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Summary

1. The ecological niche is a fundamental biological concept. Modelling species’ niches
is central to numerous ecological applications, including predicting species invasions,
identifying reservoirs for disease, nature reserve design and forecasting the effects of
anthropogenic and natural climate change on species’ ranges.

2. A computational analogue of Hutchinson’s ecological niche concept (the multi-
dimensional hyperspace of species’ environmental requirements) is the support of the
distribution of environments in which the species persist. Recently developed machine-
learning algorithms can estimate the support of such high-dimensional distributions.
We show how support vector machines can be used to map ecological niches using only
observations of species presence to train distribution models for 106 species of woody
plants and trees in a montane environment using up to nine environmental covariates.
3. Wecompared the accuracy of three methods that differ in their approaches to reducing
model complexity. We tested models with independent observations of both species
presence and species absence. We found that the simplest procedure, which uses all
available variables and no pre-processing to reduce correlation, was best overall.
Ecological niche models based on support vector machines are theoretically superior to
models that rely on simulating pseudo-absence data and are comparable in empirical tests.
4. Synthesis and applications. Accurate species distribution models are crucial for
effective environmental planning, management and conservation, and for unravelling
the role of the environment in human health and welfare. Models based on distribution
estimation rather than classification overcome theoretical and practical obstacles that
pervade species distribution modelling. In particular, ecological niche models based on
machine-learning algorithms for estimating the support of a statistical distribution
provide a promising new approach to identifying species’ potential distributions and
to project changes in these distributions as a result of climate change, land use and
landscape alteration.
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Introduction

Methodological advances in species distribution mod-
elling have been rapid (Guisan & Zimmermann 2000;
Scott et al. 2002). While the practical and intellectual
benefits of obtaining well-tested models for species’
distributions are numerous, including forecasting
species’ range shifts from climate change (Thomas et al.
2004) and invasion by introduced species (Peterson
2003; Drake & Bossenbroek 2004), testing evolutionary
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hypotheses (Graham et al. 2004), identifying reservoirs
for disease (Peterson et al. 2002), and planning for
conservation in a dynamic landscape (Ferrier 2002),
modelling species’ niches is complicated by conceptual
and technical difficulties and by data limitations (Guisan
& Thuiller 2005). Recent advances in machine-learning
techniques for statistical pattern recognition might be
used to overcome many of these obstacles, which gen-
erally result from assumptions about the statistical
distribution of data or restrictive parametric modelling
paradigms. We studied the accuracy and reliability
of ecological niche models built with support vector
machines (SVM) for estimating the support of a statis-
tical distribution (Schoélkopf et al. 2001; Tax 2001; Tax
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& Duin 2004). We show that the SVM framework
performs comparably or is superior to other methods
with only moderate amounts of data while avoiding
common problems and limitations.

The most common obstacles to conventional
parametric and non-parametric statistical methods for
modelling species’ distributions are: (i) autocorrelated
observations resulting from the inherent spatial distri-
bution of ecological systems, spatial autocorrelation in
species’ actual distributions, and haphazard rather
than designed sampling; and (ii) observations only of
species’ occurrences without complementary observa-
tions of species’ absences. Autocorrelated observations
result in inflated P-values for hypothesis testing when
modelling techniques are based on parametric statistics,
and have the potential to introduce bias in estimated
models. One approach to this problem in a parametric
setting is to add to a generalized linear model (GLM;
e.g. logistic model) terms to model the spatial correla-
tion (Augustin, Mugglestone & Buckland 1996; He,
Zhou & Zhu 2003). Other studies have taken a similar
approach with semi-parametric regression techniques,
such as generalized additive models (GAM; Leathwick
& Austin 2001). However, these methods place further
demands on already sparse data and extrapolate poorly.

Strictly speaking, the second obstacle, lack of data
confirming species’ absences, renders modelling appro-
aches based on classification/discrimination impossible
(Robertson, Caithness & Villet 2001; Hirzel et al. 2002).
Previous studies have sought to overcome this problem
by simulating observations of species’ absences (some-
times called pseudo-absences) from data domains in
which there are no observations of species’ occurrences
(Engler, Guisan & Rechsteiner 2004). While remarkably
robust models have been developed using this approach
(Anderson, Lew & Peterson 2003), a method that does
not rely on such heuristics would be useful. Further,
it is not clear that these procedures can be used in a
setting that is not already information rich, where
background knowledge of species’ ecologies can
guide modelling heuristics (Anderson, Lew & Peterson
2003), although these are precisely the cases where spe-
cies distribution models are most useful, for instance
for forecasting species invasions or range shifts from
climate change. Finally, classification models fitted to
simulated data are generally ecologically uninformative
or cumbersome to interpret (Keating & Cherry 2004).
The aim of this study was to introduce a technique that
overcomes these obstacles.

