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Concern over implications of climate change for
biodiversity has led to the use of bioclimatic models
to forecast the range shifts of species under future
climate-change scenarios. Recent studies have demon-
strated that projections by alternative models can be so
variable as to compromise their usefulness for guiding
policy decisions. Here, we advocate the use of multiple
models within an ensemble forecasting framework and
describe alternative approaches to the analysis of biocli-
matic ensembles, including bounding box, consensus
and probabilistic techniques. We argue that, although
improved accuracy can be delivered through the
traditional tasks of trying to build better models
with improved data, more robust forecasts can also
be achieved if ensemble forecasts are produced and
analysed appropriately.

Introduction
Attempts to predict climate change impacts on species
distributions have often relied on the bioclimatic ‘envelope’
modelling approach, whereby empirical relationships
between present-day distributions of species and climate
variables are used to estimate distributions of species
under future climate scenarios [1–4]. For several (usually)
pragmatic reasons, modelling typically involves selecting a
favoured technique from a range of alternatives, and then
justifying the choice by making reference to one or more
published studies. However, despite claims of superiority
for any given technique [5–10], independent evaluations
of models have often been unable to demonstrate the
pre-eminence of any single one [11–13].

Furthermore, studies have shown that projections by
alternative models can be so variable as to compromise
even the simplest assessment of whether species distribu-
tions should be expected to contract or expand for any given
climate scenario. For example, Pearson and colleagues [14]
applied nine well documented bioclimatic modelling tech-
niques to a standardised data set of four South African
plant species and compared consistency in range pre-
dictions under current and future climates. Predicted
distribution changes varied from a 92% loss to a 322%
gain for one species and an equally wide variability in
distribution change was predicted for the remaining
species. Similarly divergent forecasts have been the rule
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in studies comparing alternative techniques to assess
potential climate change-induced shifts in the distribu-
tions of European plants [15], amphibians and reptiles
[16], and British breeding birds [17]. These results chal-
lenge the common practice of relying on one single method
to make forecasts of the responses of species to climate
change scenarios or, if one accepted a more sceptical view,
the usefulness of bioclimatic modelling in general for cli-
mate change impact studies.

Such variability in forecasts is not surprising given that
bioclimate ‘envelope’ models are correlative and therefore
sensitive to the data and the mathematical functions
utilized to describe the distributions of species in relation
to climate parameters. Process-basedmodels that simulate
bioclimate interactions from theoretical and experimental
knowledge provide an alternative that is less dependent on
empirical relationships; however, their implementation at
the species level is difficult because of the complex pro-
cesses and interactions that have to be represented; and
variability in forecasts is also common [18].

A solution to intermodel variations that has been used
in other fields is to utilize several models (herein termed
‘ensembles’) and use appropriate techniques to explore
the resulting range of projections. Here, we argue that
significant improvements on the robustness of a forecast
can be achieved if an ensemble approach is used and the
results analysed appropriately. We provide an overview
of ensemble forecasting, examine alternative techniques
for combining ensembles, and discuss their uses and
limitations for supporting policy decisions in biodiversity
conservation.

Ensemble forecasting
An ensemble, as introduced into statistical mechanics by
J. Willard Gibbs in 1878, is an idealization consisting of a
large (possibly infinite) number of copies of a system,
considered all at once, each of which represents a possible
state that the real system might be in at some specified
time. A forecast ensemble is more narrowly defined as
multiple simulations (copies) across more than one set of
initial conditions (IC), model classes (MC), parameters
(MP) and boundary conditions (BC) (Box 1). Each combina-
tion of IC, MC, MP and BC is one possible state of the
system being forecasted.

The idea of ensemble forecasting dates back to 1969,
when J.M. Bates and Nobel Prize winner in Economics
C.W.J. Granger published their influential article
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Box 1. Simulations for producing ensembles of forecasts

Ensembles of forecasts are produced by making multiple simula-

tions across more than one set of IC, MC, MP and BC.

Initial conditions

The state of the real system (e.g. the distribution of species or

factors that affect species) at the start of the simulation is often

poorly known; it represents an incomplete realization of the real

world. Small differences in IC will spawn different model trajectories

(so-called ‘chaos’) around the system attractor(s). Models can be run

with different ICs that are consistent with the available observations

to explore the sensitivity of the predictions to IC uncertainty.

Model classes

Different MCs (e.g. polynomials and smoothing splines of different

orders in general linear or additive models, nodes in classification

and regression trees, hidden layers in neural nets, and various

forms of process-based models) can all produce simulations that are

consistent with available observations, and can be considered as

competing and probably equally valid representations of the system

of interest.

