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A modelling framework for studying the combined effects of climate and land-cover
changes on the distribution of species is presented. The model integrates land-cover
data into a correlative bioclimatic model in a scale-dependent hierarchical manner,
whereby Artificial Neural Networks are used to characterise species’ climatic
requirements at the European scale and land-cover requirements at the British scale.
The model has been tested against an alternative non-hierarchical approach and has
been applied to four plant species in Britain: Rhynchospora alba , Erica tetralix , Salix
herbacea and Geranium sylvaticum. Predictive performance has been evaluated using
Cohen’s Kappa statistic and the area under the Receiver Operating Characteristic
curve, and a novel approach to identifying thresholds of occurrence which utilises three
levels of confidence has been applied. Results demonstrate reasonable to good
predictive performance for each species, with the main patterns of distribution
simulated at both 10 km and 1 km resolutions. The incorporation of land-cover data
was found to significantly improve purely climate-driven predictions for R. alba and E.
tetralix , enabling regions with suitable climate but unsuitable land-cover to be
identified. The study thus provides an insight into the roles of climate and land-
cover as determinants of species’ distributions and it is demonstrated that the modelling
approach presented can provide a useful framework for making predictions of
distributions under scenarios of changing climate and land-cover type. The paper
confirms the potential utility of multi-scale approaches for understanding
environmental limitations to species’ distributions, and demonstrates that the search
for environmental correlates with species’ distributions must be addressed at an
appropriate spatial scale. Our study contributes to the mounting evidence that
hierarchical schemes are characteristic of ecological systems.
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Climate change and land-cover change, leading to

habitat loss, are two of the most important factors

threatening ecosystems worldwide (Sala et al. 2000,

Parmesan and Yohe 2003). Considered individually, the

threats posed are significant, but the interaction between

the two factors could be disastrous (Travis 2003). A

number of studies have modelled the potential impacts

of climate change on the distribution of species, applying

climate-driven simulations across a range of scales, study

areas and species (for reviews see Guisan and Zimmer-

mann 2000, Pearson and Dawson 2003). However, few

modelling studies have explicitly addressed climate �/

land-cover interactions. In order to study the combined

effects of climate change and habitat fragmentation (as

driven by changes in land-cover), it is necessary to

develop a modelling framework that integrates climate

and land-cover drivers. This paper presents a novel

modelling approach that incorporates fine-scale land-
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cover data into a static, correlative model driven by

coarse-scale climate data. The model has been applied to

four plant species in Britain, providing an insight into

the roles of climate and land-cover as correlates of these

species distributions.

The spatial scale at which species distribution model-

ling is undertaken is of fundamental importance, with

the selection of appropriate spatial extent and data

resolution (or ‘‘grain’’) for a given application essential.

It has been proposed that climate impacts on the

distribution of species will be most apparent at macro-

scales, with broad spatial extents and coarse data

resolutions most appropriate for correlating climate

with species distributions (Pearson et al. 2002). It has

also been hypothesised that within the climate space

defined by synoptic climate conditions other factors

influence the distribution of species in a hierarchical

manner, with different factors being better correlates at

different scales (Franklin 1995, Collingham et al. 2000,

Pearson and Dawson 2003). Thus, it is proposed that

land-cover may be considered the dominant control of

species presence and absence at a finer spatial resolution

than climate. This concept has been applied and tested in

this study through the development of a modelling

methodology that integrates climate and land-cover

data in a scale-dependent hierarchical manner.

The incorporation of fine-scale land-cover data into a

model designed to simulate broad-scale climate suitabil-

ities is an important methodological development. The

refined model aims to identify areas suitable for a given

species at a finer resolution than in purely climate-driven

studies. Regional-scale predictions of potential future

environmental impacts will be more suited to the

requirements of local conservation policy planning

than those of previous studies looking at the potential

impacts and policy implications of broad-scale climate

change (e.g. Berry et al. 2002, 2003). The downscaling

of climate-driven modelling will also facilitate coupling

of the modelled species’ suitability surfaces with

dynamic simulations of species dispersal (e.g. Colling-

ham et al. 1996). Such simulations are commonly

parameterised to operate over much finer-resolution

landscapes than those generated by the climate-driven

models.

In this context, this study aimed to design and test a

modelling methodology for generating regional fine-

scale suitability surfaces for species. A suitability surface

is defined as a landscape identifying areas where a

species could potentially grow and reproduce, and is

analogous to an approximation of the spatial manifesta-

tion of the fundamental niche. The model has been

designed to be applicable to scenarios of future climate

and land-cover change. A hierarchical framework of

environmental controls on the distribution of species has

been applied and the utility and validity of this approach

has been tested.