A promising alternative to conventional classification-
based species distribution models is to use methods
designed for modelling one type of data only (Robertson,
Caithness & Villet 2001; Hirzel et al. 2002; Brotons et al.
2004; Phillips, Dudik & Schapire 2004). Many such tech-
niques may be found in the literature on statistical pat-
tern recognition, where a frequent goal is to separate
statistical outliers from observations drawn from a high-
dimensional distribution (Scholkopf ef al. 2001; Tax 2001;
Tax & Duin 2004). Indeed, rather than estimating the

full probability distribution, in such situations it may be
simpler (and more robust) to model just the support of
the distribution, the set of points where the (unknown)
probability density is greater than zero (Scholkopf ez al.
2001). Sometimes support estimation is called one-class
classification (Tax 2001). While many different methods
for estimating statistical distributions might be optimized
for one-class classification (Tax 2001; Tax & Duin 2004),
methods based on SVM have been particularly suc-
cessful in applications where data represent a large set
of variables (Tax 2001, table 4-2; Tax & Duin 2004). SVM
use a functional relationship known as a kernel to map
data onto a new hyperspace in which complicated patterns
can be more simply represented (Miiller ez al. 2001). The
choice of kernel is typically based on theoretical prop-
erties, while any kernel parameters are optimized using
computational techniques such as cross-validation.
Because SVM are not based on characteristics of statis-
tical distributions there is no theoretical requirement
for observed data to be independent, thereby overcom-
ing the problem of autocorrelated observations, although
model performance will be affected by how well the
observed data represent the range of environmental
variables. Further, SVM are more stable, require less
model tuning, and have fewer parameters than other
computational optimization methods such as neural
networks (Lusk, Guthery & DeMaso 2002). Finally,
computational complexity is minimal and standard
algorithms can be used for optimization. Thus, imple-
mentation is straightforward in familiar scientific com-
puting environments such as R (http://www.r-project.org/,
accessed 16 February 2006) and MATLAB (Mathworks
Inc., Natick, MA). In contrast to genetic algorithms
(Stockwell & Peters 1999; Drake & Bossenbroek 2004),
the solution is deterministic, resulting in both faster
computation and repeatable results. Thus, the potential
gains from using support vector machines for ecological
niche modelling are great, including reliable and accurate
forecasting, feasible computation and a high level of
ecological interpretability (Guo, Kelly & Graham 2005).

Methods

STUDY AREA

The study area and data in our analysis were derived
from a project to generate forecasts of the effects of
climate change on the distribution and diversity of plant
species in alpine areas (MODIPLANT project; http://
ecospat.unil.ch, accessed 16 February 2006). The study
areaincluded allmountains of the pre-Alps of the Canton
de Vaud, a Swiss state (6°60'~7°10’E and 46°10'-46°30'N),
with a total area of 564 km?(Fig. 1). Altitude ranged from
400 m to 3200 m a.s.l. The bedrock in the area is mainly
calcareous. The climate is temperate, and generally wet
with abundant rain and snowfalls. The sequence of
vegetation along the altitudinal gradient is typical of the
calcareous Alps, with deciduous forests at the lowest
altitudes, mixed forests at middle altitudes, and coniferous
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Fig. 1. Location of sampling plots in the pre-Alps of the Canton de Vaud, Switzerland, for 106 species used to compare accuracy and reliability of

ecological niche models.
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forest at the highest altitudes below the tree line
(subalpine belt). Past and current human practices (such
as pasturing) have created large gaps in the previously
continuous forest cover at all altitudes. Above the tree
line, heaths, meadows and grasslands alternate to define
the mosaic of alpine vegetation (Randin ef al. in press).

SPECIES DATA

The data set of species observations comprised 550
vegetation plots of 64 m? (8 x 8 m) that were sampled
in summer (May through to mid-September; vegeta-
tion season) during the period 2002—04. A stratified
random design, restricted to open non-woody vegeta-
tion (grasslands, rock and scree vegetation) and con-
sidering an equal number of replicates per stratum
(Hirzel & Guisan 2002), was applied to the entire study
area. We selected 106 species for modelling (see Table
S1 in the Supplementary material), according to the
following criteria: species must (i) have been repre-
sented by 10 or more observations, (ii) be taxonomi-
cally stable to avoid errors of identification and (iii) be
easily identifiable in the field (i.e. have a high detecta-
bility) to ensure a low level of omission errors, which
would bias estimates of model accuracy.

