity and 3) machine learning methods 

(Franklin 2010). It is still unclear which approach performs better when trying to 

correlate abundance with environmental suitability. For example, BIOCLIM (a 

similarity method) had the best performance in correlating environmental 

suitability with jaguar abundance among eleven different algorithms, although 

the correlation was only moderate (Tôrres et al. 2012). On the other hand, 

machine learning methods and statistical models seem to provide suitability 

values that correlate better with abundance than similarity methods (e.g. 

Kulhanek et al. 2011, Mellin et al. 2012, Weber and Grelle 2012). Therefore, we 

are still far from a comprehensive understanding of the effect of using different 

methods to address the AS relationship.  

In addition to issues of proportion of species range and type of modelling 

method, another cause of varying correlation between environmental suitability 

and species abundance may be the set of environmental predictors used to 

derive environmental suitability from occurrence data. For example, the climatic 

database most used to derive suitability is the Worldclim database 

(http://www.worldclim.org/), provided by Hijmans et al. (2005). However, it is 

unlikely that climate is the only influence on species abundance. Moreover, it is 

widely known that species abundance responds to environmental disturbances 

(such as distance to cities and amount of pollutants) and conditions other than 

climate such as tree density, type of soil, or pH (e.g. Van Couwenberghe et al. 

2012), to namely only a few.  

A
cc

ep
te

d
 A

rt
ic

le



 

 

‘This article is protected by copyright. All rights reserved.’ 

Different algorithms used to derive environmental suitability have been 

used long enough and as presented above provide conflicting empirical support 

for the AS relationship. Hence, it is important to review current knowledge and 

perform a meta-analysis to quantify the degree to which species abundance is 

correlated with suitability as well as the influence of methodological issues such 

as amount of species’ range examined, modelling methods or set of variables 

used to derive environmental suitability. Here our goals are (i) to test whether 

species abundance is positively correlated with environmental suitability derived 

from correlative ENMs, (ii) to test whether studies encompassing large areas 

within a species range show higher AS correlations than studies encompassing 

small areas, (iii) to assess which modelling method provides higher AS 

correlation, and (iv) to compare strength of the AS relationship between studies 

that use only climatic variables with those using both climatic and environmental 

variables to derive suitability. 

 

METHODS 

Correlation coefficients 

We searched for papers that tested the AS relationship using suitability 

values obtained from correlative ENM in the on-line database Web of Science 

(http://apps.isiknowledge.com) published up to August 2015. We used the 

following combination of key-words for searching: ecological niche model* or 

environmental niche model* or species distribution model* or habitat suitability 

model* and abundance. For each species we used correlation coefficients 

provided by the authors to measure the relationship between abundance and 

environmental suitability derived from occurrence data. The kind of correlation 
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coefficient used varied across studies (e.g. Pearson’s r, Spearman’s rs, 

Kendall’s tau). Comparing different indices may affect analyses, but we 

assumed that authors used the most appropriate correlation index for each 

analysis, providing the best fit for the correlation between abundance and 

suitability. Furthermore, all correlation coefficients vary between -1 and 1, and 

therefore provide a standardized measure of the relationship between 

abundance and suitability that can be compared in a meta-analysis. When more 

than one modelling algorithm was used to build an ENM, we used the best fit 

found by the authors, i.e. the highest correlation coefficient regardless of the 

modelling algorithm used to generate the general pattern of the AS relationship. 

When the same species was analyzed in more than one study we used the one 

that used the largest sample size. 

When only the coefficient of determination was provided by the authors, 

we calculated the correlation coefficient by taking the square root of the 

coefficient of determination (e.g. VanDerWal et al. 2009, Tôrres et al. 2012), 

taking into account if the relationship was positive or negative. When different 

correlation values were provided using training and test data, we chose only the 

correlation provided for the training data (e.g. Nielsen et al. 2005), because 

training data are used to develop the model and test data are used to test the 

model predictions. If correlation values using both presence/absence and 

presence-only data were provided (e.g. Pearce and Ferrier 2001, Nielsen et al. 

2005), we selected correlation values considering presence and absence 

(abundance equal to zero). 

 

Effect sizes and multivariate meta-analysis model 
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Meta-analyses focus on combining and contrasting results from different 

studies to identify emergent patterns among studies. Pattern is normally 

characterized by a common measure of effect size, of which a weighted 

average is commonly the output of a meta-analysis (Cooper and Hedges 1994). 

In this study, each correlation coefficient for each species was considered an 

effect size, a value that reflects the strength of the relationship between 

abundance and environmental suitability.  

We computed effect size for each species, assessed consistency of 

effect sizes across species, and computed a summary effect (Borenstein et al. 