Methods

General Modelling Principles

The generation of fine-scale suitability surfaces has been

achieved through modification of the bioclimatic model

‘‘SPECIES’’ (Pearson et al. 2002). SPECIES employs an

Artificial Neural Network (ANN) to characterise bio-

climate envelopes based on inputs generated from

climate and soils data using a climate-hydrological

process model. An important element of the model is

its multi-scale approach whereby the bioclimate envelope

of a species is first identified at a coarse resolution (0.58)
European extent before application at a finer-resolution

British extent. The aim is to characterise the species-

climate relationship at the macro-scale, where climate

impacts are expected to be most apparent (Pearson and

Dawson 2003). This multi-scale approach enables cli-

matic range margins that are currently outside Britain,

but which may move into Britain under future climate

scenarios, to be identified. The model therefore does not

extrapolate outside its training dataset when used to

predict the distribution of bioclimate envelopes in

Britain under potential future climates.

The SPECIES model has been extended to incorpo-

rate land-cover inputs through a modelling process as

outlined in Fig. 1. The top half of the schematic presents

the original SPECIES model, with continental-scale

ANN training driven by climate. Land-cover data at 10

km resolution is then incorporated along with the

British-scale bioclimate suitability surface as input into

a second ANN that is trained against British species

distributions. This second ANN, which aims to char-

acterise the relationship between species distribution,

climate and land-cover, has then been used to simulate

potential distributions at 10 km and 1 km resolutions.

The climate suitability surface is thus refined based on

correlations between land-cover type and observed

distribution. In this way a hierarchical modelling process

is established whereby environmental inputs are incor-

porated at different spatial scales.

In order to test the hierarchical model an alternative

approach has also been applied in this study. Hereby, the

European-scale modelling was discarded and, instead,

the climate and land-cover inputs were both correlated

against the observed distribution at only the 10 km

resolution and British extent. Theoretically, these non-

hierarchical simulations should not be so robust under

scenarios of future climate change since the broader

bioclimate envelope is not considered. However, com-

parison between the abilities of the two modelling

approaches to simulate current distributions has enabled

the validity of the hierarchical scheme to be examined.

Four plant species, representing a range of life forms,

habitat associations and distribution characteristics,

were selected for modelling. Suitable climate space for

each of the species had been modelled previously using
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the SPECIES model (Pearson et al. 2002). Observed

distributions and simulated climate suitabilities are

presented in the first two columns of Fig. 2. Rhyncho-

spora alba (white beak-sedge) is a perennial herb

characteristic of lowland acidic bogs, wet heaths and

mires. The species has a disjunct distribution throughout

Britain and has a modelled climate envelope that covers

much of southern England and the Scottish highlands.

Erica tetralix (cross-leaved heath) is a low shrub found

in a wide range of mires and wet heaths, extending into

drier heath in south west Britain. The species is common

throughout much of Britain but its distribution is

fragmented in southern England. SPECIES simulations

suggest that E. tetralix has suitable climate space

throughout Britain. Salix herbacea (dwarf willow) is a

dwarf shrub found under conditions of extreme exposure

and characteristic of Arctic-montane habitats. Salix

herbacea is found in the Scottish Highlands, Cumbria

and in upland parts of Wales. The simulated climate

space for this species identifies these upland regions but

has the tendency to extend further south than the

observed distribution. Geranium sylvaticum (wood

crane’s-bill) is a perennial herb of upland hay meadows,

ungrazed damp woodlands, streamsides and mountain

rock ledges, and is often found on lane-sides. Geranium

sylvaticum is native to much of northern Britain, though

is uncommon in the far north of Scotland. The species

has a number of isolated presences south of its main

range due largely to alien introductions (Preston et al.

2002). The simulated climate space for G. sylvaticum

covers much of northern Britain and extends south down

the Pennine ridge and throughout much of Wales.

Datasets and model inputs
Species distributions

The study utilised presence/absence species distributions

at three different spatial extents/resolutions: European

extent at 0.58 resolution, British extent at 10 km

resolution, and county extent at 2 km resolution.