ENVIRONMENTAL DATA

All environmental variables were measured or computed
at the 25-m spatial resolution of the digital elevation

model (DEM; MNT25 Level 2, © 2001 Swisstopo
(DV83.4), Federal Office of Topography, Wabern,
Switzerland) from which they were derived. These were
mainly topographic and climate variables. Slope was
calculated from the DEM to account for gravitational
and disturbance processes acting upon vegetation. A
topographic index was calculated using an ArcInfo
AML (Arc Macro Language) code (N. E. Zimmermann,
http://www.wsl.ch/staftf/niklaus.zimmermann, accessed
16 February 2006). This variable reflected the relative
position of plants between ridges and valleys, which
exposes them to different microclimates (wind, temper-
ature and radiation). Maps of cumulative monthly
precipitation and average monthly temperature were
calculated by interpolating measurements from the
Swiss meteorological network (1961-90) on the DEM
(Federal Office of Meteorology and Climatology, Zurich).
Lapse rates along the altitudinal gradient were used
to normalize the monthly average to 0 m a.s.l., where
the interpolations were performed, and then projected
back to their actual altitude using the same lapse rates.
This method differs slightly from the approach by
Zimmermann & Kienast (1999) in using inverse-weighted
difference rather than thin-plate splines for interpolation.
The resulting climate maps were then used to derive
predictors with putative causal relations to individual
fitness (see Table S2 in the Supplementary material).
Additionally, the spatial hydrological model PREVAH
(Gurtz et al. 2003) was used to obtain a predictor for
snow cover duration at all study sites, based on interpolated
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daily values of five meteorological variables, precipita-
tion, air temperature, relative sunshine duration, wind
speed and water vapour pressure, measured during the
period 1979-2000 (Randin ef al. in press). All environ-
mental variables were expected to have direct physio-
logical effects on the plant species (Pearson et al. 2002;
Dirnbock et al. 2003; Korner 2003).

MODEL TRAINING

Models were fit using only observations of species’
presences. Prior to analysis, data were linearly rescaled
to the interval between 0 and 1 to avoid potential
problems with numerical stability. Most variables were
symmetrically distributed and centred within the sam-
ple space, providing good coverage of the data domain
(see Figure S1 in the Supplementary material). Therefore,
no further transformations were performed. Because
our goal was to estimate accuracy and reliability of eco-
logical niche models fitted to observations of presence
only, records of species’ absences were excluded from
data used for model training but were retained for model
testing. Observations of species’ presences were then ran-
domly assigned to one of two subsets for model training
(80%) and testing (20%). The final model testing data
set was obtained by combining these observations
(i.e. 20% of the total) with all records of species absence.
Several environmental variables were highly correlated
(see Table S3 in the Supplementary material). Although
our procedure did not assume uncorrelated predictors, we
considered three different approaches to see how dimen-
sionality and bias might be reduced by eliminating corre-
lated variables. Our baseline, method 1, was to use all nine
environmental predictors with no additional pre-processing.
Statistical learning exploits the variability in a set
of observations and is often compromised by poorly
scaled data. The initial rescaling we performed was
expected to resolve problems concerning the stability
of the numerical algorithms, but did not address the
possibility that the data were clumped, reducing vari-
ation for the algorithm to exploit. Motivated by this
problem, Tax & Juszczak (2003) suggest reducing the
dimensionality of a data set through ‘k-whitening’,
by mapping the observed data onto the principal
components of the training data. Accordingly, a com-
putational analogue of principal components analysis
(Kernel-PCA; Scholkopf & Smola 2001) was estimated
and the principal components accounting for a speci-
fied fraction of the total variance were retained, rescal-
ing the data to a feature space centred on zero and unit
covariance. k-whitening may be thought of as a mapping
that relates a full data set to a new, lower-dimensional
space, which is retained and used in subsequent analyses.
Thus, method 2 comprised constructing a new data set
by k-whitening the full data set used in method 1, and
then training the support vector machine on the new
data set. Accounting for 99% of the total variance, the
k-whitened data set resulted in reducing the number of
dimensions used in model training from nine to five.

Finally, we considered whether or not we could reduce
dimensionality by simply eliminating variables from
the original data set altogether. As all of the variables
related to solar radiation were highly correlated, we chose
to eliminate all except SRADY'Y, which was relatively
symmetrically distributed over the sample space. We
further dropped MINDO07 because it was highly cor-
related with PRECYY. Thus, method 3 consisted of
using only the original (non-k-whitened) variables SLOPE,
TOPO, SRADYY and PRECYY.

All analyses were conducted in MATLAB 7-0-1
(MathWorks Inc., Natick, MA). For model kernel we
used the Gaussian radial basis function (RBF), which
is a standard kernel for classification tasks and relies on
tuning only one parameter. We optimized the models
subject to the target false negative rate of 0-1 using the
consistency criterion of Tax & Miiller (2004), which
minimizes overfitting by increasing the complexity
of the model until the cross-validation error on the
training data is greater than expected based on random
sampling. Specifically, a model was determined to be
inconsistent when the estimated false negative rate
exceeded the target false negative rate by two standard
deviations from the binomial distribution. Analyses were
performed using a MATLAB toolbox for statistical
pattern recognition (Duin ez al. 2004) and the MAT-
LAB Data Description Toolbox (Tax 2005).