2009). Correlation coefficients should not be used directly to synthesize effect 

sizes because the variance depends on correlation strength (Borenstein et al. 

2009). Therefore, we converted correlation coefficients to Fisher’s z scores and 

performed analyses using transformed values. In order to present results in a 

more understandable manner, we converted the summary effect and the 

confidence intervals back to correlation coefficients.  

Studies differed in the set of species analyzed, methods, and the 

environmental/climatic variables used to derive suitability. In order to account 

for such differences, we used a random-effects model that includes both 

variation within and across studies (Borenstein et al. 2009). We assume that 

selected studies have enough in common to synthesize information. 

Some papers dealt with sets of species and therefore provided effect 

sizes for several related species using the same sampling design, variables, 

and methods to build ENM’s. Several effect sizes from the same study are non-

independent (Nakagawa and Santos2012). In order to account for such non-

independence, we used a random-effects multivariate meta-analysis.  
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In addition to non-independence of correlations from the same study, 

species relatedness may also affect statistical independence since related 

species likely have similar ecological characteristics (Harvey and Pagel 1991, 

Nakagawa and Santos 2012). Each ENM built for every species takes into 

account variables that are thought to estimate its niche, and for related species 

such variables tend to be similar (Peterson et al. 1999). However, even with 

niche similarity across related species, there is no reason to suppose that 

species abundance in the same geographic region will respond similarly to 

environmental suitability. Furthermore, in this study we are dealing with very 

different organisms (e.g. earthworms, mollusks, insects, reptiles, mammals, 

fishes, and flowering plants) which makes incorporating a comparative method 

and test for phylogenetic independence of the effect sizes prohibitively difficult 

[but see how to incorporate phylogenetic effects in a meta-analysis in Adams 

(2008)]. Therefore, we used the taxonomic family as a surrogate of relatedness 

among species to account for phylogenetic independence. Thus, we built a 

random-effects multivariate meta-analysis using both authorship and species 

family as non-independent factors. 

We assume that researchers modelled the potential environmental niche 

based on the realized niche (observed data), which has already been limited by 

non-environmental factors (e.g. biotic interactions and demographic 

constraints). We acknowledge that there may be other species-specific factors 

influencing local species abundance other than environmental suitability such 

as time of colonization, interspecific competition and source-sink dynamics. 

However, here we are only interested in to what extent environmental suitability 

derived from ENM (not geographic range per se) is related to abundance. 
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Proportion of the geographic range of each species used to estimate the 

niche model may influence strength of the AS relationship. In order to account 

for this effect, we compared the magnitude of correlation from studies carried 

out over small areas within a species’ range (<50% of a species range) to 

magnitude of correlation from studies carried out over large areas within a 

species’ range (>50% of a species range). To determine proportion of species’ 

range that was studied, we compared it visually to maps of species ranges 

obtained from IUCN (http://www.iucnredlist.org/). For this analysis we 

considered only mammal and bird species because geographic distributions of 

invertebrate, reptile, and plant species considered here are poorly known. 

To compare influence of the set of variables chosen to derive 

environmental suitability in the ENMs on the AS relationship, we classified niche 

models into two groups: 1) climatic niche models and 2) environmental niche 

models. In climatic niche models, variables included in modelling were 

exclusively those of climate (e.g. Worldclim variables) and elevation (often used 

as a proxy for temperature). In environmental niche models, variables included 

in modelling were both climatic and non-climatic (e.g. salinity, habitat patch size, 

and soil moisture). Such comparison may identify which kinds of variables 

provide environmental suitability values that correlate better with species 

abundance.  

 

Comparing ENM approaches 

To evaluate which ENM approach provides the strongest AS relationship 

we classified all approaches used to derive suitability into three categories 

according to Franklin (2010): statistical modelling, similarity and machine 
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learning methods. Statistical modelling is based on presence/absence data and 

is derived from classical statistical techniques, such as generalized linear 

models (GLM). These models seek a relationship between species 

presence/absence and a suite of environmental variables, estimating a 

probability of occurrence (Yackulic et al. 2013) and they are functionally similar 

to RSFs (Manly et al. 2002). In statistical modelling certain assumptions are 

made about the form of the model (which are chosen by the modeler) and all 

the data are used to estimate the model parameters (Franklin 2010). This 

approach can provide simple and realistic models, allowing a better 

understanding of species distribution than more complex methods (Guisan and 

Zimmermann 2000). Statistical modelling includes GLM (Guisan et al. 2002), 

generalized additive models (GAM, Yee and Mitchell 1991), mixture 

discriminant analysis (Manel et al. 1999), and MARS (multivariate adaptive 

regression splines) (Moisen and Frescino 2002). 