European distributions were obtained from several

European atlases and used for ANN training as de-

scribed in Pearson et al. (2002). British distributions

were obtained in digital format from the Biological

Records Centre (Centre for Ecology and Hydrology,

Monks Wood, U.K.). All post-1930 recorded observa-

tions, both native and alien, were included in the

analysis. Three regions of Britain were chosen for testing

the 1 km resolution simulations: Cumbria, Devon and

East Anglia. These regions were selected based on the

availability of local floras and so as to give a range of

species prevalences. Local distributions were digitised

from atlases of county floras for Cumbria (Halliday

et al. 1997), Devon (Ivimey-Cook 1984) and Norfolk

(Beckett et al. 1999). Some additional records were

Fig. 1. Schematic of the hierarchical modelling process.
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obtained in digital format from Suffolk Biological

Records Centre (Ipswich Museum). Regional distribu-

tions were available at 2 km (tetrad) resolution and were

plotted as the centre-point of four 1 km cells.

Climate and soils

Climate and soils data were utilised in the study at both

the 0.58 European scale and the 10 km British scale.

Details regarding the data sources and processing for the

Fig. 2. Observed and simulated
distributions in Britain at 10 km
resolution for the four species
tested. Observed distributions were
obtained from the Biological
Records Centre. Simulated climate
suitabilities were modelled using the
original SPECIES model (i.e.
climate envelope identified at the
continental scale; 0.58 resolution).
The right hand column shows how
these climate space simulations can
be further refined by incorporating
land-cover inputs into the model
processing at the regional scale (10
km resolution). Simulations
incorporating both land-cover and
climate are presented at three
thresholds as described in the text:
3�/sensitivity/specificity balanced
threshold; 2�/90% sensitivity; 1�/

95% sensitivity.
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climatic element of this study are described in full in

Pearson et al. (2002). Briefly, climatologies for the 1961-

1990 normal (Hulme et al. 1995, Hulme and Jenkins

1998) were processed along with an estimation of soil

water-holding capacity to generate five bioclimatic

inputs which are thought to have direct physiological

roles in limiting plant ranges. The bioclimatic inputs

were: absolute minimum temperature expected over a 20

yr period, maximum annual temperature, growing de-

gree days �/58C, annual soil moisture surplus and

annual soil moisture deficit. These inputs were used to

generate a single bioclimate suitability surface for

Britain, scaled from 0 to 1, for each species through

the multi-scale SPECIES approach. This suitability

surface was at a resolution of 5 km due to the availability

of soils data at this resolution. In order to match the

resolution of the British species distributions it was

necessary to artificially aggregate the suitability surface

to 10 km resolution by taking the mean of each block of

four 5 km cells. This 10 km British climate suitability

surface was used as model input alongside land-cover

data in the hierarchical modelling approach described in

this study. The alternative non-hierarchical methodology

tested in the study utilised the five raw bioclimatic

variables as ANN inputs at the British scale only. For

the non-hierarchical approach the bioclimatic inputs

were normalised using a linear transformation based on

the minimum and maximum values for Britain so as to

ensure that the ranges of the inputs did not differ by

orders of magnitude (Tarassenko 1998).

Land-cover

Land-cover data for Britain were provided by the Land

Cover Map 2000 (LCM2000) in which the distribution of

26 terrestrial classes of broad habitat types (subclass

level 2; for details see B/www.ceh.ac.uk/data/lcm/

lcm2000.shtm�/) is recorded. Data was obtained from

the Centre for Ecology and Hydrology, Monks Wood,

U.K., as grid-based percentage cover 1 km�2. The

presence of diagonal banding in this dataset that

matched the path of landsat imagery required that four

land-cover classes be removed from the analysis (setaside

grass, arable cereals, arable non-rotational and inland

bare ground). The remaining percentages for the 22

land-cover types were reformatted to give presence/

absence data for each class at both 10 km and 1 km

resolutions. This 10 km dataset was used alongside the

British climate suitability surface to correlate against the

observed British species distribution, whilst the 1 km

dataset was subsequently used to simulate distributions

at the finer resolution.

Artificial Neural Networks

ANNs are computer systems that have increasingly been

employed in ecological studies as an alternative to more

traditional statistical techniques (Lek and Guegan 1999).

Inspired by the structure of the brain, ANNs consist of

many processing elements (artificial neurons) that are

interconnected to form a network. ANNs are ‘‘trained’’

by repeatedly passing large numbers of known examples

of the problem under consideration through the net-

work. By repeatedly adjusting the connections between

processing elements the difference between the network

predictions and the known examples can be minimised.

A successfully trained ANN can then be used to make

predictions for inputs where the output is not known

(Tarassenko 1998).

The advantages and disadvantages of using ANNs for

characterising species distributions have been discussed

in detail by Hilbert and Ostendorf (2001) and Pearson et

al. (2002). Of particular note here is the ability of ANNs

to identify non-linear responses to environmental vari-

ables and to incorporate multiple types of input vari-

ables, including categorical (e.g. land-cover classes) and

non-categorical (e.g. climate suitability) data. A notable

disadvantage is that the relative contribution of different

input variables is not immediately identified in an ANN,

though further analysis of the network can increase the

explanatory power of the approach (Gevrey et al. 2003).