MODEL TESTING

Models were tested using only data that were not used
for model training. We were not able to obtain a con-
sistent model for every species for each protocol. For
species for which a consistent model could not be found
we used as the best model the support vector machine
defined by the Gaussian RBF with a tuning parameter
equal to the maximum Euclidean distance between
observations in the (rescaled) data set. Otherwise the
model optimized by the consistency criterion of Tax &
Miiller (2004) was retained as the best model. This con-
vention for ‘best’ model where consistency could not be
obtained did not greatly affect our analysis as con-
sistent models were almost always obtained for species
represented by greater than 40 observations.

Having trained a best model for each species accord-
ing to each method, we applied it to the data in the
model-testing data set to estimate the following per-
formance criteria: the false-positive rate, the false-
negative rate, precision (the ratio of the correct positive
predictions to the total number of positive predictions
in the testing data set, also called positive predictive
power), and recall (the ratio of the number of correct
predictions to the total number of observations in the
testing data set). We also calculated a composite meas-
ure of accuracy that accounted for both precision and
recall (Tax 2005):

_ 2(precision)(recall)
=

precision + recall
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Finally, in analyses such as this where maximizing the
rate of true-positive classifications comes at the cost
of false-positive classifications, it is customary to
compute the receiver-operator curve (ROC), which
represents the true-positive rate as a function of the
false-positive rate (Fielding & Bell 1997). The ROC
summarizes this fundamental trade-off and can be used
to compare different modelling methods or data sets.
However, as ROC for different models can intersect,
the area under the curve (AUC) is commonly computed
(Bradley 1997). This quantity permits comparison of
different studies using a single number. AUC ranges
from 0 (incorrect classification of all examples) to 1
(correct classification of all examples).

Results

Overall, we found that methods 1 and 2 performed
similarly over the different measures and were superior
to method 3. However, consistent models were more
often obtained with methods 1 and 3 than with method
2, so that method 1 most reliably provided the best results.
We obtained consistent models with method 2 for 58
out of 106 species (54:7%). In contrast, consistent
models were obtained with method 1 for 87 (82-:0%)
species and with method 3 for 80 (75-5%) species. Logistic
regression showed that, for all three methods, the
likelihood of obtaining a consistent model for any given
species increased significantly with the number of
observations in the data set (method 1, P <0-0001;
method 2, P < 0-0001; method 3, P=0-0001; see Figure
S2 in the Supplementary material).

Error rates and summary performance criteria were
also affected by the number of observations with which
we trained the model (Fig. 2; see Figures S3—S8 in the
Supplementary material). We computed Spearman

rank-order correlation between each measure of accu-
racy except f; (which, in one case, was undefined) and
sample size, by pre-processing method, using only species
for which we obtained consistent models. We consistently
found highly significant relationships (see Table S4 in
the Supplementary material). Surprisingly, AUC was
not significantly correlated with sample size.

To see if performance differed significantly among
protocols, for each measure of performance we used
two-way ANOVA with pre-processing method as a fixed
effect and individual species’ identities as a random
effect, using only species for which we obtained consistent
models. Using species identity as a factor accounted
both for the effect of sample size (which was shown to
significantly affect performance) and for differences
among species in their ability to be modelled with the
observed environmental variables. Not surprisingly,
species identity had a significant effect on each measure
of performance (P < 0-0001). There was no evidence
for an effect of modelling method on recall (P = 0-248)
or false-negative rate (P = 0-248), which was the target
of optimization and so was expected to be approximately
the same across methods. Modelling method did have a
significant effect on false-positive rate (P < 0-0001), pre-
cision (P < 0-0001), f; (P < 0-0001) and AUC (P < 0-0001).
The group mean performances for each pre-processing
method across species showed that, where consistent
models could be obtained, methods 1 and 2 typically
performed similarly and were superior to method 3
(Fig. 2).

To see if accuracy was driven by the idiosyncratic
response of different sampling locations, i.e. if some
locations were consistently unpredictable while others
were consistently predictable, we compared the pre-
dictions (method 1) for each species at each sampling
location in the testing data with known occurrence, and
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Fig. 2. Means and standard errors of performance criteria by modelling method. Method 1 is for models without pre-processing,
using nine environmental variables. Method 2 is for models pre-processed with k-whitening, using nine environmental variables.

