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Abstract: Predictive vegetation mapping can be defined as predicting the geographic distribution
of the vegetation composition across a landscape from mapped environmental variables. Compur-
erized predictive vegetation mapping is made possible by the availability of digital maps of
topography and other environmental variables such as soils, geology and climate variables, and
geographic information system software for manipulating these data. Especially important to
predictive vegetation mapping are interpolated climatic variables related to physiological tolerances,
and topographic variables, derived from digital elevation grids, related to site energy and moisture
balance. Predictive vegetation mapping is founded in ecological niche theory and gradient analysis,
and driven by the need to map vegetation patterns over large areas for resource conservation
planning, and to predict the effects of environmental change on vegetation distributions. Predictive
vegeration mapping has advanced over the past two decades especially in conjunction with the
development of remote sensing-based vegetation mapping and digital geographic information
analysis. A number of statistical and, more recently, machine-learning methods have been used to
develop and implement predictive vegetation models.

Key words: niche, gradient model, vegetation map, geographic information system, remote
sensing, digital terrain data, habitat model.

I Introduction
Until some years ago the exclusive means of storing and presenring the geographic distribution pattern of vegetation
was the classical map (Brzeziecki et al., 1993: 505).
Unfortunately, many consider maps to be straightforward and think of geographic information systems as simply
containers for maps (Goodchild, 1994a: 2).

Use and manipulation of spatial data have increased dramatically over the past decades

with

the development of geographic information-processing software and hardware.

© Edward Arnold 1995.
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However, it has been noted that new representations of spatial data have been embraced
more slowly: *. . . polygons and their geometry and topology are themselves artifacts of the
data modeling process. .. The real geographic variation is complex and continuous’
(Goodchild et al., 1992: 90; see also Goodchild, 1987; 1988; 1994b). It is not uncommon
for land-management and planning agencies, for example, to digitize vegetation maps
produced using traditional photointerpretive and cartographic methods (based on a
‘communication paradigm’; see DeMers, 1991) and to incorporate them into a geographic
information system (GIS) as ‘data’ for management decisions (e.g., as if they were based
on an analytic paradigm sensu Tobler, 1959). In this article I review methods for
predictively mapping vegetation and species distributions with inductive models to
produce digital biospatial data based on an analytical paradigm.

Predictive vegetation mapping is defined here as predicting the vegetation composition
across a landscape from mapped environmental variables. Predictive vegetation mapping
always starts with the development of some type of model, followed by the application of
that model to a geographic database to produce the predictive map, a realization of the
model. Predictive vegetation mapping is founded in ecological niche theory and vegetation
gradient analysis, and rests on the premises that vegetation distribution can be predicted
from the spatial distribution of environmental variables that correlate with or control plant
distributions. Further, maps of the environmental variables or their surrogates must be
available, or easier to map than the vegetation itself, in order for predictive vegetation
mapping to be a practical or informative exercise. The availability of digital maps of
topography and other environmental variables, such as soils, geology and climate, and GIS
software for manipulating these data, has allowed the development of predictive vegetation
mapping during the past 20 years. There has been an increasing use of predictive
vegetation mapping for biodiversity conservation planning (reviewed by Haines-Young,
1991}, ecological restoration planning (Martinez-Taberner ez al., 1992) and assessing the
impacts of environmental change on vegetation distributions (see, for example, Palmer
and Van Staden, 1992),

In this article I will discuss the development of predictive vegetation mapping especially
in the context of remote sensing-based vegetation mapping. I will illustrate the dependence
of predictive vegetation mapping on ecological niche theory, and show the relationship of
regional-scale predictive mapping to the global-scale modelling of vegetation in relation to
climate, and to animal habitat modelling. I will focus on the prediction of plant species
distributions or vegetation patterns at the ‘regional’ scale, e.g., where the mapped extent of
the predictions are generally at or within the biogeographic range of the dominant plant
species. Modelling the global distribution of plant formations, functional types or biomes
based on macroclimatic factors is a closely related topic that will be summarized for
comparative purposes (section IV.2), but a complete review merits a separate treatment
owing to its importance for exploring the potential effects of global climate change. Finally,
I will review the variables most commonly used to predict vegetation distributions, with an
emphasis on topographic, hydrologic and solar radiation variables derived from digital
elevation data, and compare the statistical and other methods that have been used to
develop the models.

My intent in this review is to summarize recent applications of predictive vegetation
mapping with respect to their goals, modelling methods, data sources and outcome, and to
place them in the context of contributory literature from remote sensing, ecological theory,
vegetation science, climate modelling and hydrology. I also want to acknowledge the
foresight of the earliest practiticners of predictive vegetation modeiling who recognized
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how instrumental the marriage of gradient or site modelling with digital geographic data
and computers could be in changing our perception of the map from a tool for
cartographic communication to a realization of a model.

It The development of predictive vegetation mapping

I believe that the first published example of what I refer to as predictive vegetation
mapping was presented by Kessell (1976; 1978; 1979) in a series of articles and
monographs describing the approach he called ‘gradient modelling’, developed for Glacier
National Park (but see also Hoffer et al., 1975). ‘Gradient analysis attempts to describe
and understand the distribution of vegetation in response to one or more environmental,
resource, and/or temporal gradients (Whittaker 1973) . . . Gradient modeling, introduced by
the author, links [such] abstract space models with real space via a GIS (Kessell 1979)
(Kessell, in press:, emphasis added). Making extensive use of field data, Kessell developed
gradient models for plant and animal species and fuel properties of the vegetation, and
incorporated them into what was more than a predicted map of vegetation — it was an early
spatial decision-support system for fire management in wildlands. As Kessell discusses, the
theoretical foundation and methodological basis for predictive vegetation mapping are
provided by niche theory and gradient analysis (discussed in section IV).

At about the same time, Roger Hoffer at Purdue University (Hoffer et al., 1975) and
Alan Strahler at the University of California at Santa Barbara’s Department
of Geography, and their colleagues, were also predicting the composition of montane
forests from digital topographic data using an approach that was founded in physiographic
ecology and forest site modelling. Strahler er al. (1978: 929) noted that ‘Many ecological
and sylvicultural studies have shown the importance of the topographic parameters of
slope angle, aspect, and relative elevation in determining vegetation composition’, citing,
for example, Hartung and Lloyd (1969), Wickum and Wali (1974) and Strahler (1977). In
an early summary of his work in this area, Strahler (1981: 19, emphasis added) stated
that

.. .if species composition varies systematically with terrain, topographic variables . .. can be used to improve
prediction of species composition through implicit or explicit use of an ecological model . .. The technique s a
protorype for a set of tools which will become increasingly important as geobased information systems [sic] using both [remotely
sensed] image and collateral data develop in the coming years

— an insightful comment in the light of subsequent developments in GIS. In section III, I
will describe the development of predictive vegetation mapping in the context of remote
sensing-based mapping.