This study used feed-forward ANNs with node con-

nection weights adjusted after every training pattern

using a backpropagation learning algorithm (generalised

delta rule). Network training employed a sigmoidal

activation function and a quadratic (mean squared)

error function (Maier and Dandy 1998). ANNs were

constructed and trained using SNNS (Stuttgart Neural

Network Simulator) ver. 4.1 software (Univ. of Stuttgart,

Germany:B/http://www-ra.informatik.uni-tuebingen.de/

SNNS�/). Network architecture and parameter values

for the British scale modelling were decided upon

following extensive tests to optimise performance. For

the hierarchical approach networks were constructed

with 23 input nodes (for 22 land-cover classes and 1

climate suitability surface), 47 nodes in a single hidden

layer, and one output node (for species presence/

absence). For the non-hierarchical approach networks

with 27 input nodes (22 land-cover classes and 5

bioclimatic variables), 55 nodes in a single hidden layer,

and one output node were used. Initial connection

weights were selected randomly in the range 1.0 to

�/1.0, and the learning parameter set at 0.05. Use of a

momentum term, which controls the amount by which

weights are adjusted in each iteration so as to avoid local

minima, was found to improve model training and was

included with a value of 0.5.

For each British scale model run (ie. hierarchical and

non-hierarchical models for each of the four species) the

full 10 km dataset was randomly split into three parts for

network training (1387 points), validating (694 points)

and testing (693 points). The validation dataset was used

to monitor network error after each training cycle,
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enabling training to be stopped when the network began

to over-train (Tarassenko 1998). For each model run ten

networks, each with different weight initialisations, were

trained and the network achieving the lowest minimum

error for the validation dataset was selected. The test

dataset remained ‘‘unseen’’ by the ANN during network

training and was used to evaluate the predictive perfor-

mance of the model.

Evaluating predictive performance

A number of methods for assessing the predictive

performance of presence/absence models in ecology

have been proposed (for reviews see Fielding and Bell

1997, Pearce and Ferrier 2000). This study utilised two

tests: Cohen’s Kappa statistic of similarity (k) and the

Area Under the Receiver Operating Characteristic Curve

(AUC).

Kappa is a commonly used statistic that provides a

measure of proportional accuracy, adjusted for chance

agreement (Cohen 1960, Monserud and Leemans 1992).

Though providing a straightforward measure of agree-

ment, k has two notable limitations. Firstly, it is affected

by prevalence, making comparison of values between

different species and different studies difficult (Fielding

and Bell 1997). Secondly, k is dependent on the

application of a decision threshold (above which model

outputs are considered to represent ‘‘presence’’) and

therefore does not measure predictive accuracy across

the full range of possible thresholds. However, by

calculating k across a range of thresholds, its value can

be maximised and an ‘‘optimum’’ threshold, represent-

ing maximum agreement between observed and simu-

lated distributions, can be identified. The maximised k

has been calculated in this study.

In view of the limitations of k and other discrimina-

tion indices, Fielding and Bell (1997) concluded that

AUC is the index that best meets the requirements of an

unbiased measure of accuracy. AUC is calculated from

the Receiver Operating Characteristic (ROC) curve. The

ROC curve describes the compromise that is made

between the sensitivity (defined as the proportion of

true positive predictions vs the number of actual positive

sites) and false positive fraction (the proportion of false

positive predictions vs the number of actual negative

sites) as the decision threshold is varied. The curve is

defined by varying the decision threshold incrementally

across the range of predicted model outputs and

generating a series of pairs of sensitivity and false

positive fraction values that can be plotted on a graph

(Pearce and Ferrier 2000). Swets (1988) proposed that

the best discrimination index is the area under the ROC

curve expressed as a proportion of the total area of the

unit square defined by the axes. This index is indepen-

dent of both species prevalence and the decision thresh-

old. AUC ranges from 0.5 for models with no

discrimination ability, to 1 for models with perfect

discrimination.

AUC was calculated using the method described by

Hanley and McNeil (1982) which is based on the

derivation of the Wilcoxon statistic. Pearce and Ferrier

(2000) recommend this method for ecological applica-

tions since it is nonparametric. The standard error of

AUC was estimated by bootstrapping with a sample of

1000, as recommended by Pearce and Ferrier (2000).