Method 3 is for models using only four environmental variables.
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performed two-way ANOVA with species and sampling
site as factors. Both effects were highly significant
(P < 0-0001) but explained a small portion of the over-
all variation (R* = 0-203, partial R, = 0154 , partial
R’ =0049).

location

Discussion

We used a class of recently developed machine-learning
algorithms (support vector machines) to model species’
distributions using only data concerning species’
occurrences. This method assumes only that observations
reasonably represent the range of habitable environments;
in particular, independence is not assumed. Thus, where
data are available only concerning species presence these
methods are theoretically superior to classification/
discrimination techniques (Hirzel et al. 2002). We note
that SVM can also be used when there are observations
of both habitat and non-habitat (i.e. confirmed absence
of species) and indeed can be optimized to make use of
as many observations of absence and presence as are
available, without requiring balanced observations.
We emphasize that the SVM models the support of the
statistical distribution of environments from which
the species presence observations are drawn, an envi-
ronmental hyperspace. Thus, the interpretation of the
SVM model as an ecological niche is consistent with
the classical definition of a niche as a multidimensional
environmental space (Hutchinson 1957). Logistic regres-
sion (Keating & Cherry 2004), MAXENT (Phillips, Dudik
& Schapire 2004), ENFA (Hirzel et al. 2002) and other
models based on probability densities (Robertson,
Caithness & Villet 2001) represent the relative frequency
of habitat use and are therefore more closely related
to the idea of resource utilization or resource selection
(Schoener 1989; Boyce et al. 2002; Keating & Cherry
2004).

Of course, theoretical warrant for using support
vector machines to model habitat would be unimportant
if models performed poorly in independent validation.
We used independent observations of species’ presences
and absences to estimate model accuracy. Summary
measures of model performance were generally high.
For instance, using our best procedure (method 1) the
average AUC obtained was 0-79. For comparison,
an analysis of 30 bird species in the Catalan region
(Brotons et al. 2004) obtained an average AUC of 0-74
on independent data for a model fit using ENFA with
only observations of species’ presences (Hirzel et al. 2002),
and 0-82 for logistic regression fit to both species’ pres-
ences and absences. Zaniewski, Lehmann & Overton
(2002) used generalized additive models (GAM) with a
logistic link function and binomial distribution fit to
both presences and absences of 43 fern species sampled
at 19 875 plots in New Zealand to obtain an average
AUC of 0-86. Thus, our results are comparable with
published results obtained with data for only species
presence and data comprising both presence and absence.

We also studied pre-processing approaches that

might be taken to increase model performance. Method 1
used no pre-processing or data reduction. Method 2
pre-processed training data using the technique of k-
whitening. Method 3 relied on a restricted data set in
which highly correlated variables were removed from
the model training data set. We found that when con-
sistent models could be obtained, method 1 resulted in
models with the highest recall and lowest false-negative
rate. In contrast, method 2 resulted in models with the
highest precision and lowest false-positive rate. Meth-
ods 1 and 2 performed similarly as evaluated according
to the summary measures f; and AUC. In comparison,
method 3 performed poorly overall. Consistent models
were obtained using method 1 much more frequently
than using method 2. Thus, method 1 appears to be the
most reliable method in general. Finally, we observed
that the relative performance of method 3 compared
with methods 1 and 2 indicates that useful information
can be obtained by the addition of more environmental
variables, even if they are highly correlated.

Finally, we studied how model performance depends
on the sample size of the training data set. For 106 spe-
cies with all three methods we were almost always able
to identify a consistent model when the model training
data set contained at least 40 observations, which we
suggest is the minimum number of observations with
which models should be trained in practice. Not un-
expectedly, measures of accuracy, such aserror rates and
precision, were also related to sample size (see Table S4
in the Supplementary material). Minimum sample
sizes for modelling and heuristics about how sample
size should scale with the number of environmental
variables are important topics for research. Curiously,
when all species were considered together, AUC was
not significantly related to sample size, although the
lowest observed AUC scores were always obtained for
species represented by fewer than 30 observations (see
Figures S6-S8 in the Supplementary material). These
results are promising and indicate that often the most
accurate models can be obtained with relatively modest
data sets. Indeed, models obtained for species with only
40-50 observations routinely performed as well as
models for species represented by more than 100 obser-
vations. Only precision seemed to increase continuously
over the entire range (see Figures S3—S5 in the Supple-
mentary material). These results are about the same as
for GARP, which is another machine-learning algo-
rithm and on average obtains near maximal accuracy
with 50 observations (Stockwell & Peterson 2002). In
contrast, to obtain similar accuracy with logistic regres-
sion required 100 observations (Stockwell & Peterson
2002).