Similarity methods are based on presence data only and are simple 

representations of the ecological niche. They determine for each environmental 

variable an upper and lower limit for species occurrence (i.e. where the species 

is likely to occur). This geographic space is called an envelope. Similarity 

models consider that the ecological optimum for a species is in the centroid of 

occurrence points in ecological space. The distance between the estimated 

optimum and observed values for each pixel in the geographic area is inversely 

related to the environmental suitability for the focal species at that site (Araújo 

and Peterson 2012). Similarity methods include BIOCLIM (Busby 1991), 

DOMAIN (Carpenter et al. 1993), Mahalanobis distance (Farber and Kadmon 

2003), and AquaMaps (Kaschner et al. 2013). 
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The machine learning method is a much more complex statistical 

technique based on presence/absence or presence/pseudo-absence or 

presence/background data. In contrast to the statistical methods, this approach 

is a suite of regressions that are used to learn the mapping function directly 

from the training data to get the best prediction and it does not need prior 

assumptions as needed in the statistical models (Franklin 2010). In general, this 

method performs better than statistical and similarity methods in predicting 

species distributions (Elith et al. 2006). Machine learning methods include 

Maxent (Phillips and Dudík 2008), GARP (Stockwell and Noble 1992), artificial 

neural networks (Segurado and Araújo 2004), random forests (Breiman 2001), 

classification tree analysis (Breiman et al. 1984), and generalized boosting 

models (Friedman 2001). Although machine learning methods are much more 

complex algorithms, they are mathematically equivalent to the statistical 

methods because both relate environmental predictors with presence/absence 

or presence/background data (Renner and Warton 2013). 

Although all three kinds of methods are statistical, we are referring to the 

first kind as statistical methods for practical reasons. We clustered different 

modelling approaches using the same general method as described above. We 

calculated the summary effect size of the AS relationship for each of the three 

approaches using a multivariate meta-analysis with random-effects. We then 

compared the summary effect among the three approaches (statistical, 

similarity and machine learning methods) to assess which better predicts the AS 

relationship. We made all comparisons mentioned above among model 

coefficients using the Wald test. We consider statistical significance when 

p<0.05.  
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Publication bias 

Studies reporting statistically significant results are more likely to be 

published than studies reporting non-significant results (Greenwald 1975). If 

publication bias is a problem, then studies included in a meta-analysis may 

represent a biased subset of the total number of studies performed (Wang and 

Bushman 1998). Publication bias can be detected using quantile-quantile plots, 

which are preferred over funnel plots (Wang and Bushman 1998). In a quantile-

quantile plot or normal quantile plot, quantiles of the observed data distribution 

are plotted against theoretical quantiles of the standard normal distribution (with 

mean of zero and standard deviation of 1). If observed data have a standard 

normal distribution, points on the plot will fall close to the line y=x and the slope 

of the plotted line will be close to 1. Thus we can assume that data are not 

biased and they come from a single population and the sample size for each 

study is large enough (Borenstein et al. 2009). To statistically assess 

publication bias, we added the variance as a moderator into the model and this 

is similar to the Egger test (Egger et al. 1997) applied to non-hierarchical 

models. Non significant (p>0.05) moderators in a Wald test indicate no 

publication bias. All analyses were carried out in the software R version 2.14 (R 

Development Core Team 2014) using the metafor package (Viechtbauer 2010). 

 

RESULTS 

We obtained 450 correlations between species abundance and 

environmental suitability derived from ENM from 30 studies on several taxa 

including fishes, reptiles, birds, mammals, insects, arachnids, earthworms, 
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mollusks, pteridophytes, and flowering plants (Table 1). We did not find any 

evidence of publication bias in our data both visually (Fig. 1) or statistically 

(Wald test = 1.101, d.f. = 1, p = 0.29). 

Most cases reported a positive relationship between abundance and 

environmental suitability, although negative correlations were also observed 

(Fig. 2). The summary effect of correlation between abundance and suitability 

was moderate when all taxa were analyzed together (r = 0.55, 95% confidence 

interval [CI] = 0.45-0.64, p<0.0001, k = 450). A positive relationship between 

abundance and suitability was consistent across different taxa analyzed: 

vertebrates (r = 0.62, CI = 0.51-0.72, p< 0.001, k = 166), invertebrates (r = 0.53, 

CI = 0.25-0.72, p<0.001, k = 133), and plants (r = 0.34, CI = 0.25-0.41, 

p<0.0001, k = 151) (Fig.3A).  