Despite the theoretical advantages of AUC, Manel et

al. (2001) found that in practice k was highly signifi-

cantly correlated with AUC and concluded that k

provides a simple and effective test of predictive

performance. Since k has been most widely applied to

date, and in order to investigate further the relationship

between k and AUC, both measures of predictive

performance have been used in this study. The statistics

were calculated for model predictions made on the

‘‘unseen’’ test dataset.

Identifying decision thresholds

To aid the interpretation and presentation of model

results it is useful to identify a threshold value above

which model outputs are considered to represent species

presence (or to define that the site is suitable for

habitation). The choice of threshold value is important

because model outputs, when mapped as presence/

absence, may look quite different dependent on the

threshold applied. A threshold is commonly identified

by maximising the agreement between observed and

simulated distributions. One approach is to use the

threshold value that maximises the Kappa statistic of

agreement, as described in the previous section (and

applied in Pearson et al. 2002). An alternative approach,

based on the ROC procedure, is to plot sensitivity

against specificity (defined as the proportion of true

negative predictions vs the number of actual negative

sites) at a series of thresholds and to apply the threshold

value at which these two curves cross (Fig. 3, threshold

a; Thuiller et al. 2003). In this way, the cost arising from

an incorrect decision is balanced against the benefit

gained from a correct prediction (Manel et al. 2001).

The above threshold values, based on maximising

agreement between observed and simulated distribu-

tions, have been calculated in this study. However, it

may be argued that these approaches do not represent

the most appropriate threshold. Firstly, the choice of a

threshold is influenced by the application of the model.

For example, if the model is intended to identify

potential introduction sites for an endangered species,

then it is important to reduce the risk of failure and

choose a relatively high threshold that would result in

identification only of those sites with a high suitabililty.

In contrast, if the aim is to identify areas within which

disturbance may impact the species (e.g. as part of an
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environmental impact assessment or for the designation

of a nature reserve) then the threshold would be set low

so as to identify all potentially suitable habitats (Pearce

and Ferrier 2000). A second argument against simply

maximising agreement concerns the basic aim of the

modelling approach presented: to identify those sites

where a species could exist (i.e. the potential distribu-

tion). Given the many factors that influence the actual

distribution of species, maximising the fit between

simulated suitabilities and the observed distribution is

likely to result in an underestimation of the extent of the

potential distribution. In fact, we should be more

concerned with minimising the number of sites with

observed presences that are predicted to be unsuitable,

than with minimising the number of sites without actual

presences that are simulated as suitable. More formally,

the primary concern when identifying a decision thresh-

old should be to minimise the false negative fraction (the

proportion of false negative predictions vs the number of

actual positive sites).

Minimising the false negative fraction is analogous to

maximising sensitivity (since sensitivity�/1 �/ false

negative fraction). It is therefore appropriate to define

thresholds by assigning cut-off sensitivities as outlined in

Fig. 3. Cut-off values defined by sensitivity values of 90

and 95% have been applied in this study (thresholds b

and c in Fig. 3). These thresholds are presented along

with those delimited by balancing sensitivity and

specificity, giving three levels of confidence in model

simulations. Thresholds were defined based on model

simulations for the entire British dataset.

Results

10 km resolution simulations

Figure 2 presents simulated distributions generated using

the hierarchical model (incorporating land-cover and

climate) alongside the observed distributions and the

modelled climate suitabilities. AUC and maximised k

statistics comparing agreement between the observed

distributions and hierarchical simulations are presented

in Table 1 (first two columns). It is apparent that the

hierarchical simulations are generally good, with the

main patterns of distribution identified in each case.

Both AUC and Kappa values can be interpreted as

indicating reasonable to good model discrimination

ability according to the subjective guidelines of Swets

(1988) and Monserud and Leemans (1992). Thresholds

of occurrence identified for each species are given in

Table 2. Differences between the sensitivity/specificity

defined thresholds and those identified by maximising

Kappa are of note, emphasising the difficulties asso-

ciated with identifying decision thresholds.

Visual comparison between simulated climate suit-

abilities and simulated distributions incorporating land-

cover data in Fig. 2 demonstrates significant improve-

ment in model performance for the species R. alba and

E. tetralix . For R. alba the original bioclimatic model

simulated suitable climate space throughout much of

central and southern England �/ regions where the

species is in fact scarce �/ yet the refined model identified

the distribution much more accurately by removing

those locations where suitable land-cover is not found.

Thus, much of central England is identified as having

unsuitable combinations of climate and land-cover type,

whilst main population centres such as those on the

south coast are recognised. Similarly, for E. tetralix the

SPECIES model identified suitable climate throughout

Britain, whilst the downscaled model incorporating

land-cover correctly simulated the fragmentation of the

distribution in much of central England. Results for S.

herbacea and G. sylvaticum do not show the same degree

of improvement between the SPECIES model results

and the downscaled methodology.