An important unanswered question is how many
environmental variables are required to predict accu-
rately species’ potential distributions, whether with
support vector machines or any other technique. In our
study, the method with the greatest number of vari-
ables (method 1) and no pre-processing provided the
best results. An underlying worry is that the higher
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dimensionality of this method leads to a model that is
overfit and would generalize poorly. We overcame this
obstacle by fixing a target error rate and tuning models
using cross-validation, which estimates the generalization
error directly. Thus, our comparison of the different
methods was designed to create the fairest comparison:
each method was optimized to achieve (approximately)
the same generalization error. Three lines of evidence
point to success at achieving this fair comparison.
First, we failed to detect an effect of modelling method
on the false-negative rate when the model was tested
with independent data. Thus, the true generalization
error was consistent across methods. Secondly, if cor-
relation among environmental variables had led to
overfitting, method 2 would have performed best as the
algorithm would only have been trained on the infor-
mation contained in the first few principal components
of the data. Finally, in image-recognition experiments
(classifying digital images of hand-written numerals)
Tax & Miiller (2004) found that the optimized model
was sometimes not complex enough when non-target
observations (i.e. species’” absences) were too close to
the training data. Therefore, if anything, there is reason
to suspect that our models are underfit rather than
overfit. Indeed, simply including more environmental
variables, rather than developing more sophisticated
ways of reducing dimensionality, might result in the
greatest improvements to accuracy. Our analysis was
limited by the availability of relevant systematically
collected data that had been geo-referenced to the par-
ticular sampling sites where our species’ distribution
records were collected. Future studies could certainly
include many more variables as the computational cost
that would be imposed is minor. Indeed, we suggest
that the computational complexity of the SVM approach
is one of its primary features. This aspect could be
exploited in many ways that await development.
Some obvious possibilities are that different ‘submodels’
obtained from subsets of the data corresponding to
classes of environmental variables (biotic vs. abiotic,
chemical vs. physical, etc.) could be compared to explore
how these differently affect species’ distributions;
modelling could be embedded in a non-parametric
bootstrap to obtain confidence bounds on the estimated
distributions; and resampling schemes could be devised
to test hypotheses about niche differentiation, partitioning
and competitive exclusion or facilitation. These possi-
bilities, together with the relatively strong performance
already shown by this approach, should motivate
further research, resulting in both methodological
improvements and applications in many areas.
Species distribution modelling is a part of many
ecological applications, including forecasting species
invasions, devising protocols for biodiversity monitor-
ing, designing nature reserves and planning for habitat
conservation, managing vector-borne and environ-
mentally mediated disease, and cultivating renewable
resources (e.g. aquaculture and timber). Finally,
species distribution modelling is often a fundamental

component of projects aimed at understanding the
consequences of anthropogenic climate change, such
as the MODIPLANT initiative that generated the data
used in this study. As SVM are stable algorithms that
can deal with large sets of predictors at once, they may
prove particularly useful in this arena. In conclusion,
these results support the continued use of SVM for
ecological niche modelling. Where data are available
concerning only species’ presences and not species’
absences, support vector machines are theoretically
superior to classification techniques that rely on sim-
ulation of pseudo-absence data. We have shown that
support vector machines are also comparable with such
models when validated by independent observations of
both species presence and absence.

Acknowledgements

We thank Niklaus E. Zimmermann, Felix Kienast and
Massimiliano Zappa for making their climate maps
available. We additionally thank Stéphanie Maire,
Dario Martinoni, Pascal Vittoz, Simone Peverelli and
many others for their help with the field sampling of
species data. Comments by A. T. Peterson and an
anonymous referee resulted in a considerably improved
paper. This work was conducted while J. M. Drake was
a Postdoctoral Associate at the National Center for
Ecological Analysis and Synthesis, a Center funded
by NSF (Grant No. DEB-94-21535), the University of
California at Santa Barbara, and the State of California.
The Swiss Office for the Environment (Climate Change
Section) and the Conservation Centre of the Canton de
Vaud both provided funding to support the field work.

References

Anderson, R.P, Lew, D. & Peterson, A.T. (2003) Evaluating
predictive models of species’ distributions: criteria for
selecting optimal models. Ecological Modelling, 162, 211—
232.

Anonymous (2004) Arclnfo, Version 9-0. Environmental
Systems Research Institute Inc., Redlands, CA.

Augustin, N.H., Mugglestone, M.A. & Buckland, S.T. (1996)
An autologistic model for the spatial distribution of wildlife.
Journal of Applied Ecology, 33, 339-347.

Boyce, M.S., Vernier, PR., Nielsen, S.E. & Schmiegelow,
FXK.A. (2002) Evaluating resource selection functions.
Ecological Modelling, 157, 281-300.

Bradley, A. (1997) The use of the area under the ROC curve in
the evaluation of machine learning algorithms. Pattern
Recognition, 30, 1145—-1159.

Brotons, L., Thuiller, W., Araujo, M.B. & Hirzel, A.H. (2004)
Presence—absence versus presence-only modelling methods
for predicting bird habitat suitability. Ecography, 27, 437—
448.