Thirdly, in 1981, Elgene Box published his monograph on empirical modelling of the
global distribution of plant forms from macroclimatic variables. While I have noted that
my review concentrates on studies of regional vegetation patterns, global-scale efforts will
be addressed in section IV.2 owing to their importance in studies of global climate change,
in establishing empirical and physiological relationships berween plant distributions and
climatic variables, and their hierarchical relationship to regional predictive vegetation
mapping.

Almost a decade after these pioneering works, a growing number of predictive
vegetation mapping efforts started appearing in the literature (Table 1). Development of
predictive vegetation mapping has required the integration of GIS with remote sensing
(Davis and Simonett, 1991; Davis et al., 1991; and see section III), spatial analytic and
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Table1 Examples of recent literature on predictive vegetation modelling and mapping (cited
frequently in this article), describing the modelling method used and the environmental
variables that were used as predictors in the model. Citations are listed according to their

modelling methods (see Table 2 and section V)

Study

Modelling method

Environmental variables

Franklin et al., 1986
Cibula and Nyquist, 1987
Walker et al., 1992
Martinez-Taberner et al.,
1992

Miller, 1986

Ostendorf, 1993

Fels, 1994

Frank, 1988

Burke et al., 1989
Franklin and Wilson,
1991

Palmer and Van Staden,
1992

towell, 1991

Fischer, 1990
Brzeziecki et al., 1993
Davis and Goetz, 1950
Noest, 1994

Nicholls, 1989

Austin et al., 1994
Brown, 1994

Mackey and Sims, 1993

Mackey, 1994

Mackey et al., in press
Twery et al., 1991

D.M. Moore et al., 1991
Lees and Ritman, 1991
Fitzgerald and Lees, 1992

Payne et al., 1994

Boolean

Boolean

Boolean

Boolean (limits of
physiological tolerances)
regression

regression

multiple regression
Maximum likelihood
classification (MLC)
canonical correlation
discriminant analysis,
MLC

contingency table
analysis

discriminant analysis

Bayesian
Bayesian

logit regression
logit regression
GLM (logit}

GLM (logit)
GAM and GLM (logit)

MONOMAX (maximum
likelihood monotonic
functions)

MONOMAX
MONOMAX

rule-based methods
classification tree
classification tree

neural networks

genetic algorithms

elevation, aspect

elevation, aspect

elevation, topographic moisture

water chemistry (to predict aquatic macrophytes)

elevation, slope, aspect diversity

runoff (from terrain-based hydrological model)
elevation, slope, aspect, slope curvature
elevation, aspect, relief, slope-aspect index,
satellite spectral data

elevation, slope, aspect, fetch

elevation, slope, aspect, satellite spectral data

elevation, annual rainfall

original vegetation type, soil, fire history,
distance to forest

elevation, slope, radiation, geology, soil type,
snow cover, land use

temperature, precipitation, elevation, slope,
aspect, soil properties

elevation, slope, aspect, radiation, upsiope
catchment area, geology

groundwater height, dune age, duration of
inundation, antecedent climate, etc.
temperature, precipitation, elevation, lithology,
topography, exposure

temperature, precipitation

elevation, radiation, topographic moisture, snow
accumulation

average daily temperature of the warmest quarter

temperature, precipitation, radiation, nutrient
index based on parent material

soil texture, slope, topographic moisture
slope position

slope, aspect, geology, hillslope position,
upslope catchment area

slope, aspect, geology, hillslope position,
upslope catchment area, satellite spectral data
elevation, slope, aspect, geology, upslope
catchment area, satellite spectral data

slope, aspect, geology, flow length, flow
accumulation, satellite spectral data
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statistical tools (Goodchild, 1987; 1994b) and large field datasets (see Walker and Moore,
1988; Kessell, 1990; Leathwick and Mitchell 1992) — a technological and methodological
challenge still being addressed (Faust et al., 1991).

These more recent studies have been conducted over spatial scales ranging from a few
(Burke er al, 1989; Martinez-Taberner et al, 1992; Ostendorf, 1993; Fels, 1994) to
hundreds (Davis and Goetz, 1990; Fischer, 1990; Lowell, 1991; D.M. Moore er al., 1991;
Mackey and Sims, 1993; Brown, 1994; Payne er al., 1994), and thousands (Palmer and
Van Staden, 1992; Brzeziecki er al., 1993; Lenihan, 1993; Ustin ez al., 1993; Lynn et al., in
press) of square kilometers. In addition to predictively mapping the distribution of species
(Davis and Goetz, 1990; Lenihan, 1993; Mackey and Sims, 1993; Fels, 1994) and plant
communities or assemblages (Fischer, 1990; D.M. Moore et al., 1991; Palmer and Van
Staden, 1992; Brzeziecki er al., 1993; Brown, 1994; Fels, 1994; Lynn et al., in press), other
attributes of the vegetation or ecosystem have been predictively mapped, including
vegetation structure or physiognomy (Mackey, 1993; 1994), vegetation succession (Lowell
and Astroth, 1989; Lowell, 1991) and plant species diversity or richness (Richerson and
Lum, 1980; Miller, 1986). The products of predictive mapping have been variously
descnbed as

» ‘a predictive vegetation map’ (Davis and Goetz, 1990: 70);

» ‘apredicted . . . cover type map’ (Twery et al., 1991: 50);

* ‘images showing the predicted composition of forest communities’ (D.M. Moore ez al.,
1991: 59);

* ‘a simulated map . . . where the occurrence of different vegetation types is modelled’
(Brzeziecki er al., 1993: 502);
* ‘probability surfaces ... of species dominance ... mapped in geographical space’

(Lenihan, 1993: 670);

* ‘aspatial prediction of the potential distribution of the vegetation’ (Mackey et al., 1989:
279); and

* ‘a numerical probability map of the potendal natural vegetation’ (Brzeziecki er al.,
1993: 499).

The last two quotations illustrate an important issue in predictive vegetation mapping —
when a model is calibrated using observations of vegetation composition taken from
mature or ‘climax’ vegetation stands, then potential natural vegetation (sensu Kuchler,
1988) is portrayed in the predicted map (discussed by Brzeziecki ef al., 1993, and see
Figure 1). While often the objective in predictive vegetation mapping is to portray
potential vegetation patterns for the purposes of ecosystem management or restoration, or
to explore vegetation — climate relationships, sometimes predictive vegetation mapping is
used to interpolate among field data points in order to map actual vegetation patterns for
resource inventory or management. One could argue that environmental gradients affect
the distribution of potential vegetation, and that actual or existing vegetation cannot be
mapped using an empirical model unless variables related to disturbance history (such as
fire or grazing, see Davis and Goetz, 1990) or actual land cover (such as remotely sensed
data, see Lees and Ritman, 1991) are included as predictors in the model (Figure 1). Itwas
within this context that researchers attempting to map actual vegetation cover based on
remotely sensed satellite imagery began to incorporate mapped environmental variables to
improve their maps of actual vegetation cover, and this is discussed in the next section.
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Figurel Conceptual model showing the relationship berween direct gradients
(nurrients, moisture, temperature), their environmental determinants (climate,
geology, topography) and potential natural vegetation, and the processes that
mediate between the potential and actual vegetarion cover (the latter is sensed by
a remote sensing device).
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Il Remote sensing and the development of digital vegetation maps