Turning to the comparison of hierarchical and non-

hierarchical approaches, Table 1 presents AUC and

maximised k values for models generated using each

approach. It is apparent that neither method performs

consistently better than the other. For S. herbacea the

hierarchical methodology gave slightly better results

according to both AUC and k statistics, whilst for E.

tetralix and G. sylvaticum the non-hierarchical approach

was superior. In the case of R. alba , AUC and k gave

conflicting results as to which model was more accurate.

Differences in both AUC and k between the modelling

approaches was greatest for E. tetralix . Mapping the

results for E. tetralix (Fig. 4) shows that simulations

using the hierarchical and non-hierarchical approaches

were very similar, indicating that the statistical differ-

ences between simulations can be considered small. This

finding was consistent for the other three species and it

was therefore concluded that the hierarchical methodol-

ogy, which has theoretical advantages for the simulation

Fig. 3. Sensitivity and specificity plotted against threshold for
defining decision thresholds. Threshold a is assigned at the point
where the two curves cross. Thresholds b and c are defined by
sensitivities of 90 and 95% respectively. The curves presented are
those for the simulation of Erica tetralix .
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of future distributions, does not reduce the quality of

simulations of current British distributions.

1 km resolution simulations

ANNs trained against the 10 km resolution British

species distribution using the hierarchical modelling

approach were used to simulate 1 km resolution

suitability surfaces for Britain. Data inputs were 1 km

resolution presence/absence land-cover data and 10 km

resolution climate data, as described above. Figure 5

presents the simulated suitability surface for E. tetralix ,

with the simulation tested against observed local dis-

tributions in the three sub-regions (Cumbria, Devon and

East Anglia). At the British extent, the 1 km simulated

suitability surface identified the main patterns of dis-

tribution evident in the 10 km observed distribution

(Fig. 2), but with fragmentation within these limits as

expected at the finer resolution. Looking more closely at

the sub-regions, it is evident that the model captured the

broad distributional trends, though accuracy was re-

duced at this resolution.

Figure 6 presents 1 km resolution simulations with

observed Cumbrian distributions for R. alba , S. herba-

cea and G. sylvaticum . At the British extent patterns of

distribution for each species were similar, though more

fragmented, to those in the 10 km observed dataset (Fig.

2). For G. sylvaticum it is noted that the simulation

retains some of the coarser patterns evident in the 10 km

climate data, suggesting that the model for this species

primarily reflected climatic limits. Focusing on Cumbria,

it is apparent that for each species the simulated

suitability surface captured the main patterns of dis-

tribution, supporting the proposal that the model is

able to successfully estimate potential areas of species

occurrence.

Discussion

The model presented shows good potential for integrat-

ing the effects of land-cover into an existing bioclimate

modelling framework. The interaction between climate

and habitat availability plays an important role in

determining the biogeography of species and the hier-

archical modelling framework presented goes some way

to deepening our understanding of this interaction.

Taking the example of E. tetralix , Preston et al. (2002)

note that this species was mapped as present throughout

Britain in the 1962 Atlas of the British Flora (Perring

Table 1. Testing model performance: AUC and maximised Kappa values for independent test datasets. Results are presented for
models trained using continental scale climate data with regional land-cover data (hierarchical model), and for models trained with
regional scale climate and land-cover data (non-hierarchical model).

Hierarchical model Non-hierarchical model

AUC (SE) Maximised
Kappa

AUC (SE) Maximised
Kappa

Rhynchospora alba 0.864 (0.019) 0.480 0.845 (0.021) 0.528
Erica tetralix 0.867 (0.014) 0.593 0.900 (0.012) 0.655
Salix herbacea 0.938 (0.012) 0.639 0.916 (0.016) 0.581
Geranium sylvaticum 0.881 (0.017) 0.579 0.913 (0.011) 0.629

Table 2. Thresholds of occurrence for each of the species modelled identified by four methods, as described in the main text.