Most cases used machine learning methods (n = 316) and statistical 

models (n = 118) to derive suitability and correlate it to abundance. Similarity 

methods were the least used (n = 16). All ENM’s generated suitability values 

that were positively correlated with species abundance. Machine learning 

methods showed the highest summary effect (r = 0.59, CI = 0.44-0.71, p< 

0.0001, k = 316) followed by similarity methods (r = 0.58, CI = 0.36-0.73, p < 

0.0001, k = 16) and statistical methods (r = 0.47, CI = 0.38-0.54, p < 0.0001, k = 

118). There was no difference in the strength of the AS relationship among 

ENM methods (Wald test = 0.236, d.f. = 2, p = 0.889; Fig. 3B).  

Summary effect of correlation between abundance and suitability was 

also positive when considering both large and small proportions of species’ 

ranges (r = 0.51, CI = 0.26-0.7, p< 0.0001, k = 20; r = 0.62, CI = 0.47-0.73, p< 
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0.0001, k = 125; respectively, Fig. 3C). However, there was no difference in the 

effect sizes between groups (Wald test = 0.09, d.f. = 1, p = 0.764). 

Summary effect of the AS correlation was also positive for studies 

modelling climatic and environmental niches (r = 0.3, CI = 0.16-0.43, p < 0.001, 

k = 120; r = 0.58, CI = 0.48-0.67, p < 0.0001, k = 330; respectively). However, 

studies deriving suitability from environmental niches exhibited a higher AS 

relationship than studies deriving suitability only from climatic niches (Wald test 

= 7.23, d.f. = 1, p = 0.0072, Fig. 3D). 

 

DISCUSSION 

Abundance-Suitability Patterns 

Environmental suitability values derived from correlative ENM’s have 

recently been used to relate suitability with population density but until now 

there has been no consensus regarding the ubiquity of this relationship (e.g. 

Jiménez-Valverde et al. 2009, VanDerWal et al. 2009, Weber and Grelle 2012). 

Our meta-analysis corroborates a general positive correlation between 

abundance and environmental suitability derived from ENM, although the 

summary effect of the correlation between abundance and suitability was only 

moderate and widely variable. This pattern was consistent regardless of 

taxonomic group, modelling method, proportion of species range utilized, and 

set of variables included. Most studies used variables such as temperature, 

precipitation, and measures of disturbance (e.g. crop presence) that are 

variables related to the Grinnellian niche (Soberón 2007), which are thought to 

be important in driving species abundance. However, environmental suitability 

is only one of several factors influencing species abundance over geographic 
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space. That environmental suitability explained approximately 30% (r = 0.55) of 

variation in abundance, on average, is notable, considering that species 

abundance is a complex ecological trait that is also affected by time of 

colonization, interspecific competition, demography, and source-sink dynamics 

(see below). Suitability should be considered a reasonable proxy for species 

abundance.  

Vertebrates and invertebrates showed the highest summary effect sizes 

among taxonomic groups examined. However, invertebrates also showed the 

widest confidence interval for the AS correlation. Jiménez-Valverde et al. (2009) 

suggest that ENM’s do not account for arthropod abundance and that suitability 

should not be used as a surrogate of abundance. Several components of 

vegetation structure (e.g. plant density and architectural complexity), and 

microscale variables such as leaf chemical composition and soil moisture may 

be more important contributors to variation in arthropod abundance than climate 

and topographic variables (Price et al. 2011), although climate variables may 

affect arthropod abundance as well. Indeed, studies on invertebrates using both 

microscale variables (e.g. soil pH, soil moisture, and shrub cover) and climatic 

variables taken locally over a short time span revealed an average AS 

correlation higher than studies incorporating only topographic and interpolated 

climate variables [rmean = 0.72, n = 5 (Mellin et al. 2012, Gutiérrez et al. 2013, 

Palm et al. 2013), rmean = 0.13, n = 107 (Jiménez-Valverde et al. 2009, Filz et al. 

2013), respectively]. Therefore, including only climatic variables may weaken 

the relationship between abundance and suitability for invertebrates, when 

compared to studies including microscale variables.  
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In contrast to invertebrates, plants showed the narrowest confidence 

interval but the lowest summary effect size for the AS correlation. This low 

correlation may suggest that there are other ecological drivers affecting plant 

species abundances that are more important than environmental suitability. For 

instance, competitive exclusion could drive individuals to less favorable areas 

(Cabral and Kreft 2012). For plants this is especially important because the 

dominant competitor once established can prevent establishment of subordinate 

competitor seedlings (Went 1973). Therefore, dominant plant species may 

generate better ecological niche models than subordinate species because 

occurrence patterns of dominant species may reflect their niches better than 

subordinate species (Elmendorf and Moore 2008). On the other hand, neutral 

processes, such as ecological drift, may influence species abundance rather 

than niche-based processes (Hubbell 2001). However, it is worth emphasizing 

that niche and neutral theories are complementary and not conflicting ideas to 

explain biodiversity patterns (Chave 2004). 