Physical geographers have been involved in analysing remotely sensed data to map earth
resources since the first Landsat satellites were launched (Everett and Simonett, 1976). A
number of geographers and other researchers noted early on that it was not possible to map
vegetation communities in great floristic detail using the satellite multispectral imagery
that was available, and they began including digital maps of environmental variables
(topography, geology) in the mapping process in a number of ways (reviewed by Skidmore
in his 1989a article). These environmental data were referred to as ‘collateral’ or ‘ancillary’
to the (primary) remotely sensed data (see Strahler er al., 1980) and it is interesting to note
in retrospect that, currently, remotely sensed data are often considered ‘ancillary’ to the
other data in a GIS (Davis er al., 1991; Ehlers ez al., 1991).

Charles Hutchinson (1982), a geographer, wrote an early and often-cited review of
methods for combining Landsat and environmental data. At that time (and subsequently),
mapping from multispectral imagery relied almost exclusively on multivariate classification
techniques, identifying different land-cover types based on their spectral reflectance
patterns. Hutchinson reviewed three methods for incorporating environmental data into
this process:

* ‘Stratification’ prior to multivariate classification — dividing the study area into smaller
areas (based on watershed boundaries or elevation zones, for example) to reduce the
potential number of vegetation classes and separate classes that are ‘spectrally similar’
but geographically disjunct.

* Including ancillary data as additional variables in multivariate classification, or using
them to calculate prior probabilities for vegetation classes in maximum likelihood
classification (Strahler, 1980).

 After classification, dividing a ‘spectral class’ using some other variable (rock type,
elevation) and assigning the divided class to different vegetation classes in the resulting
map (‘postclassification sorting’).

Subsequently, terrain variables derived from digital elevation grids were included as
independent variables in maximum likelihood classification or discriminant analysis to
identify montane, Boreal and Arctic vegetation by Frank (1988) and S.E. Franklin and
others (Franklin, 1987; Franklin er al., 1989; Franklin and Moulton, 1990; Peddle and
Franklin, 1991; Franklin and Wilson, 1991; 1992). S_E. Franklin (1987) refers to terrain
attributes, such as slope, aspect and convexity, as ‘geomorphometric variables’ (see section
V1) and discussed their relationship to vegetation patterns in the articles cited above.
Stranfication was employed by J. Franklin er al. (1986) and Cibula and Nyquist (1987)
in studies aimed at mapping western coniferous forest in North America. Both subdivided
the study areas into regions with more or less natural bioclimatic boundaries (large
watersheds or ‘natural regions’) and both developed simple, discrete gradient models,
implemented using Boolean logic, to predict forest type from slope, aspect and elevation
within each subarea (a form of ‘postclassification sorting’, because the broad category,
conifer forest, identified using spectral classification, was subdivided into more detailed
conifer associations based on the terrain variables). Satterwhite ez al. (1984) and Shasby
and Carneggie (1986) also used land-form or physiographic units to separate spectral
classes ‘postclassification’ into vegetation classes, and in the latter case to predict
vegetation type based on terrain classes. More recently, Woodcock et al. (1994) have
implemented stratification and gradient modelling in mapping vegetation in the Sierra
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Nevada, California, while developing new remote-sensing methods for delineating stands
and estimating canopy structure. Other recent examples include Bolstad and Lillesand
(1992), Bauer et al. (1994) and White et al. (1995). The definition of physiographic or
large hydrologic units for stratification, while often implemented to assign vegetation labels
to spectral classes, is also an important concept in predictive vegetation mapping when the
vegetation model is based on indirect environmental gradients (see next section), and a
domain for extrapolation must be defined. It may be that predictive vegetation modelling
methods could be used to define ‘natural regions’ more objectively, based on field data.

Lees and Ritman (1991) discuss a hierarchical method of combining the complementary
strengths of remotely sensed and ecological data for vegetation mapping in southeastern
Australia. To paraphrase, they assert that while satellite imagery can detect land cover, and
provide information about actual vegetation structure, especially when it has been affected
by land-use patterns (e.g., conversion of forest to pasture; see Figure 2), in undisturbed
forest, satellite imagery (broad-band multispectral observations) provides little informa-
tion about gradients of species composition. However, those patterns are related to
environmental gradients that are determined by topography, climate or substrate (as noted
in earlier studies). They applied a tree-based rule-induction method (see section VI)
calibrated with a large number of field plots and found that, as they expected, spectral
variables were selected to discern anthropogenically disturbed land cover, while topo-
graphic variables were used to distinguish among undisturbed forest associations. Strahler
(1981) had noted the same thing when terrain variables were combined with spectral data
using maximum likelihood classification with prior probabilities.

Skidmore (1989a) applied a rule-based ‘expert system’ approach to mapping forest
vegetation in Australia from satellite imagery and terrain data. In that study, Bayesian
(probabilistic) methods were also used to adjust the prior probabilities of vegetation classes
occurring in a pixel based on spectral classification, but in this case the a priori
probabilities of a forest type occurring on a topographic position were elicited from expert
foresters, rather than induced from a sample. These articles provide a link between the
methods traditionally employed in remote-sensing image processing (parametric max-
imum likelihood classification) and machine-learning methods currently being explored in
predictive vegetation mapping and other applications involving disparate data types and
large datasets (see section VI). Ustin et al. (1994) developed a set of rules derived from the
literature to map Boreal forest vegetation based on topographic and remotely sensed
spectral variables in a deductive decision tree, analogous to many animal habitat models,

It is clear from a review of the remote-sensing literature that the use of digital
environmental data to predict and study vegetation patterns has been developed in the
context of remote sensing-image processing and in response to its perceived shortcomings,
e.g., the inability spectrally to identify vegetation with the floristic detail desired in the
resulting map. Alternatively, when maps of actual vegetation patterns could be derived
from remote sensing with high accuracy, these have been compared with predictive maps
generated from environmental data alone, both to validate the predictive model and to
compare the distribution of potential with actual vegetation on the landscape (Davis and
Goetz, 1990; Brown, 1994). Also, early on, several workers recognized the utility of digital
terrain data for deriving topographic variables that have been related to vegetation patterns
in many physiographic and forestry studies (section V). The relationship of species
distribution patterns to environmental gradients is addressed in niche theory and discussed
in the next section,
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IV Gradient modelling and realized niche space

1 Plant species niches

While it is often reported (Collins et al., 1993) that the continuum concept (Whittaker,
1951) underlying gradient analysis grew out of the Gleasonian (1926) individualistic
hypothesis of plant species distributions, Austin (1985) maintains that the two are not
synonymous. Gleason stated that no two species are alike in distribution, while the
continuum concept more explicitly puts forth hypotheses about species response functions
(curves) to environmental gradients, e.g., that they are Gaussian. The assumption of
Gaussian response functions has not been supported by empirical evidence in Austin e al.
(19905 1994). Austin (1980; 1985) and Austin and Smith (1989) define three different
types of environmental gradients:

* Indirect gradients have no direct physiological influence on plant growth; correlation
with vegetation pattern is likely to be location specific: °. . . attempts to analyse niche
relationships with . .. indirect environmental variables like slope and aspect are
unlikely to be profitable, particularly when confounded with differences in location’
(Austin, 1985: 50). Indirect gradients are indicated by dashed arrows in Figure 1.