Sensitivity/specificity
balance

Sensitivity
at 90%

Sensitivity
at 95%

Kappa
maximisation

Rhynchospora alba 0.11 0.05 0.02 0.30
Erica tetralix 0.73 0.56 0.34 0.63
Salix herbacea 0.16 0.13 0.04 0.29
Geranium sylvaticum 0.35 0.15 0.03 0.51

Fig. 4. Comparison of model simulations for E. tetralix using a
model trained using continental scale climate data with regional
land-cover data (hierarchical model), and with regional scale
climate and land-cover data (non-hierarchical model). Simula-
tions are presented at three thresholds as described in the text:
3�/sensitivity/specificity balanced threshold; 2�/90% sensitiv-
ity; 1�/95% sensitivity.
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and Walters 1962) and that the widespread decline in

central England since then is most likely attributable to

the loss of suitable habitat. Model results presented here

support this conclusion and offer no support for the

alternative possibility that climate warming since the

mid-twentieth century has caused the decline. Simula-

tions suggest that suitable climate space remained

present throughout Britain in the second half of the

century (climate data was for the 1961�/1990 mean) and

that it is the availability of suitable land-cover that is

Fig. 5. Simulated U.K. suitability surface for E. tetralix at 1 km resolution, with windowed observed presences for county floras (a,
Norfolk and Suffolk; b, Devon; c, Cumbria). The full U.K. suitability surface is presented at three thresholds, identified at 10 km
resolution, as described in the main text: 3�/sensitivity/specificity balanced threshold; 2�/90% sensitivity; 1�/95% sensitivity.
Suitability surfaces for the county windows are presented at the 95% sensitivity threshold (grey) along with the observed tetrad
distributions (black spots) from county floras (Halliday et al. 1997, Ivimey-Cook 1984, Beckett et al. 1999, M. Sanford pers.
comm.).
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restricting the current species’ range. The modelling

approach thus has the potential to help uncouple effects

of climate and habitat change in the interpretation and

prediction of distribution changes. The importance of

discriminating between forces of climate and land-cover

change has been demonstrated by Warren et al. (2001) in

Fig. 6. Simulated U.K.
suitability surfaces at 1 km
resolution, with windowed
observed presences for
Cumbria. The full U.K.
suitability surfaces are
presented at three thresholds,
identified at 10 km resolution,
as described in the main text:
3�/sensitivity/specificity
balanced threshold; 2�/90%
sensitivity; 1�/95% sensitivity.
Suitability surfaces for the
county windows are presented
at the 95% sensitivity threshold
(grey) along with the observed
tetrad distributions (black
spots) from the Flora of
Cumbria (Halliday et al. 1997).
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their study of distribution changes of British butterflies

over the past 30 yr. It was shown that mobile, habitat

generalist species with northern range margins in Britain

have increased their ranges in response to climate

warming, whilst habitat specialists have declined as a

result of habitat loss.

Models for S. herbacea and G. sylvaticum did not

show the same predictive improvements as the other two

species when land-cover data was incorporated. It is

apparent, therefore, that the presence/absence of land-

cover types at 10 km resolution does not provide a good

correlate with distribution for these two species. This is

likely to be due to the fact that at this resolution nearly

all 10 km2 cells incorporate at least one small patch of

suitable land-cover (i.e. a ‘‘presence’’), leading to blanket

coverage throughout the study region. In order to better

identify correlations between land-cover type and dis-

tribution of these species it would be necessary to adopt

a finer resolution of analysis at which patterns in the

distribution of suitable land-cover are apparent in the

dataset. These results support the proposal that the

search for environmental correlates with species distribu-

tions must be addressed at an appropriate spatial scale,

whereby distribution patterns for environmental vari-

ables and species distributions are similar at the resolu-

tion of analysis.

Differences between decision thresholds identified by

maximising k and by balancing sensitivity and specificity

were found to be significant, ranging from 0.10 to 0.19

for the four species studied. The arbitrariness of this

threshold must be considered when interpreting pre-

sence/absence maps generated from such models. It has

been argued here that, rather than maximising agree-

ment between observed and simulated distributions, a

more appropriate approach to identifying decision

thresholds is to minimise the number of observed

presences falling outside the simulated distribution.

The three-level approach to presenting model output

applied in this study has made the interpretation of

results less dependent on the choice of a single threshold

and has facilitated the identification of broader potential

distributions. For example, the simulated suitability

surface for G. sylvaticum identified areas south of the

main range margin where the potential distribution is

simulated at the 90% sensitivity level. The small number

of observed presences within these areas (mostly alien

introductions) confirms the validity of identifying these

regions as having climate and land-cover characteristics

that fall within the species’ fundamental niche.

The identification of potential distributions has been a

goal of this study. A modelling methodology has been

presented based on the hypothesis that hierarchical levels

can be identified whereby different environmental drivers

have dominant roles in defining species distributions at

different spatial resolutions. Relationships between dis-

tributions and environmental variables have been char-

acterised at one scale, assuming a degree of equilibrium,

and then the relationships identified have been down-

Fig. 6 (Continued).
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scaled and combined with other environmental factors

at a finer spatial scale. The application of this approach

to climate data at the European extent and 0.58
resolution, and to land-cover data at the British extent

and 10 km resolution, has yielded promising results and

it is proposed that the approach defines a useful frame-

work for addressing the complexity of the natural

system.