Model parameters

Statistical models typically have parameters (such as a and b in the

linear regression model y = a + bx) that are estimated from the data.

In classical statistics, the uncertainty in these parameters can be

estimated. Multiple forecasts ‘sampling’ this parameter uncertainty

are then possible. For process-based models, many important

processes are parameterised, but the exact values of the parameters

are unknown. Multiple simulations using different parameter values

enable parameter uncertainty to be assessed.

Boundary conditions

Model forecasts are driven by an assumption about a change in BCs,

defined broadly as predictors in a statistical model (e.g. climate

variables). Typically, these BCs are uncertain, especially in the case

of future anthropogenic pollution emissions. Alternative future BCs

need to be explored, because the effect of differences between BCs

in model predictions of species range shifts can be as large as

differences between MCs.
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‘The combination of forecasts’ [19]. Providing that
individual forecasts contain some independent informa-
tion, the authors observed that combined forecasts would
yield lower mean error than any of the constituent indivi-
dual forecasts. The idea had been formally developed by
French mathematician P. Laplace in 1818 [20]: ‘In combin-
ing the results of these two methods, one can obtain a
result whose probability law of error will be more rapidly
decreasing’. However it was not until the pioneering work
of Bates and Granger that the idea of combining forecasts
became established. Since then, hundreds of studies have
been reviewed [21–23] and applied to a variety of fields of
research, including economics [24], management [25], sys-
tematics [26], biomedicine [27], meteorology [28] and cli-
matology [29]. Surprisingly, these ideas have been slow to
penetrate the ecological literature and it was only recently
that ensemble forecasting was explicitly attempted in
bioclimatic modelling of species distributions [14–17,30].
However, these early attempts have assessed only a few of
the possible combinations of MC, MP and BC in bioclimate
models (Box 2; Figure Ie).

Combining ensembles
Given an ensemble of model forecasts, how should they be
analysed? The traditional approach consists of identifying
www.sciencedirect.com
the ‘best’ model from an ensemble of forecasts [12,13,31],
where the best model is often judged to be one in which
outputs match observed data as closely as possible. How-
ever, the ability to describe a given situation by calibration
of MPs does not always coincide with the ability to repre-
sent adequately new observations using the existing cali-
bration. This problem is particularly severe when
predicted observations have a degree of spatial or temporal
independence from the calibration set [32–34], which is the
case for models projecting distributions of species under
future climate scenarios [32].

Instead of picking the ‘best’ model from an ensemble, a
more promising approach is to explore the resulting range
of projections (Figure 1). For small ensemble sizes, two
contrasting approaches are to use the ensemble to define a
‘bounding box’, or to generate a ‘consensus’ forecast
(Figure 1b). The appropriate approach is partly dependent
on the question being asked, and the costs of being wrong.
For medium to large ensemble sizes, raw data can be used
generate probability distribution functions (PDFs) for the
forecast variable, but these will always be conditional on
the sampling strategy across IC, MC, MP and BC (Box 1).

The definition of a bounding box involves identification
of the range in forecasts from the ensemble members. The
approach is conservative in that it quantifies the range of
forecasts, but makes no statement about the probability
distribution or conditional probabilities of forecasts within
the bounding box [14,15]. It is acknowledged that the
ensemble members are a subset of all possible IC–MC–
MP–BC combinations and, therefore, only represent some
limited projection of reality. Any averaging of ensemble
member forecasts is considered to be unlikely to match
the truth, and modellers do not attempt to estimate
ensemble average or confidence limits for the average.

In consensus forecasting, no assumption is made over
the expected frequency distribution of the combined fore-
casts, but a measure of the central tendency (e.g. the mean
or median) is calculated for the ensemble of forecasts [17].
The rationale behind consensus forecasts is that, in aver-
aging several models, the ‘signal’ that one is interested in
emerges from the ‘noise’ associated with individual model
errors and uncertainties. When combining forecasts for
consensus, one can produce weighted and unweighted
averages. Committee averaging takes a simple unweighted
average of the predictions, essentially giving equal prob-
ability to each model. Examples include implementations
of artificial neural networks, where models are run several
times and the mean prediction used [14,15], or when
results of different modelling techniques are averaged
[16,17,35] (Box 2). With Bayesian approaches, weights
are proportional with the posterior probability of each
model, which depend on how well the model fits the data
and how many parameters are used [36]. Stacking is one
analogous procedure for estimating weights with least
square regressions [36], but the idea is more general
and can be used to obtain weights from measures of
accuracy with any modelling technique. The discussion
of whether to weight is a long one, but there is evidence
from other disciplines that unweighted methods can yield
cost-effective solutions [21], although this is only correct if
model predictions are equally robust [16,17]. In the simple