*  Darect gradients include those having direct physiological impact but not consumed by
plants (temperature, pH).

*  Resource gradients — matter and energy used by plants for growth (light, water, nutrients,
carbon dioxide, oxygen).

Austin et al. (1990: 161) quoted Hutchinson’s (1957) definition of species’ fundamental
niche as . . . that hypervolume defined by environmental dimensions within which that
species can survive and reproduce’ or the fundamental response of plants in the absence of
competition, herbivory and disease (Austin and Smith, 1989). ‘A species may be excluded
from parts of its fundamental niche because of competition and other biotic interactions.
The reduced hypervolume is then termed the realized niche’ (Austin et al., 1990- 161) for
which they define as a synonym ‘environmental niche’. The realized niche has also been
called the species’ ecological response, realized (niche) response curve or utilization
function (Austin and Smith, 1989), species response curve and realized climatic niche
response (Westman, 1991), among other things, in the literature!

In gradient modelling (sensu Kessell, 1978) or predictive vegetation mapping, a
relationship is established between environmental variables that are correlated with or
surrogates for environmental or resource gradients and species distribution patterns. It
follows from the above discussion that observable species distribution patterns reflect their
realized rather than fundamental niches. In order to extrapolate over space (predictive
vegetation mapping) or time (vegetation change modelling - see below), direct gradients or
their surrogates must be mapped (temperature, potential solar radiation, precipitation,
soil-moisture availability, geology or soil chemistry), Further, because these models are
calibrated using information about the extant distribution of species (realized niche), it is
problematic to predict ecosystem changes over time (e.g., in response to climate change)
because biotic relationships among species are likely to change, and it would therefore be
more useful to describe the fundamental (climartic) species niche (Westman, 1991; see
below).

However, while Austin and Smith (1989) have noted that correlations of species
distributions with indirect gradients (such as elevarion) are complex and location specific,
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and therefore inappropriate for modelling species’ realized niches (Austin er al., 1994),
those relationships, if they explain sufficient variation in vegetation patterns, may be useful
for interpolating within the environment where they were measured. D.M. Moore e al
(1991: 60) assert that

.. . while studies using direct factors have revealed much about ecological processes and relationships, it is not at all
clear that such an approach is feasible for predictive modeling as it would require prior specification of the
relationships between the direct gradients and the many topographic and edaphic variables that determine these.

The second approach is to model vegetation distributions directly against the topographic and edaphic variables
that influence moisture and nutrient availability through such effects as drainage, exposure, and soil chemistry . . .
distinguishing cause from effect in such a model might be difficult . . . This does not preclude the possibility of
producing a predictive model for the distribution of vegetation using the many environmental variables that are
correlated to it.

3

Other authors concur; Kessell (in press) stated that “. .. the abstract-space gradient
models are empirical and basically predictive (rather than explanatory)’, and Twery ez al.
(1991: 51) noted that ‘... if the rules work satisfactorily in the absence of causal
understanding the goal of estimating species composition is achieved’. However, Austin et
al. (1994) caution that the use of inappropriate statistical models (e.g., those that assume
Gaussian response functions) for predictive mapping is unwise.

In plant ecology the discussion of the species niche is embedded in the community—
continuum debate. Collins ez al. (1993) suggest that viewing the vegetation as a cohesive
community versus gradually changing assemblages of species distributed continuously
along environmental gradients is a function of one’s scale of perception. Thus the two
views are complementary, rather than competitive. In an alternative interpretation, Austin
and Smith (1989) maintain that the continuum is a concept referring to abstract
environmental space, while the community is a spatial a concept dependent on landscape
pattern: ‘Co-occurring groups of species can be recognized for any particular region with a
recurrent pattern of landscape’ (Austin and Smith, 1989: 36). This suggests that
communities (and ecotones) are geographic entities, and therefore can be predictively
mapped. However, predictive mapping of species distributions presents far fewer defini-
tional uncertainties or abstractions. Often the distribution of species assemblages (plant
communities) or functional types (semsu Smith er al, 1993) is predicted owing to
methodological considerations (lack of sufficient data to model species distributions)
rather than strong loyalty to the community concept.

2 Relationship of predictive vegetation mapping to models of vegetation response to
climate change

There has been a resurgence of interest in climatic controls on plant distributions,
motivated by a desire to predict the potential effects of rapid, anthropogenic climate
change on the biosphere, and to include land—surface atmosphere feedbacks in general
circulation models of the atmosphere (see Solomon, 1986; Prentice and Solomon, 1991;
Henderson-Sellers, 1994). The literature on ecosystem response to global climate change
links predictive vegetation mapping to other areas of ecological modelling. In a taxonomy
of ecosystem models, predictive vegetation models, as they have been define here, are
essentially static models (but see Lowell and Astroth, 1989; Lowell, 1991). Static models
of vegetation distribution rest on the assumption that vegetation and climate are in
equilibrium, or ‘quasi-equilibrium’ (Lenihan, 1993: 667), an assumption accepted by
many for large spatial and temporal scales (Cramer and Leemans, 1993).

Tradiuonal, empirical classification schemes of the global distribution of plant forma-
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tions (biomes) as a function of climate (Képpen, 1936; Holdridge, 1947) have been
refined in a number of ways (see Henderson-Sellers, 1994, for a review of the application
of modified Holdridge schemes in the context of global climate model predictions). Box
(1981) developed a model that predicted almost 100 plant functional types by correlation
with six climatic variables. Woodward (1987) and Woodward and Williams (1987)
developed a mechanistically based model, predicting the distribution of biomes from
physiologically based climate variables (annual minimum temperature, for example).
Prentice ez al. (1992) predictively mapped plant functional types from a small number of
physiologically based constraints related to five climate variables. Biomes were assembled
from combinations of functional types. Neilson er al. (1992) and Lenihan and Neilson
(1993) also developed rule-based models for predicting the continental-scale distribution
of life forms (trees, shrubs, herbs), and biomes were defined as assemblages of different life
forms. While these last three models are physiologically based, rather than correlative, they
are implemented as static, rule-based, equilibrium models. The redistribution of vegeta-
ton as a function of a changed climate would be predicted solely as a function of the spatial
redistribution of the driving climatic variables (although Neilson and Marks, 1994, have
augmented their model with a mechanistic water-balance model that simulated plant-leaf
area as a function of soil-moisture availability).