Conclusive validation of the hierarchical scheme is

problematic, being confounded by data limitations

(notably the lack of species distribution data at a large

extent and fine resolution) and by fundamental issues of

scale (not least the Modifiable Aerial Unit Problem;

Openshaw 1984). Collingham et al. (2000) found no

evidence of a hierarchy of environmental controls in

their study of invasive weeds across resolutions of 2�/2

and 10�/10 km. It is possible that similar analysis across

a broader range of scales, incorporating 0.58 resolution

data, would have generated different results. However,

there is mounting evidence that scale-dependent hierar-

chies of environmental controls are apparent in a

number of ecological systems (e.g. Rettie and Messier

2000, Martinez et al. 2003). This study has confirmed the

potential utility of the hierarchical approach and it is

reaffirmed that the search for different levels of organi-

sation in ecological systems is of potential importance

(May 1989).

The modelling approach presented will be particularly

useful for estimating potential future impacts of climate

change on species’ distributions. By formulating the

bioclimatic model at the European extent, the model is

not required to extrapolate outside its training dataset

when predicting future distributions in Britain under

climate change scenarios. The benefits of this approach

are demonstrated in Fig. 7, which presents simulated

future distributions for R. alba generated by passing

climate inputs generated from the 2050s high scenario of

Hulme and Jenkins (1998) through ANNs trained using

both the hierarchical and non-hierarchical approaches.

Land-cover was kept constant for this example. Simula-

tions using both models show the expected general trend

of increasing suitability as the species climate envelope

moves northward (cf. Fig. 2). However, there are notable

differences between the predictions, particularly in the

south west of England where the non-hierarchical

approach shows a marked increase in suitability. Exam-

ination of the observed European species distribution

and of the European-scale model inputs aids interpreta-

tion of these results. It is plausible that the southern

range margin of R. alba , which is currently in southern

France and northern Spain, will limit the species

distribution in south west England under the climate

change scenario for the 2050s. Whilst the hierarchically-

trained model identified this trend, keeping suitability

relatively low, the non-hierarchical model was forced to

predict for climatic regimes for which it had no para-

meterisation, leading to an arbitrary simulation of

increased suitability in the south west.

A number of limitations to the modelling approach

have been noted, including the restricted explanatory

power of ANNs and the reliance on correlations between

observed distributions and environmental variables.

Further limitations are inherent in the availability and

accuracy of datasets. Data can rarely be generated for all

resolutions and for all spatial extents, but rather tends to

be available for large extents at coarse resolutions, or

small extents at fine resolutions. Thus, in this study

species distributions were obtained at 0.58 resolution for

Europe, 10 km resolution for Britain, and 2 km

resolution for local case studies. It has been necessary

to design the modelling framework to take best advan-

tage of the available data. Questions regarding the

accuracy of the data also arise, in particular regarding

the assumption that observed species absences are true

absences, and not a result of insufficient sampling

(Griffiths et al. 1999). The use of species records

spanning many years is also potentially problematic,

since distributions are dynamic over relatively short

time-scales. The use of mean 1961�/1990 climate data

aims to reduce this effect, though the year 2000 ‘‘snap-

shot’’ of land-cover will add an element of error to the

modelling. Base errors arising from data limitations are

unavoidable. However, the level of success that has been

Fig. 7. Comparison of model simulations showing changes to
the potential distribution of Rhynchospora alba under a high
emissions climate change scenario for the 2050s. The left panel
presents results using a model trained with continental scale
climate data and regional land-cover data (hierarchical model).
The right panel presents results using a model trained with
regional scale climate and land-cover data (non-hierarchical
model). Simulations are presented at three thresholds as
described in the text: 3�/sensitivity/specificity balanced thresh-
old; 2�/90% sensitivity; 1�/95% sensitivity.
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achieved in modelling species distributions has demon-

strated that biogeographical trends can be identified

regardless of the imperfect data that is so often all that is

available in ecological studies.

In conclusion, this paper has presented a novel

modelling methodology for integrating climate and

land-cover variables across different spatial scales. Ap-

plication of the model to four plant species in Britain has

enabled the methodology to be tested and conclusions to

be drawn regarding the relative roles of climate and land-

cover in influencing distributions. Further application of

the approach to other species and landscapes should

help further our understanding of the potential com-

bined effects of climate and land-cover change on the

distribution of species.
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