Box 2. The production of ensembles of forecasts in practice

The simplest and most widely used approach for modelling species

distributions involves a single combination of IC, MC, MP and BC

to produce P [1] (Figure Ia). An approach using the concept of

ensemble forecasting utilizes n realisations of IC (either by boot-

strapping or k fold cross-validation) to select the model that either

best fits the data (e.g. bumping) or that produces a single forecast

by averaging all individual P (e.g. bagging) [35] (Figure Ib). A range

of alternative MC can also be fitted enabling the model that best

fits the data to be selected [31]; alternatively, a single forecast can

be produced by averaging all individual P [17] (Figure Ic). Technical

developments have recently enabled the production of alternative

MP for the same MC, enabling the production of single forecasts by

committee averaging (e.g. boosting and random forests) [13,35]

(Figure Id), although the same methods can be used to produce

several P with different parameterisations [14]. Recent attempts to

model species responses to climate change have used ensembles

that combine different MC and BC [14–16,30]. In Figure Ie, three

MC and three BC are combined to produce nine P, which can then

be synthesized using bounding box [14,15] or model averaging

[16].

The production of forecast ensembles requires software that

automates simulations across a range of IC, MC, MP and BC. The

implementation of ensemble forecasting for modelling species

distributions is still in its infancy, but there are several modelling

techniques that incorporate the notion of ensemble forecasting.

Typically, they sparsely sample all possible combinations of

IC, MC, MP and BC, yielding an incomplete representation of

the potential model uncertainties. In most cases, available

techniques simulate across IC and MP or IC and MC (Table I).

In the future, software platforms that automate simulations across

different techniques will enable comprehensive combinations of

IC �MC �MP � BC, yielding potentially large forecast ensembles

[38–40].

Figure I. Fitting models of species distributions and the production ensembles of

forecasts. The squares represent different steps in the production of ensembles

and circles represent the predictions from models.

Table I. Modelling techniques that incorporate the notion of ensemble forecasting

Approach Procedure Shown in Refs

Artificial neural

networks

Models are run several times and the mean prediction used Figure Id [12,14–17]

Alternatively, the best fitting model can be selected

Bagging trees Multiple boot-strapped regression trees are fitted without pruning and the mean prediction used Figure Ib,d [35]

Boosted additive

trees

The boosting algorithm iteratively calls the regression-tree algorithm to construct an

ensemble of trees

Figure Ib,d [13]

The regression trees are fitted sequentially on weighted versions of the data, where the

weights continuously adjust to take account of observations that are poorly fitted by the

preceding models

Predictions are finally combined using a majority vote criterion

GARP A genetic algorithm evolves a set of rules that best predicts the distribution of species based

on bootstrapped samples of available information

Figure Ib,c [2,13,14]

Rules developed are ranked by predictive performance, and applied to the environmental

conditions

Maximum entropy

(MAXENT)

Algorithm estimates the distribution of a species by finding the probability distribution of

maximum entropy (i.e. closest to uniform) subject to the constraint that the expected value

of each of a set of features (environmental variables or functions thereof) under this

estimated distribution closely matches its empirical average

Figure Ib,d [13,50]

The modelled probability is a ‘Gibbs’ distribution (i.e. exponential in a weighted sum of the

features)

The algorithm used to find the MAXENT distribution is similar to boosting

Random forests Similar to bagging trees but each tree is grown with a randomized subset of predictors Figure Ib,d [35]

Several trees are grown and the predictions aggregated by averaging
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case of committee methods where the median forecast is
taken, the consensus will always be more accurate than at
least half of the individual forecasts [37]. This is true
independently of the distribution of individual forecasts,
or their position in relation to the phenomenon of interest
(the ‘truth’). If the truth falls within the range encom-
passed by all forecasts, less than half of the individual
forecasts will be superior to themedian forecast; at worst, if
the truth lies outside the forecast range, consensus will be
better than 50% of the forecasts.