Another group of ‘equilibrium models’ derives a species’ ecological response surface (or
realized climatic niche response) from present (Westman, 1991; Lenihan, 1993; Mackey
and Sims, 1993) or palaco- (Webb, 1992) distributions on a regional to continental scale.
Static or equilibrium models that address species or functional types (Smith e al., 1993)
are considered more powerful predictors than those predicting biome or plant community
distributions owing to strong palaeoecological evidence that plant assemblages are quite
transient over geologic time (Huntley and Webb, 1988). These ecological response
surfaces have been derived from climate variables using species range maps (Westman,
1991; Lenihan, 1993), vegetation field-survey data (Westman, 1991; Mackey and Sims,
1993) or pollen distribution data (Webb, 1992) based on logistic regression (Lenihan,
1993) or various curve-fitting procedures (Westman, 1991; Webb, 1992; Mackey and
Stms, 1993). Malanson et al. (1992) presented methods for estimating plant species’
fundamental niche from observed distributions on environmental gradients (realized
niche).

The alternative to static, equilibrium models is dynamic simulation modelling of birth,
growth and death of individual plants through time *. . . capable of predicting the transient
response of vegetation to climate change’ (Lenihan, 1993: 667). The forest-stand growth
and succession models (Urban et al., 1991) are reviewed by Prentice et al. (1993). Further,
a number of geographers (Hanson et al., 1990; Baker ez al., 1991) and others (see Baker,
1989; Sklar and Costanza, 1992) are developing spatial simulation models of landscape
dynamics in order to study ecosystem dynamics, and explore the effects of climate change
(Baker et al, 1991) and other anthropogenic modifications to natural disturbance
regimes.

This brief survey of the literature on modelling changes in plant distributions in response
to climate change reveals two themes. First, in a hierarchical scheme of environmental
controls on plant distributions, physiologically based climatic variables that are related to
direct gradients control plant distributions at the largest spatial and temporal scales (see
Figure 1). Secondly, even over smaller spatial extents, predictive vegetation mapping, as I
define it in this article, can serve as an equilibrium model of vegetation change when it is
based on variables related to direct, rather than indirect, gradients. Neilson et al. (1992)
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noted that developing an equilibrium model helped them to test and validate the
assumptions of a dynamic model capable of simulating transient vegetation responses to
environmental change. '

3 Relationship to animal habitat modelling

Predictive vegetation mapping is directly and methodologically related to animal habitat
modelling when the later is used to produce a predictive map of habitat suitability.
Hunsaker et al. (1993) reviewed the role of GIS in spatial modelling of ecosystems and
classified cartographic models (sensu Tomlin, 1990) as ‘whole mosaic’ models where each
data layer in a GIS contains an environmental or ecological variable which is manipulated
1n an equation simulating an ecological response, such as animal habitat suitability (e.g., a
statistical or rule-based model). Johnston (1993) also reviewed the modelling of ecological
populations and communities using GIS, and noted that it is possible to model
cartographically populations that are limited by environmental carrying capacity
(K-strategists) based on mapped environmental variables that are related to their survival.
She notes also that models for the spatial distribution of assemblages of species
(communities) can be developed using GIS if statistically valid relationships exist between
communities and mapped environmental variables (Johnston, 1993: 280). Because plants,
not animals, are usually studied as assemblages (but see Morrison er al., 1992: 246), in the
later case she has essentially described predictive vegetation mapping.

Therefore, any distinction between predictive vegetation mapping and animal species
habitat modelling would be somewhart artificial. A rule-based model predicting the global
distribution of plant forms from physiological tolerances is, in principle, no different from
a deductive (sensu Stoms et al., 1992) habitat model for an animal species based on expert
knowledge. A unified approach has been taken to the inductive modelling of plant and
animal distributions or realized niches at biogeographic scales (encompassing species
ranges) from climatic variables related to direct/resource gradients or physiological
tolerances. This approach originated among a group of Australian researchers and has
been applied to kangaroo species (Walker and Moore, 1988), introduced tree species 1n
Africa (Booth er al, 1989), two vegetation communities and two vertebrate species in
Australia (Busby, 1988), Eucalyptus species in New South Wales (Austin et al., 1990;
1994), rain forest in Queensland (Mackey, 1993; 1994) and Boreal tree species in Canada
(Mackey and Sims, 1993).

In practice, however, the environmental factors that affects animals or micro-organisms
(e.g., plant pathogens) are often different from the environmental gradients affecting plant
distributions, and include vegetation composition and structure. Vegetation type is often
the primary variable driving an animal habitat model both because of its direct importance
for food and shelter and because it is sometimes the only available mapped habitat
variable, acting as a surrogate for other habitat factors (Scott ez al., 1992).

V  Deriving explanatory variables from digital terrain data

In a spatial hierarchy of environmental controls on vegetation distributions, climatic
variables correspond to vegetation patterns at the broadest scales, followed by geology
(and its effect on soil chemistry and nutrient availability) and topography, which
moderates many of the macroclimatic regimes (See Figure 1). A number of studies
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discussed above (sections IV.2, IV.3) address the interpolation and modelling of climatic
variables related to radiation, thermal and precipitation regimes for predictive mapping
(and see, for example, Hutchinson, 1987; Palmer and Van Staden, 1992; Daly er al,
1994). I will limit my discussion to topographically derived variables that affect the spatial
distribution of direct and resource gradients through the effect of

* elevation on temperature and precipitation;

* slope angle and aspect on radiation regime, and therefore moisture demand;

* slope angle and hillslope and drainage basin position on soil moisture, and soil
development (hence, moisture-holding capacity and also nutrient availability); and

* wind exposure on temperature and moisture.

Digital topographic data can be used to model by simulation direct gradients such as
potential solar radiation, to construct indices related to direct gradients (topographic
moisture), and simple topographic attributes such as elevation, slope and aspect can be
used as indirect gradients in model development.

In their article ‘Digital terrain modeling: a review of hydrological, geomorphologic and
biological applications’, I.D. Moore et al. (1991) review the sources, availability of, quality
of and data structures used for digital elevation models (DEM), and the derivation of
topographic attributes and indices from them (also reviewed elsewhere: see Franklin,
1987, and Zevenbergen and Thorne, 1987, for a geomorphologic perspective; also
Skidmore, 1989b; Weibel and Heller, 1991). It is important to note that DEMs frequently
contain systematic and nonsystematic errors which are amplified when first and second-
order differencing operations are applied to them to derive slope and aspect, for example
(see Davis and Goetz, 1990). This can limit the effectiveness of predictive vegetation
mapping if terrain attributes are the key predictor variables and the values of those
variables derived from DEMs do not reflect field conditions.