 

Conceptual and methodological issues underlying the AS relationship 

A positive correlation between abundance and suitability can be 

interpreted as a consequence of the ecological niche. Abundance of a species 

can be partially explained as a response to local conditions (Hutchinson 1957). 

When environmental variables meet species requirements species attain high 

abundances which are generally located at the niche centroid (Maguirre 1973, 

Martínez-Meyer et al. 2013). Furthermore, environmental suitability seems to be 

related to the carrying capacity of populations (Thuiller et al. 2014). Sites with 

high suitability tend to harbor larger populations because suitability decreases 
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probability of extinction (Araújo et al. 2002) and increases birth and survival 

rates (Morrison et al. 2006). Therefore, the link between population demography 

and local conditions seems to be the driving force of the AS relationship.  

However, exactly because of the theoretical reasons described above, 

we acknowledge that the AS relationship may be more complex than a simple 

linear relationship. For instance, VanDerWal et al. (2009) showed that suitability 

predicts only the upper limit of local abundance of 69 vertebrate species and 

that a linear model explained on average only 12% (r = 0.35) of the variation in 

abundance. Therefore, the AS relationship under some circumstances may be 

better described by a constraint envelope of triangular shape, which is a 

common form of relationship between macroecological variables (see Brown 

and Maurer 1987, Brown 1995), whereby the highest abundance corresponds 

to the highest suitability. However, at higher suitability, abundance can be high 

or low, whereas at the lowest suitability abundance tends to be low (VanderWal 

et al. 2009, Tôrres et al. 2012, Carrascal et al. 2015). Similarly, correlation 

between abundance and probability of use of habitat (derived from RSF) is also 

better described by a triangular relationship (Boyce et al. 2016). Unfortunately 

we were not able to analyze this triangular relationship here because we do not 

have access to the original data used in the papers sampled. It is not even 

possible to assess in which cases the AS relationships studied here are better 

described by a triangular pattern than by a linear correlation coefficient. But it is 

important to note that if a moderate correlation between abundance and 

suitability was found using a simple correlation coefficient, if some (or even all) 

of the relationships analyzed were better described by a triangular envelope, 

our estimates of the overall magnitude of the relationship between abundance 
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and suitability would be conservative. For instance, if we apply a quantile-

regression (e.g. Tôrres et al. 2012) to the original data to analyze the AS 

relationship, we would have higher values of correlations when considering the 

upper limit of abundance.  

Thus, the origins of the triangular relationship between abundance and 

suitability may be in fact that we are considering only abiotic conditions 

(Grinnellian niche), but abundance may also be a function of species 

interactions (Eltonian niche), species dispersal and history (Gaston 2003, 

Peterson et al. 2011). Therefore, a site can be assigned as highly suitable for a 

species but a superior competitor or the absence of a fundamental resource 

may prevent the species of occurring there (leading to species absence in a 

favorable area) or the species may become rare under these conditions 

(leading to low abundance in a favorable area) preventing it from attaining high 

abundance. Demographically, the suitability would be more related to carrying 

capacity of the region and thus set the upper limit of the triangular relationship, 

forming a soft boundary (see Thuiller et al. 2014). In addition, if in a source-sink 

dominated metapopulation, good breeding sites in the source are likely to be 

rare and poor sites in the sink more common. As a result, a large proportion of a 

population may occur in the sink (Pulliam 1988). Therefore, sink habitats may 

support higher abundance than source habitats. This situation has serious 

implications and could easily lead to misleading conclusions about habitat 

requirements of a species (Van Horne 1983, Pulliam 1988) if one implicitly 

assumes a positive and linear relationship between abundance and 

environmental suitability. Also, if samples were taken from portions of the range 

where the population is most dynamic (high turnover), the probability of 
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detection is lowest (Doherty et al. 2003). Moreover, we know less about how 

dispersal across regional boundaries may affect population dynamics and, 

consequently, abundance used to correlate with suitability (Schurr et al. 2012). 

Furthermore, barriers may prevent a species from colonizing a suitable site, or a 

species may not colonize climatically suitable areas because it is recent in the 

phylogeny and has not had enough time to spread to most suitable sites (Weber 

et al. 2014).  

All these hypotheses (species interactions, population dynamics, 

dispersal and time for colonization) may explain why a species can be rare in a 

suitable site. As a consequence, the generality of the AS relationship should be 

accepted with caution because high suitability can indicate low or high 

abundance. Despite this, such inconsistency may be minimized using more 

adequate statistical methods, e.g. quantile-regression (Cade and Noon 2003) to 

describe such patterns. Moreover, this triangular pattern can arise due to 

several methodological and sampling artifacts as well such as inadequate 

survey techniques, small number of presences, sampling biases, scale, or 

unmeasured factors.  