Dirnbock, T., Dullinger, S. & Grabherr, G. (2003) A regional
impact assessment of climate and land-use change on
alpine vegetation. Journal of Biogeography, 30, 401-417.

Drake, JM. & Bossenbroek, J.M. (2004) The potential distri-
bution of zebra mussels in the United States. Bioscience, 54,
931-941.

Duin, R.PW,, Juszczak, P, Paclik, P, Pekalska, E., de Ridder, D.
& Tax, D.M.J. (2004) Prtools4, a Matlab Toolbox for Pattern



431
Modelling
ecological niches

© 2006 The Authors.

Journal compilation
© 2006 British
Ecological Society,
Journal of Applied
Ecology, 43,
424-432

Recognition. Delft University of Technology, Delft, the
Netherlands.

Engler, R., Guisan, A. & Rechsteiner, L. (2004) An improved
approach for predicting the distribution of rare and endan-
gered species from occurrence and pseudo-absence data.
Journal of Applied Ecology, 41, 263—-274.

Ferrier, S. (2002) Mapping spatial pattern in biodiversity
for regional conservation planning: where to from here?
Systematic Biology, 51, 331-363.

Fielding, A.H. & Bell, J.F. (1997) A review of methods for the
assessment of prediction errors in conservation presence/
absence models. Environmental Conservation, 24, 38—49.

Graham, C.H., Ron, S.R., Santos, J.C., Schneider, C.J. &
Moritz, C. (2004) Integrating phylogenetics and environ-
mental niche models to explore speciation mechanisms in
dendrobatid frogs. Evolution, 58, 1781-1793.

Guisan, A. & Thuiller, W. (2005) Predicting species distribu-
tion: offering more than simple habitat models. Ecology
Letters, 8, 993-1009.

Guisan, A. & Zimmermann, N.E. (2000) Predictive habitat
distribution models in ecology. Ecological Modelling, 135,
147-186.

Guo, Q., Kelly, M. & Graham, C.H. (2005) Support vector
machines for predicting distribution of sudden oak death in
California. Ecological Modelling, 182, 75-90.

Gurtz, J. et al. (2003) A comparative study in modelling runoff
and its components in two mountainous catchments.
Hydrological Processes, 17,297-311.

He, E., Zhou, J. & Zhu, H. (2003) Autologistic regression
model for the distribution of vegetation. Journal of Agricul-
tural, Biological and Environmental Statistics, 8, 205—222.

Hirzel, A. & Guisan, A. (2002) Which is the optimal sampling
strategy for habitat suitability modelling. Ecological
Modelling, 157, 331-341.

Hirzel, A.H., Hausser, J., Chessel, D. & Perrinm, N. (2002)
Ecological-niche factor analysis: how to compute habitat-
suitability maps without absence data? Ecology, 83, 2027—
2036.

Hutchinson, G.E. (1957) Concluding remarks. Cold Spring
Harbor Symposia on Quantitative Biology, 22, 415-427.
Keating, K.A. & Cherry, S. (2004) Use and interpretation of
logistic regression in habitat-selection studies. Journal of

Wildlife Management, 68, 774—789.

Korner, C. (2003) Alpine Plant Life. Springer, Berlin, Germany.

Kumar, L., Skidmore, A.K. & Knowles, E. (1997) Modelling
topographic variation in solar radiation in a GIS environ-
ment. International Journal for Geographical Information
Science, 11, 475-497.

Leathwick, JR. & Austin, M.P. (2001) Competitive intera-
ctions between tree species in New Zealand’s old-growth
indigenous forests. Ecology, 82, 2560—2573.

Lusk, J.J., Guthery, F.S. & DeMaso, S.J. (2002) A neural
network model for predicting bobwhite quail abundance in
the Rolling Red Plains of Oklahoma. Predicting Species
Occurrences: Issues of Accuracy and Scale (eds J.M. Scott,
P.J. Heglund, M. Morrison, M. Raphael, J. Haufler, B. Wall
& F.B. Samson), pp. 345-355. Island Press, Covello, CA.

Miiller, K.-R., Mika, S., Ritsch, G., Tsuda, K. & Scholkopf,
B. (2001) An introduction to kernel-based learning
algorithms. IEEE Transactions on Neural Networks, 12,
181-202.

Pearson, R.G., Dawson, T.P, Berry, PM. & Harrison, PA.
(2002) SPECIES: a spatial evaluation of climate impact on
the envelope of species. Ecological Modelling, 154,289—300.

Peterson, A.T. (2003) Predicting the geography of species’
invasions via ecological niche modeling. Quarterly Review
of Biology, 78, 419-433.

Peterson, A.T., Sanchez-Cordero, V., Beard, C.B. & Ramsey,
J.M. (2002) Ecologic niche modeling and potential reservoirs

for Chagas disease, Mexico. Emerging Infectious Diseases,
8, 662-667.