LD. Moore et al. (1991) classify topographic attributes into primary and compound.
The following primary attributes were discussed as being easily derived from DEMs, and
related to vegetation patterns:

* Slope or slope angle is the steepness or gradient of the slope, the rate of change of
elevation, and is related to the hydrology (overland and subsurface How velocity and
runoff rate) and hence potential soil moisture and soi development (Moore et al.,
1993), as well as the radiation balance, of a site.

* Slope aspect or azimuth, the direction the slope faces, is related to the radiation
balance, and therefore the potential €vapotranspiration or ‘evaporative demand’ at a
site.

* Specific (or upslope) catchment area (or ‘drainage basin positien’) is related to runoff
volume and variations in soil moisture (Moore et al., 1988; Davis and Goetz, 1990;
Quinn ez al., 1991; see also Marks ez al., 1984; Band, 1986), and soil surface properties
(Moore er al., 1993). :

* Slope curvature, which can be decomposed into slope profile curvature, and plan or
contour curvature, describes the concave- or convexness of a slope (the second
derivative of elevation) and is related to subsurface water flow and hence soil-water
content, and to litter accumulation and soil erosion/deposition rates which in turn are
related to soil depth and texture (Fels, 1994), water-holding capacity, nutrient

availability and forest-site potential (reviewed by Moran, 1982; and sece McNab, 1989;
1993).
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1.D. Moore er al. (1991: 13) describe °. . . analytically derived compound topographic
indices’ as those that can be used as surrogates for complex physical or biophysical
processes, and they discuss indices of soil-water content, potential solar radiation and soil
properties (as well as precipitation and erosion, not discussed here). The topographic
wetness (or moisture) index of soil-water content is simply the upslope catchment area
scaled by the slope and soil transmissivity; usually when calculated using a DEM the later
is unknown and set to unity (see also Jenson and Dominigue, 1988; Quinn et al.,, 1991).
Ostendorf and Reynolds (1993) calculated runoff volume by distributing runoff to
adjacent grid cells based on assumptions about soil physical properties. Spatially dis-
tributed potential solar radiation has been modelled based on DEMs using energy-balance
methods (in addition to Moore et al.’s review, see Dubayah er al., 1990; Dubayah and van
Katwijk, 1992; Dubayah, 1994). More complex but realistic models account for the
shading from direct radiation by, as well as reflectance of radiation from, the surrounding
terrain. A compound index related to soil properties is slope position or ‘terrain position’
(sensu Skidmore, 1990), defined as the relative distance between the closest stream and
ridge. It is usually assigned to classes such as ‘ridge, upper mid-slope, lower mid-slope,
gully’. The methods for deriving slope position from a DEM are usually extensions of
those methods used for automatically delineating stream networks and drainage basins
(reviewed by Skidmore, 1990). Slope position is related to both the upslope catchment
area and slope curvature variables, but may be better related to hillslope processes, and
thus soil properties, than the former hydrological variables (Swanson ez al., 1988).

Almost all predictive vegetation mapping studies have used the primary terrain
attributes of elevation, aspect and/or slope, derived from DEMs, as predictor variables
(Table 1; Richerson and L.um, 1980; Miller, 1986; Burke et al, 1989; Nicholls, 1989;
Davis and Goetz, 1990; Fischer, 1990; Ilees and Ritman, 1991; Lowell, 1991; D.M.
Moore et al., 1991; Walker ez al., 1992; Brzeziecki et al., 1993; Brown, 1994; Payne et al.,
in press; Ustin et al., 1994; Mackey et al., in press), as have many wildlife habitat predictive
maps (Pereira and Itami, 1991; Aspinall and Veitch, 1993). A smaller number of studies
has derived other primary attributes or compound indices for prediction, including
upslope catchment area (Davis and Goetz, 1990; Lees and Ritman, 1991; D.M. Moore et
al., 1991; Payne et al., 1994), the topographic wetness index (Brown, 1994; Mackey ez al.,
in press), potential solar radiation (Davis and Goetz, 1990; Fischer, 1990; Mackey, 1993),
slope curvature (Fels, 1994) and slope position (Lees and Ritman, 1991; D.M. Moore ez
al., 1991; Twery et al., 1991). Other topographically derived variables used in predictive
vegetation mapping have included wind exposure or fetch (Burke et al, 1989), topo-
graphic heterogeneity (Richerson and Lum, 1980) and predicted runoff from a hydrologic
model (Ostendorf, 1993, Ostendorf and Reynolds, 1993). Further there is a growing
literature on predictive mapping of soil properties based on their relationships with
topographic variables (see Moore er al., 1993}.

VI Computational methods for predictive vegetation mapping

In predictive vegetation mapping, the dependent variable can be continuous (abundance
or importance of a species) or categorical (presence/absence of a species, vegetation
assemblage or type); and the independent variables can be continuous (rainfall, tem-
perature, multispectral reflectance, elevation, topographic moisture, slope), grouped into
ordinal classes (slope, aspect, stand age) or categorical or nominal variables (soil type, soil
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properties, geologic substrate, grazing history). In this section I will summarize the
computational methods used to derive inductive models and implement them for
predictive mapping, although a critical review of these methods would require separate
treatment.

One way of classifying the modelling methods is to divide them broadly into Boolean
(discrete) methods, parametric models and machine-learning methods. Boolean methods
assign a location (grid cell in a spatial database) class membership in only one class based
on ranges of values of the explanatory variables (e.g., using Boolean logic or set theory).
Parametric models are statistical models that predict the probability of class membership
for categorical response variables, (maximum likelihood classification, general linear
models) that predict the value of a continuous response variable such as species
abundance, or that combine probabilities using Bayes Theorem. In this article T am
defining parametric models ag those that make assumptions about the underlying
distribution of the data-generating process. Machine-learning methods include inductive
classification (or decision) trees and genetic algorithms, as well as artificial neural networks

of class membership for categorical response variables, usually based on frequency
distributions in the data used to train the model.

A number of studies employed Boolean predictive mapping. Environmental measure-
ment space was divided discretely among classes based on deductive models (discussed in
section IV.2), vegetation gradient diagrams (Franklin ez af 1986; Walker er al., 1992;
Woodcock er al., 1994), or ranges of observed data values (Cibula and Nyquist, 1987;
Busby, 1988; Booth ez al., 1989).