Modelling the ecological niche over a small area within a species’ range 

is thought to diminish the strength of the correlation between abundance and 

suitability (Nielsen et al. 2005) or generate a triangular relationship. However, 

we demonstrated here that there was no difference in the strength of the AS 

relationship between studies including large or small areas within species 

ranges. Thus, the correlation between environmental suitability and abundance 

holds true regardless of the proportion of a species range that is considered by 

a study. Nonetheless our conclusion was based on mammals and birds only. 
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Therefore, lack of difference between niche models based on completely 

sampled and partially sampled geographic ranges should be viewed with 

caution. We suggest that comparing ENM’s developed for the whole species 

distribution with those including small areas within species range may prove 

useful to better understand the effect of scale on the AS relationship.  

One hindrance to evaluating the AS relationship over the whole range, or 

even over a large area within a species’ range, is that it is expensive and time 

consuming. One alternative method might be to use published data on relative 

abundance in well sampled communities across a species’ geographic range 

and use relative abundance to evaluate the AS relationship. This alternative 

would be much less time and money consuming than gathering data in the field 

and it seems a promising approach (Weber and Grelle 2012), especially when 

funding is scarce. However, researchers should be careful when using data 

obtained from published local communities. These data can be affected by 

many factors such as disturbance that can increase abundance of generalist 

species and decrease abundance of sensitive species, seasonal differences 

because abundance is subject to resources phenology (Stevens and Amarilla-

Stevens 2012), and undersampling effects that can make species abundance 

data less reliable (Yañez-Arenas et al. 2014). After controlling for such sources 

of variation or including disturbance variables into models, relative abundance 

data can be used to test AS relationships, but the criteria used by authors 

should be explicitly provided.  

Another effect that should be considered when using relative abundance 

data is species probability of detection, which influences the density of presence 

points across sampled sites (Jiménez-Valverde 2011). Researchers cannot be 
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sure if the positive relationship between local abundance and suitability 

estimated from a well calibrated ENM is a real pattern or is just the 

consequence of circular reasoning (Jiménez-Valverde 2011). We suggest that if 

abundance data has enough variation (from sites of low to high abundance) and 

presence data is widespread across a species’ range, this concern may be 

minimal and the AS relationship can be properly tested. Moreover, the inclusion 

of absence data and unbiased sampling data has provided better results than 

studies using only background or pseudo-absence data (e.g. Yañez-Arenas et 

al. 2014, Carrascal et al. 2015).  

The three ENM methods generated suitability data that correlate 

positively with species abundance. Tôrres et al. (2012) suggest that similarity 

models, such as BIOCLIM, should be preferred over alternative methods to test 

the AS relationship. Similarly, Ready et al. (2010) also found that similarity 

methods provide better correlations between abundance and suitability than 

machine learning and statistical methods. However, the kind of method used to 

derive environmental suitability seems not to affect the strength of the AS 

relationship. All methods provided high summary effects for the AS correlation, 

but they all also exhibited wide confidence intervals. Therefore, we cannot 

suggest which modelling method is better for correlating suitability with species 

abundance since all methods showed a similar pattern. Despite a positive AS 

relationship regardless of the kind of modelling method used, most studies 

using different algorithms found a wide range of correlations between 

abundance and environmental suitability, ranging from no correlation to high 

correlation. Surprisingly no study that used more than one algorithm to derive 

suitability has tested what the AS relationship would be using an ensemble 
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approach (i.e. the combination of different outputs from different algorithms). 

Diniz-Filho et al. (2015) analyzed the correlation between mean suitability 

derived from an ensemble and heterozygosity of an endemic tree species of the 

Cerrado (Brazil) and found no significant correlation. However, significance 

varied among algorithms that generated negative, near zero and positive 

correlations. Similar to the correlation between heterozygosity and suitability, 

uncertainty found in the AS relationship may also be due the methods chosen 

for modelling. To avoid such inconsistencies, we suggest using at least one 

algorithm of each modelling method to assess the AS relationship. The 

algorithm chosen for modelling is one of the biggest sources of uncertainty in 

ENMs (Araújo and New 2007, Diniz-Filho et al. 2009), thus ecologists should be 

aware of that and consider it when correlating species abundance with 

environmental suitability.  

Population growth rates are affected directly by habitat conditions and 

limiting factors of the environment (Maguire 1973). We observed few authors 

explicitly justifying why they used particular environmental variables [see 

examples in Nielsen et al. (2005) and Van Couwenberghe et al. (2012)]. 