Probabilistic forecasting can be considered the ‘end
game’ of ensemble forecasting (Figure 1d). We accept the
www.sciencedirect.com
fact thatmodels are different from reality and that, inmost
cases, we have many possible candidate models that pass
some criteria about their ability to represent key aspects of
the real system that we are interested in. For a large
ensemble across multiple ICs, MPs, MCs and BCs, the
frequency distribution of forecasts approaches a prob-
ability distribution. New developments in climate model-
ling where many tens of thousands of simulations [38–40]
have produced initial results where frequency histograms
are starting to resemble PDFs [41]. However, even these
large ensembles are only sparsely sampling the possible
IC–MC–MP–BC combinations. Estimating a PDF from



Figure 1. Examples of alternative approaches to analysing ensemble forecasts using artificial data projected onto the map of Africa: (a) Individual results from five

hypothetical bioclimatic models (shown by coloured lines) predicting the area occupied by a key species under a climate change scenario (no combination of the ensemble

forecast is performed); (b) a bounding box showing the area where at least one (purple) or all models (green) predict species presence in the future, and a consensus

forecast (blue) showing the area where at least half the models (the median) forecast species presence; (c) a frequency histogram, showing the number of models (1–5)

forecasting the presence of the species at any point; and (d) a probability density function showing the likelihood of species presence estimated from a large ensemble.
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the frequency distributions requires some form of
emulation of the forecast over unsampled combinations,
and the resulting PDFs remain conditional [42]. For
simpler systems, exhaustive sampling across uncertain-
ties is more feasible, enabling PDFs to be constructed. Yet
these will remain conditional on the model or family of
models being sampled, and a frequency distribution can
only be considered robust when inclusion of additional
MPs or MCs does not make much difference to the fore-
cast distribution of a particular event [43]. Whether we
can ever know that model stability has been achieved is a
moot point, and how to use probabilistic information from
large ensemble simulations remains an area of debate
[42,44,45].

Ensembles in practice
The idea of combining forecasts is particularly appealing
for those who are not convinced that a single model is
closest to the truth in all circumstances [11,12] and who
www.sciencedirect.com
sympathise with the view that all models are flawed, but
provide useful information [46,47]. Yet ensemble forecast-
ing should not be viewed as an alternative to the more
traditional approach of trying to build better models with
improved data. Combined forecasts, although emphasizing
the ‘signal’ emerging from the noise associated with
different model outputs, remain dependent on individual
predictions; better individual forecasts will yield a better
combined forecast [17].

Whether to use a synthetically combined forecast (con-
sensus or probabilistic) or bounded forecasts depends in
part upon the way in which the forecast will be used. In
financial futures, for example, analysts take a long-term
view and are prepared for forecasts to be wrong [37]. In
seasonal climate forecasting, where users of information
might include small-scale farmers, agribusinesses and
commodity traders, the utility of consensus or probability
forecasts will vary according to the decision maker. Agri-
business and traders can cope with the financial costs of
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incorrect forecasts in a similar way to financial futures
traders. For small farmers, the costs of acting on an
incorrect forecast can be so severe that they might prefer
a more conservative forecast, or might even ignore
forecasts, adopting a cropping strategy that minimises
vulnerability to a poor season.

Unlike small-scale farmers, conservation planners need
to take a long-term view and rely on forecasts to support
conservation decisions [48]. The costs of beingwrong can be
high. For example, when planning for climate change, the
consequences of acting upon a forecast yielding false posi-
tives (e.g. species ranges predicted to expand in fact con-
tract) are that resources are not spent on the species most
in need of conservation action. Alternatively, acting on the
basis of false-negative information (e.g. species ranges
predicted to contract in fact expand) might lead to an
investment of resources in species that are not threatened
by climate change. In both cases, investments might be
directed away from the most vulnerable species, leading to
potential increases in their risks of extinctions.

The crucial issue is whether the benefits of using a set of
combined forecasts in decision-making outweigh, on aver-
age, the costs. In reserve selection, it has been shown that
acting upon ignorance and opportunism can be more
expensive than acting with the support of data and models
[49]. Recent analyses of species range shifts under climate
change have shown that the costs of relying on a single
forecast severely compromise their usefulness [14–16],
even when excluding the uncertainties arising from differ-
ent global climate models (GCM) projections (the BCs).
However, a recent study demonstrated the success of a
simple implementation of consensus forecasting (Box 2;
Figure Ie) in reducing both false negative and positive
errors in predictions of observed distribution shifts among
British breeding birds [17]. False negatives were reduced
from an average of 50% error to 0% (lower quartile = 31%
versus 0%; upper quartile = 69% versus 0%, respectively)
and comparable reductions in false positives were
obtained. Surely, running ensembles of models and com-
bining the results using consensus or probabilistic
approaches will not always remove the uncertainties,
but the likelihood of making conservation decisions based
on forecasts that are far from the truth is reduced.