Phillips, S.J., Dudik, M. & Schapire, R.E. (2004) A maximum
entropy approach to species distribution modeling. Pro-
ceedings of the Twenty-First International Conference on
Machine Learning. ACM Press, New York, NY.

Randin, C., Dirnbock, T., Dullinger, S., Zappa, M., Zimmer-
mann, N.E. & Guisan, A. (in press) Are niche-based species
distribution models transferable in space? Journal of Bio-
geography.

Robertson, M.P., Caithness, N. & Villet, M.H. (2001) A PCA-
based modelling technique for predicting environmental
suitability for organisms from presence records. Diversity
and Distributions, 7, 15-217.

Schoener, T.W. (1989) The ecological niche. Ecological Con-
cepts (ed. J.M. Cherrett), pp. 79—113. Blackwell Scientific
Publications, Oxford, UK.

Scholkopf, B. & Smola, A. (2001) Learning with Kernels:
Support Vector Machines, Regularization, Optimization,
and Beyond. MIT Press, Cambridge, MA.

Scholkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J. &
Williamson, R.C. (2001) Estimating the support of a high-
dimensional distribution. Neural Computation, 13, 1443~
1471.

Scott, J M., Heglund, PJ., Morrison, M., Raphael, M.,
Haufler, J., Wall, B. & Samson, F.B. (2002) Predicting
Species Occurrences. Issues of Accuracy and Scale. Island
Press, Covello, CA.

Stockwell, D. & Peters, D. (1999) The GARP modelling
system: problems and solutions to automated spatial pre-
diction. International Journal of Geographical Information
Science, 13, 143—158.

Stockwell, D. & Peterson, A.T. (2002) Effects of sample size
on accuracy of species distribution models. Ecological
Modelling, 148, 1-13.

Tax, D.M.J. (2001) One-class classification: concept-learning
in the absence of counter-examples. Thesis. Delft University
of Technology, Delft, the Netherlands.

Tax, D.M.J. (2005) Data Description Toolbox ( Manual) V-1-1-2.
Delft University of Technology, Delft, the Netherlands.
Tax, D.M.J. & Duin, R.P.W. (2004) Support vector data

description. Machine Learning, 54, 45-66.

Tax, D.M.J. & Juszczak, P. (2003) Kernel whitening for
one-class classification. International Journal of Pattern
Recognition and Artificial Intelligence, 17, 333-347.

Tax, D.M.J. & Miiller, K.-R. (2004) A consistency-based
model selection for one-class classification. Proceedings
17th International Conference on Pattern Recognition (22—
26 August 2004, Cambridge UK) (eds J. Kittler, M. Petrou
& M. Nixon), pp. 363-366. IEEE Computer Society, Los
Alamitos, CA.

Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M.,
Beaumont, L.J., Collingham, Y.C., Erasmus, B.E.N.,
Ferreira de Siqueira, M., Grainger, A., Hannah, L., Hughes,
L., Huntley, B., Van Jaarsveld, A.S., Midgley, G.F., Miles,
L., Ortega-Huerta, M.A., Peterson, A.T., Phillips, O.L. &
Williams, S.E. (2004) Extinction risk from climate change.
Nature, 427, 145-147.

Zaniewski, A.E., Lehmann, A. & Overton, J.M.C. (2002) Pre-
dicting species spatial distributions using presence-only
data: a case study of native New Zealand ferns. Ecological
Modelling, 157, 261-280.

Zimmermann, N.E. & Kienast, F. (1999) Predictive mapping
of alpine grasslands in Switzerland: species versus com-
munity approach. Journal of Vegetation Science, 10, 469—
482.

Received 17 June 2005; final copy received 14 November 2005
Editor: Rob Freckleton



432
J. M. Drake et al.

© 2006 The Authors.

Journal compilation
© 2006 British
Ecological Society,
Journal of Applied
Ecology, 43,
424-432

Supplementary material

The following supplementary material is available as
part of the online article (full text) from http:/
w.w.w.blackwell-synergy.com.

Table S1. Species for which ecological niche models
were trained using support vector machines (n = 106).

Table S2. Predictor variables used to model ecological
niches.

Table S3. Pearson correlations for environmental
variables used to model ecological niches ranked by the
absolute value of the correlation coefficient.

Table S4. Spearman rank-order correlations between
performance criteria and sample size.

Figure S1. Rescaled histograms of nine predictor
variables used to model ecological niches.

Figure S2. Frequency with which consistent models
could be obtained.

Figure S3. Performance of method 1.
Figure S4. Performance of method 2.
Figure S5. Performance of method 3.

Figure S6. Summary measures of performance for
method 1.

Figure S7. Summary measures of performance for
method 2.

Figure S8. Summary measures of performance for
method 3.
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