Strahler er al (1980), in their article on ‘Incorporating collateral data in Landsat
classification and modeling procedures’, produced a table, modified from Wrigley (1979),
summarizing statistical methods for combining continuous and categorical data (see Table

OVA, etc.), linear regression, maximum likelihood classification (MLC) and discriminant

Table 2 Techniques for modelling with continuous and categorical darta

Dependent variable Independent Variables
Continuous Mixed Categorical
Continuous Regression models ANCOVA ANOVA
Regression tree MANCOVA MANOVA
GLM Regression tree Regression tree
GiMm GIiMm
Categorical MLC MLC with priors Contingency table
Logit (GLM) Logit (GLM) Logit (GLM)
Discriminant analysis GAM GAM
GAM Classification tree Classification tree
Classification tree Neural networks Neural networks
Genetic algorithms Genetic algorithms
Expert systems Expert systems

Notes: (IM)AN(C)OVA: (Multivariate) Analysis of (Co-)VAriance; MLC: maximum likelihcod classification;
GAM: general additive models; GLM: general linear models,

SOIurce: Modified from Strahler et al, 1980, who modified it from Wrigley, 1979; author's additions
italicized.
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analysis make assumptions about the (normal, continuous) distributions of the independ-
ent variables and models errors, equal variances and so forth, that often do not hold for the
data under consideration, two methods were especially promising for modelling vegetation
type (a categorical dependent variable). These were logit modelling (logistic regression)
and MLC with modified prior probabilities employed in a Bayesian-type classifier
(Strahler, 1980) allowing ‘. . . the mixing of parametric and nonparametric [sic] classifica-
ton models for image and collateral data respectively’ (Strahler ez al., 1980: 1020).

Once again Strahler and his colleagues foreshadowed subsequent statistical modelling
efforts in this field. Several researchers have in fact predictively mapped vegetation from
satellite reflectance, terrain and/or other variables using discriminant analysis when the
independent variables are continuously distributed (Franklin ez al., 1989; Franklin and
Wilson, 1991; Lowell, 1991; Peddle and Franklin, 1991). These authors noted that
discriminant analysis is robust to violations of its underlying assumptions, and used the
technique predictively for classifying new data, in spite of the fact that it is not usually used
in this way (Strahler er al., 1980). Lowell and Astroth (1989) and Palmer and Van Staden
(1992) used contingency table analysis to model vegetation at widely differing scales, and
Stoms et al. (1992) used contingency table analysis to test the sensitivity of a habitat model
for the California condor. Fels (1994) examined the relationships between 27 plant species
and 11 continuously distributed terrain variables using multiple regression and fit linear
and quadratic models to species abundances.

A majority of probabilistic predictive modelling and mapping efforts has used logistic
regression to predict species (Lenthan, 1993; Noest, 1994), vegetation assemblage (Davis
and Goetz, 1990) and animal habitat (Pereira and Itami, 1991) distributions from mapped
environmental vaniables. It a refated application, LLudeke et al. (1990) predictively mapped
the probability of deforestation for a site in Honduras from mapped environmental, spatial
and socioeconomic variables using logistic regression. Although Lowell (1991) asserted
that the application of logistic regression is limited to cases of two mapped classes {e.g.,
predicting the probability of presence/absence of a single species), in fact logit regression
can be extended to the polytomous case with multiple response categories (Wrigley, 1984:
62; and see Davis and Goetz, 1990).

Austn et al (1994), Austin (1985) and Nichells (1989) introduce the statistical
framework and terminology of generalized linear models (GL.M) to predictive mapping.
Austin (1985:; 50) describes GLLM as ‘. . . a less restrictive form of regression [allowing]
error distributions of the dependent variable other than the normal’. Nicholls (1989:
53--54) adds that

. . . the constraint imposed by the assumption of a linear function berween the expected data values and explanatory
variables need not be accepted . . . [T)he linear combination of explanatory variables . . . can be set equal to what is
called the linear predictor . . . related to the expected data via a link function [that can include] transformatons that
give non-linear relationships between the linear predictor and the expectation . . . where the expected data values
cannot be negatively or may be logically constrained.

He gives the examples that with rank abundances the response variable could have a
Poisson distribution, and with presence/absence data the binomial distribution is appro-
priate. For either case a log link is commonly used (e.g., a logit model). Indeed, most
studies applying GLM to predictive vegetation or species mapping employ a logit model
(logistic link function) as originally suggested by Strahler er al. (1980) and outlined by
Wrigley (1984), including Austin er a/. (1990; 1994) and Nicholls (1989) and Leathwick
and Mitchell (1992) for tree species in Australia and New Zealand, and Walker and Moore
(1988) for eastern gray kangaroo. Brown (1994) used a combination of general additive
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and general linear models for predictively mapping Alpine vegetation in Glacier National
Park in order to test hypotheses about biophysical controls on the distribution of tree-line
vegetation.

Several studies have used Bayesian statistical inference to manipulate subjective or
conditional probabilities, derived from remotely sensed and/or mapped environmental
data, and produce probabilistic predictive maps of vegetation or animal habitat suitability.
As noted above, Strahler (1980) presented a method for estimating the conditional
probabilities of a vegetation type’s occurrence based on topographic variables, and using
those priors to modify a maximum likelihood decision rule applied to remotely sensed
data, and, as a result, the estimated accuracy of his vegetation map increased from 58% to
77%. Aspinall and Veitch (1993) calculated conditional probabilities for bird species
occurrence directly for spectral and topographic variables from bird-survey data and then
combined these probabilities using Bayes Theorem. Pereira and Itami (1991) developed a
logit model of red-squirrel habitat based on mapped environmental variables and then
used Bayes Theorem to modify these probabilities with priors generated from a logistic
trend surface model of habitat use. Skidmore (1989a) generated subjective a prioni
probabilities of forest-type occurrence on different soil types and topographic positions by
interviewing expert foresters. Again, he used Bayes Theorem to integrate these prior
probabilities with the probability of class membership derived from remotely sensed data
using a nonparametric classifier.

When using these methods, where the probability that an observation belongs to a class
is predicted based on the values of the explanatory variables, discrete class membership is
usually assigned to the class with the highest probability, or exceeding some threshold. An
advantage of probabilistic over Boolean methods is that the probability of class member-
ship can be mapped, giving some quantification of the uncertainty inherent in the
analytical mapping process (Goodchild ez al., 1992; Goodchild, 1989; 1994b). Aspinall
and Veitch (1993: 537) assert that the probability values can be interpreted as an index of
habitat suitability or quality in their study.