Some writers have criticized the use of any single fore-
cast (combined from several models or single-model), as it
can lead to a decision that, although appropriate for the
forecast, imposes a rigidity that might have serious nega-
tive consequences if the forecast deviates significantly from
truth. The use of bounded forecasts offers an approach
that, although honest, might be challenging for decision
makers; it enables us to say, with some confidence, what
will not happen. The onus then lies with the decision
maker to develop policy that is as robust as possible to
the predictive uncertainty. A potentially useful pathway is
the development of hybrid approaches that combine bound-
ing box with consensus or probabilistic forecasting [16].

Conclusions and recommendations
Using ensemble forecasting has clear advantages over
single-model forecasts. Different approaches to the analy-
sis of the ensemble data have their own advantages and
www.sciencedirect.com
disadvantages, and their suitability will depend on the
questions being asked. But if used appropriately, either
individually, in combination, or in hybrid form, these
approaches can enable more robust decision making in
the face of uncertainty, and have much to offer to conserva-
tion planning. There are additional reasons to adopt
ensemble forecasting as part of the mainstream practice
of species distribution modelling. Climatologists are now
producing tens of thousands of simulations of future cli-
mates [38–40]. Exploring these data will be necessary to
provide comprehensive assessments of the possible
impacts of climate change on biodiversity and the ensem-
bles framework will be required to enable such an explora-
tion. The most comprehensive attempts to run ensembles
of models of species distributions have spawn a limited
number of combinations of MCs and BCs (Box 2; Figure Ie),
yielding no more than 40 projections per species. Devel-
opments in bioclimate and climate modelling will rapidly
force this number to increase to several thousands projec-
tions per species. Considering that models need to be fitted
for several hundreds or thousands of species, it is clear
that we currently have no ability to cope with such large
problems.

Interactions with other disciplines, including statistics,
will help us to decide upon the most appropriate analytical
tools, but a serious limitation still includes the lack of
appropriate software to run and combine large ensembles
of models. This is essentially the same conclusion reached
by Robert T. Clemen in his 1989 review of ensemble
forecasting for management and business [21]. If progress
is to be made in the field of ensemble forecasting of species
distributions, ecologists need to move fast, join efforts and
abandon parochialism in software production. Open source
platforms, such as that provided by the R project for
statistical computing (http://www.r-project.org/), might
provide an adequate source of inspiration.
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34 Araújo, M.B. et al. (2005) Downscaling European species atlas
distributions to a finer resolution: implications for conservation
planning. Glob. Ecol. Biogeogr. 14, 17–30

35 Prasad, A.M. et al. (2006) Newer classification and regression tree
techniques: bagging and random forests for ecological prediction.
Ecosystems 9, 181–199

36 Hastie, T. et al. (2001) The Elements of Statistical Learning: Data
Mining, Inference and Prediction, Springer

37 McNees, S.K. (1992) The uses and abuses of ‘‘consensus’’ forecasts. J.
Forecast. 11, 703–710

38 Stainforth, D.A. et al. (2004) climateprediction.net: a global
community for research in climate physics. In Environmental Online
Communication (Scharl, A., ed.), pp. 101–112, Springer

39 Allen, M. (1999) Do-it-yourself climate prediction. Nature 401, 642
40 Allen, M.R. and Stainforth, D.A. (2002) Towards objective probabilistic

climate forecasting. Nature 419, 228
41 Stainforth, D.A. et al. (2005) Uncertainty in predictions of the climate

response to rising levels of greenhouse gases. Nature 433, 403–406
42 Smith, L.A. (2002) What might we learn from climate forecasts? Proc.

Natl. Acad. Sci. U. S. A. 99, 2487–2492
43 Allen, M. et al. (2002) Model error in weather and climate forecasting.

In Predictability of Weather and Climate (Palmer, T. and Hagedorn, R.,
eds), pp. 391–427, Cambridge University Press

44 Frame, D.J. et al. (2005) Constraining climate forecasts: the role of
prior assumptions. Geophys. Res. Lett. 32, art. no.-L09702

45 Dessai, S. and Hulme, M. (2004) Does climate adaptation policy need
probabilities? Climate Policy 4, 107–128

46 Winkler, R.L. (1989) Combining forecasts: a philosophical basis and
some current issues. Int. J. Forecast. 5, 605–609

47 Box, G.E.P. (1979) Some problems of statistics and everyday life. JAMA
74, 1–4
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