Inclusion of variables in the model should be justified, even briefly, and the 

selection should include only those variables that authors think affect species 

abundance. In addition to environmental data, researchers should also have a 

good understanding of variation in species density across time and space 

(Johnson and Seip 2008). For instance, if the samples were taken when density 

is very low due to seasonal variation, small number of localities with inaccurate 

abundance data may hide or weaken the correlation between abundance and 

suitability. Sampling design is crucial to properly address the AS relationship. 
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Informed selection is not an easy task and our knowledge of species 

requirements is often poor (Van Horne 1983). Habitat is the main determinant of 

distribution and abundance for most organisms (Boyce et al. 2016). Moreover, a 

habitat that provides cover but no food may still be deemed climatically suitable, 

even though the species might not be able to persist in that habitat; such a 

scenario likely would generate a triangular relationship between abundance and 

suitability. In fact, importance of local conditions was corroborated by the fact 

that studies using other variables in addition to climate exhibited higher AS 

correlation than studies using only climate to derive suitability. Climatic niche 

models can be useful proxies for abundance, but environmental niche models 

prove to be a better proxy for species abundance than climatic niche models. 

There are numerous variables that influence spatial variation of abundance and 

climate is only a subset of these variables. Including local variables into ENM’s 

can improve our ability to generate better proxies for species abundance. 

However, including large-scale variables other than climate into ENM's at large 

scales is still a challenge. 

 

CONCLUDING REMARKS 

For a long time the AS relationship was assumed by ecologists but lack 

of data on geographic patterns in abundance prevented more general tests. As 

such data accumulates, the relationship started to be tested for some better 

known species. The meta-analysis tools used here provide the opportunity to 

make generalization based on what we know about the AS relationship so far. 

Moving beyond assumptions creates an opportunity to bring new rigor to 

macroecology and offers new insights into fundamental ecological process 
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(Sagarin et al. 2006) such as the AS relationship (analyzed here) and the 

abundant center hypothesis (Sagarin and Gaines 2002). Here we showed that 

suitability derived from ENM's is positively correlated with species abundance 

and we discussed that interaction between niche variables and population 

demography seems to be the mechanism that generates a positive correlation 

between abundance and suitability. These results suggest that occurrence data 

can be a reasonable proxy for abundance, especially for vertebrates. Identifying 

areas where species are most abundant has been an invaluable tool for 

designing biological reserves (Schoener 1987, Araújo and Williams 2000, 

Araújo et al. 2004). Therefore, since the AS relationship holds true, ENM can be 

used as a proxy of species abundance that is a better ecological feature for 

defining spatial conservation priorities than species occurrence. Applying ENM 

to systematic conservation planning and selecting those areas that are highly 

suitable for a species can be effective in protecting source populations. 

Furthermore, we can predict how species abundance will respond to climate 

change. Nevertheless, modelers and conservationists must be aware that high 

environmental suitability does not always indicate high abundance. This 

relationship can exhibit much variation, as we found in the AS correlations, and 

be better characterized by a triangular relationship between abundance and 

suitability which has been commonly found in many studies (e.g. VanDerWal et 

al. 2009, Tôrres et al. 2012, Gutiérrez et al. 2013, Carrascal et al. 2015, Boyce 

et al. 2016). 

Species abundance datasets are rare because collecting such data is 

money and time consuming (Potts and Elith 2006). Nonetheless, since the AS 

relationship holds true, researchers can also use presence-absence data as a 
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proxy of species abundance. Use of ENMs can significantly decrease survey 

costs and allow the study of large-scale abundance patterns using less 

information. It is worth emphasizing that modelling a species niche does not 

replace the need for abundance data at large spatial scales, but it improves our 

understanding of spatial variance of species abundance and reinforces the 

need to incorporate GIS variables other than climate when correlating 

environmental suitability with abundance.  Although the general relationship 

between abundance and suitability was moderate, ENM can be used as a 

useful proxy of abundance, especially for vertebrates.  
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Table Legend 

Table 1. List of the 30 studies included in this meta-analysis showing number of 

species considered in each study, taxonomic group, method of ecological niche 

modeling, spatial resolution and number of variables used to model species’ 

ecological niche, and type of abundance data used to correlate with 

environmental suitability. ANN = artificial neural networks, BRT = boosted 

regression trees, CEM = climate envelope model, CTA = classification tree 

analysis, FF = favourability function, GAM = generalized additive models, GARP 

= genetic algorithm for rule-set production, GBM = generalized boosting 

models, GLM = generalized linear models, LR = logistic regression, Maxent = 

maximum entropy, MARS = multivariate adaptive regression splines, MD = 

Mahalanobis distance, MDA = mixture discriminant analysis, RF = random 

forests, RSF = resource selection function. Number of species considered here 

may be different to the original studies because of selection criteria (see 

Methods section). 