Classification and regression trees (CART — Breiman ez al., 1984), also referred to as
decision trees (Bayes and Mackey, 1991; Lees and Ritman, 1991; D.M. Moore et al.,
1991; Lynn et al., in press) comprise a nonparametric, probabilistic machine-learning
method for inducing a set of rules to classify a categorical (classification tree) or
continuous (regression tree) dependent variable based on values of the independent
variables. The tree-based method described by Breiman et al. (1984) is binary, divisive and
monothetic (Michaelsen ez al, 1987), and while it has been called an essentially
exploratory method (Bayes and Mackey, 1991), with no formal inference procedure
(Clark and Pregibon, 1992: 378), it has none the less been used predictively for vegetation
mapping (Lees and Ritman, 1991; D.M. Moore ez al., 1991; Lynn et al., in press) and
ecological modelling (Michaelsen er al., 1987; 1994). Michaelsen et al. (1987: 39) suggest
that it provides a useful alternative to parametric methods when the independent variables
are suspected of interacting in a nested hierarchical fashion. Tree-based methods ‘. . . can
identify and express in relatively simple form non-linear and non-additive relationships . . .
where the relationships between the response variable and some predictor variables are
conditional on the values of other predictor variables’ (Michaelsen er al., 1994: 675). The
variables and values selected for creating the splits in the classification tree can be
examined to see if they make ecological sense. (Are variables related to soil moisture and
precipitation selected to separate xerophytic from mesophytic types? Do the threshold
values of variables used to separate vegetation types differ on differing soil types?)
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Bayes and Mackey (1991) review general linear modelling and probabilistic decision
trees as methods for quantfying species — habitat response, and present an alternative
model, monotonic maximum likelihood functions for relating ranked, discrete dependent
variables (such as classes of rain-forest leaf size) to environmental variables. They refer to
this a nonparametric model that fits a maximum likelihood function using dynamic
programming and assuming only that the function is monotonic. Mackey (1993; 1994)
uses this approach to produce predictive maps. This is essentially a procedure for
parameterizing a non-Gaussian function related to the realized niche space of the species
or functional group. An alternative approach is to generate a look up table containing
probabilities for the occurrence of species or functional groups on environmental gradients
(Ostendorf, 1993). This avoids any assumptions about functional relationships and allows
the mapping of observations from real space into parameter space.

Other machine-learning methods include genetic algorithms and artificial neural
networks. Payne et al. (1994) present the application of genetic algorithms, an artificial
intelligence technique, used to predict both species and vegetation-type occurrence for a
subset of the vegetation data discussed in Lees and Ritman (1991) and D. M. Moore et al.
(1991). Their results were promising and they are currently testing this approach with the
full dataset (K. Payne, personal communication).

Artificial neural networks are currently being applied with great enthusiasm to the
classification of remotely sensed imagery, along with other spatial data, for thematic
mapping (see, for example, Benediktsson et al., 1993; Civco, 1993; Chen et al., 1995;
Foody et al., 1995 and references therein), and this relates directly to my discussion of
predictive vegetation mapping. Lees (1994; in press) and Fitzgerald and Lees (1992;
1994) contrast the use of decision trees versus neural nets in predictive vegetation mapping
and conclude that neural nets hold great promise. They do not require as much data for
model development because the vectors of variables associated with each observation used
to train the network are passed through it repeatedly in the training stage (but see
Benediktsson et al, 1993, who assert that neural nets require a great deal of data for
training). They predict the probability (or ‘possibility’) of class membership for an
observation. However, a disadvantage of neural networks is that they operate as a black
box, and it is not possible to examine the criteria used for classification (the ‘weights’). So
spectral data, terrain variables and so forth can be put into this black box with impunity,
because no assumptions are made about data distributions, and the algorithm can be used
to discriminate data that are not linearly separable. However, no insights can be gained or
confirmed about the functional relationship between environmental variables and vegeta-
tion distributions.

Another area of artificial intelligence that can be applied to predictive mapping 1s rule-
based expert systems or ‘knowledge-based’ methods, where the rules or knowledge can be
derived from human experts (Kenk et al., 1988; Skidmore, 1989a; Twery et al., 1991) or
induced from empirical data (Peddle, 1995). Srinivasan and Richards (1990) discuss
alternative knowledge-based technigues for combining remotely sensed and other data for
land-cover mapping.

To summarize this review of modelling methods from a geographic perspective, it is
expected that plant distributions on the landscape will exhibit both spatial heterogeneity
and spatial dependence. However, in few cases have predictive vegetation models explicitly
considered spatial autocorrelation (Goodchild, 1994b), except in trying to choose
uncorrelated locations for field samples (Davis and Goetz, 1990; D.M. Moore ez al., 1991;
Pereira and Itami, 1991). In those examples the objective was to parameterize a model
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with (spatially) independent observations. But in all cases where predictive vegetation
maps were produced using a model, the spatial dependence among locations where
vegetation was predicted (contiguous cells in a raster grid representing the landscape) has
been ignored. This spatial dependence could be exploited as a source of information, not
noise, in a predictive model.

VIl Summary

Predictive vegetation mapping falls within the class of static, equilibrium, whole-mosaic
models of the spatial distribution of the biota. It has developed over the past two decades
in concert with growing capabilities for spatial data manipulation (GIS), and advances in
spatial analysis. This development has been driven by the need for large spatial vegetation
datasets for environmental planning, and for basic research on the role of the biota in earth
systems science.

These models, especially when based on indirect gradients, are probably most useful for
interpolating vegetation ~ environment correlations within a region to produce spatially
distributed vegetation databases. A model based on indirect gradients is limited in its
ability fully to describe or test hypotheses about species niches, or simulate ecosystem
dynamics; however, an equilibrium model based on direct gradients (e.g., climatically
derived variables related to physiological tolerances) can be useful for understanding and
predicting biogeographic patterns of species’ realized niches (but cannot simulate transient
ecosystern dynamics).

In either case, maps based on predictive modelling will be more powerful research,
planning and pedagogic tools if they depict the uncertainty inherent in the mapping
process or the probabilistic nature of many of the modelling efforts. Towards this end,
exploration of the growing literature on modelling and visualizing spatial data uncertainty
would be fruitful (Goodchild and Gopal, 1989; Fisher, 1991; 1994; Congalton 1994).
Goodchild (1994b) asserts that any digital representation of geographic variation is
necessarily an approximation of reality, and proposes a spatial statistical model of the error
(unexplained variance) in digital maps, and error propagation in GIS modeling (Good-
child er al, 1992). Because a number of the methods used in predictive vegetation
mapping are probabilistic they could be used to parameterize an error model (Goodchild,
1994b) or to generate spatial representations of vegetation and plant distributions that
incorporate their uncertainty by some other means (Woodcock and Gopal, 1995).
Ostendorf (1993) noted that a map of prediction error could be used to generate
hypotheses about important spatial processes not accounted for in the vegetation model.

Increasingly, machine-learning methods are used for predictive vegetation mapping,
both because of the nature of data used in modelling, and the way in which environmental
vanables interactively affect plant distributions. However, non-Gaussian parametric
models (general linear models) have also been used extensively to explore hypotheses
about species niches. An important issue, especially for machine-learning methods
requiring a large number of observations for model development, is how the environment
is sampled ro obtain the vegetation data used to calibrate the model. In many cases field
data collected for other purposes are used, owing to the great expense of obtaining these
data. These data may not adequately represent the distribution of vegetation along
environmental gradients throughout a region. The use of digital geographic databases for
efficient stratified field sampling (Michaelsen ez al., 1994) is a critical area of future
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research in predictive vegetation mapping. Further, as noted in Section VI, few studies
have employed models that explicitly account for or exploit the spatial heterogeneity and
dependence inherent in biotic patterns on the physical landscape. The application of
spatial statistics to predictive vegetation mapping is an area of great potential for future
research.
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