Study Number of 

species 

Taxonomic group Method of modelling 

Pearce and Ferrier 

(2001) 

73 reptiles, birds, 

mammals, ferns, 

and flowering 

plants 

Statistical (LR) 

Nielsen et al. (2005) 2 ungulate and fern Statistical (LR) 

Seoane et al. (2005) 53 birds Machine learning (BRT) 

Elmendorf and Moore 

(2008) 

100 flowering plants Machine learning (ANN, 

BRT) 

Jedrzejewski et al. 1 carnivore Statistical (RSF) 
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(2008) 

Jimenez-Valverde et 

al. (2009) 

46 arthropods Machine learning (ANN) 

Real et al. (2009) 2 carnivore and rabbit Statistical (FF) 

VanDerWal et al. 

(2009) 

2 vertebrates Machine learning (Maxent) 

Ready et al. (2010) 12 whales and sea 

fishes 

Statistical (GLM, GAM), 

Machine learning (Maxent, 

GARP), and Similarity 

(AquaMaps) 

Giannoulaki et al. 

(2011) 

1 fish Statistical (GLM) 

Gogol-Prokurat (2011) 2 flowering plants Machine learning (Maxent) 

Januchowski-Hartley 

et al. (2011) 

1 flowering plant Machine learning (Maxent) 

Jones-Farrand et al. 

(2011) 

5 birds Machine learning (CTA) 

Kulhanek et al. (2011) 1 fish Machine learning (ANN) 

Estrada and Arroyo 

(2012) 

2 seabirds Statistical (GLM) 

Guarino et al. (2012) 9 fern, conifer, and 

flowering plants  

Statistical (GLM) 

Mellin et al. (2012) 2 mollusks Statistical (GLM) 

Oppel et al. (2012) 1 seabird Statistical (GAM, GLM) and 

Machine learning (RF, BRT) 

Tellería et al. (2012) 1 bird Machine learning (Maxent) 

Tôrres et al. (2012) 1 carnivore Statistical (MDA, MARS), 

Similarity (BIOCLIM, 

DOMAIN, MD), and Machine 

learning (Maxent, GARP, 
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CTA, RF, GBM, ANN) 

Weber and Grelle 

(2012)  

1 bat Machine learning (Maxent) 

Bucas et al. (2013) 31 arthropods, 

mollusks, 

polychaetes, algae, 

and flowering 

plants  

Statistical (GAM, MARS), 

machine learning (Maxent, 

RF) 

Filz et al. (2013) 61 butterflies Machine learning (Maxent) 

Gutiérrez et al. (2013) 1 butterfly Statistical (GLM) 

Palm et al. (2013) 2 earthworms Machine learning (BRT) 

Bean et al. (2014) 1 mammal Machine learning (Maxent) 

Carrascal et al. (2015) 19 birds Machine Learning (BRT, 

Maxent) 

Muñoz et al. (2015) 1 bird Statistical (LR, FF) 

Russel et al. (2015) 9 seabirds Similarity (CEM) 

Young and Carr (2015) 7 reef fishes Statistical (GAM) 
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Figure legends 

Figure 1. Quantile-quantile plot showing the relationship of the observed sample 

quantiles (black dots, n = 450) and the theoretical quantiles from the standard 

normal distribution (mean of zero and standard deviation of 1). Black solid line 

indicates the mean of the data. Slope of the black solid line is approximately 1, 

indicating no bias. Dashed lines around the black dots indicate the 95% 

confidence interval.  
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Figure 2. Histogram showing the frequencies of the correlation coefficient (r) 

testing the relationship between abundance and environmental suitability 

derived from ENM found for 450 species. 
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Figure 3. (a) Summary effect of the correlation coefficient (r) calculated for the 

AS relationship for all species (n = 450), only vertebrates (n = 166), only 

invertebrates (n = 133), and only plants (n = 151), (b) for the three ENM 

approaches [machine learning (n = 316), similarity (n = 16) and statistical 

modeling ( n= 118)], (c) for studies carried out in large proportions of species’ 

range (>50%) (n = 20) and studies carried out in small proportions of species’ 

range (<50%) (n = 125) for mammals and birds only, and (d) for climatic niche 

models (n = 120) and environmental niche models (n = 330). All analyses were 

based on a hierarchical meta-analysis with random-effects model. Mean values 

(black circles) and 95% confidence intervals (vertical lines) for effect sizes are 

shown. Different letters in parentheses above confidence intervals indicate 

significant statistical difference between groups assessed with Wald test 

(p<0.05). 
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