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Abstract

Aim: Recent studies increasingly use statistical methods to infer biotic interactions from co-

occurrence information at a large spatial scale. However, disentangling biotic interactions from

other factors that can affect co-occurrence patterns at the macroscale is a major challenge.

Approach: We present a set of questions that analysts and reviewers should ask to avoid errone-

ously attributing species association patterns to biotic interactions. Our questions relate to the

appropriateness of data and models, the causality behind a correlative signal, and the problems

associated with static data from dynamic systems. We summarize caveats reported by macroeco-

logical studies of biotic interactions and examine whether conclusions on the presence of biotic

interactions are supported by the modelling approaches used.

Findings: Irrespective of the method used, studies that set out to test for biotic interactions find

statistical associations in species’ co-occurrences. Yet, when compared with our list of questions,

few purported interpretations of such associations as biotic interactions hold up to scrutiny. This

does not dismiss the presence or importance of biotic interactions, but it highlights the risk of too

lenient interpretation of the data. Combining model results with information from experiments and
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functional traits that are relevant for the biotic interaction of interest might strengthen

conclusions.

Main conclusions: Moving from species- to community-level models, including biotic interactions

among species, is of great importance for process-based understanding and forecasting ecological

responses. We hope that our questions will help to improve these models and facilitate the inter-

pretation of their results. In essence, we conclude that ecologists have to recognize that a species

association pattern in joint species distribution models will be driven not only by real biotic interac-

tions, but also by shared habitat preferences, common migration history, phylogenetic history and

shared response to missing environmental drivers, which specifically need to be discussed and, if

possible, integrated into models.

K E YWORD S

biotic interactions, communities, co-occurrence, environment, residual structure, species

distribution models

1 | INTRODUCTION

Ecological theory aims to explain the observed distribution of an orga-

nism from its environmental requirements, its physiological tolerances,

its ecological (including dispersal, biogeographical and evolutionary) his-

tory and its interactions with other organisms (Begon, Townsend, &

Harper, 2006). Sometimes, an organism will be little affected by com-

petitors, mutualists, pathogens or predators; a mature tree may appear

to grow unfettered by its neighbours for decades. In other cases, an

individual may struggle to survive the pressure of its community during

every hour of its life; for example, a fish preying and escaping predators

in a small river. Biotic interactions such as these can have major effects

on local processes and population dynamics, and some, but not neces-

sarily all, scale up to co-determining the range of a species (reviewed,

e.g., by Wisz et al., 2013).

Recently, considerable interest has arisen in inferring biotic interac-

tions from large-scale data through the statistical analysis of species

(co)distributions. The methods for this task are in substantial flux

(Gonz�alez-Salazar, Stephens, & Marquet, 2013; Louthan, Doak, &

Angert, 2006; Morales-Castilla, Matias, Gravel, & Ara�ujo, 2015; Nieto-

Lugilde, Maguire, Blois, Williams, & Fitzpatrick, 2018; Ovaskainen et al.,

2017; Staniczenko, Sivasubramaniam, Suttle, & Pearson, 2017; Warton

et al., 2015; Wisz et al., 2013; Zhang, Kissling, & He, 2012). The general

idea of these methods is to look for an excess in co-occurrences (possi-

bly indicating facilitation) and deficits in co-occurrence (possibly indi-

cating competition). Setting aside the question of whether correlation

in species occurrence patterns is sufficient to infer that a particular

causal mechanism is operating (Roughgarden, 1983), a basic require-

ment for calculating excesses and deficits is to establish some baseline

level of co-occurrence.

The most commonly used baseline, particularly in null models

(Connor & Simberloff, 1979; Gotelli, 2000; Veech, 2012), is based on

each species’ landscape-wide occurrence rate. For example, if two spe-

cies each occur at 50% of the sites, then these methods would expect

them to co-occur at 25% of sites (.503 .50), and any statistically signif-

icant deviations from this baseline would be interpreted as evidence

for species interactions. This inference would clearly be problematic if,

as is often the case, other factors (such as environmental filtering) also

influence species occurrence patterns (e.g., Giannini, Chapman, Saraiva,

Alves-dos-Santos, & Biesmeijer, 2013) or if data are spatially autocorre-

lated (Morueta-Holme et al., 2016).

Researchers increasingly use joint species distribution models

(jSDMs) to set each species’ local baseline according to the abiotic envi-

ronment instead of making it constant. In this framework, evidence of

species interactions can be found in the residuals of the model, after

abiotic factors have been controlled for (Pollock et al., 2014). In princi-

ple, controlling for abiotic factors should make inferences more robust,

because researchers would be able to rule out some alternative explan-

ations for species’ co-occurrence patterns based on environmental con-

straints. As we discuss below, however, it may not always be possible

to control for these factors (questions 4 and 5).

One reason is that, even when controlling for the abiotic environ-

ment, inferences from co-occurrence data can be misleading as a result

of missing biotic or abiotic variables. Harris (2016) demonstrated this

point with an example based on two simulated species of shrub and

one species of tree (omitted from analysis, surrogating an unknown

interactor). The two shrub species impeded one another’s growth, yet

co-occurred frequently (which would normally imply facilitation or

mutualism). In this example, correctly inferring the sign of their interac-

tion required controlling for resource limitation imposed by the tree

species, which forced the two shrubs into the same subset of habitats

where the tree did not grow. The key point is that indirect biotic inter-

actions may lead to patterns that can be statistically, but ecologically

incorrectly, explained by the environment, thereby complicating inter-

pretation (discussed as apparent competition by Connell, 1990, or

apparent facilitation by Levine, 1999).

Thus, the question that arises is not so much about the statistical

methods as such, but about their interpretation. We have a
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proliferation of increasingly complex methods that can detect co-

occurrence patterns that deviate from some baseline expectations,

which could be a signal of biotic interactions. The dispute, however, is

whether such statistical fluctuations in co-occurrence are helpful for

inferring biotic interactions from observational data (Faust & Raes,

2012; Hastings, 1987; Meier et al., 2010; Morales-Castilla et al., 2015;

Morueta-Holme et al., 2016; Ulrich, Jabot, & Gotelli, 2017). We have

few empirical tests of the quality of such inference, as direct empirical

evidence for biotic interactions from observational studies is rare and

often limited to simple systems (e.g., Ives, Dennis, Cottingham, & Car-

penter, 2003; Pfister, 1995; Rees, Grubb, & Kelly, 1996; Schooler,

Salau, Julien, & Ives, 2011). Thus, if even such highly detailed local

time-series studies struggle to infer local interactions between species,

why should the same be so easy for macroecological biotic interaction

species distribution models (BI-SDMs)? In other words, how justified

are claims of model-based attributions of biotic interactions? Bearing in

mind their conceptual advances at the frontiers of this field, we want

to raise awareness about the limitations of BI-SDMs. The real litmus

test for the correctness of any BI-SDM would be an experimental con-

firmation of inferred biotic interactions, which has, to our knowledge,

rarely been addressed (e.g., Stephens et al., 2016).

In the present work, we review ecological aspects that need to be

taken into account when judging the level of evidence for true biotic inter-

actions generated from macroecological patterns, and here we mainly

focus on direct biotic interactions and on caveats reported in other BI-

SDM studies (Supporting Information Appendices S1 and S2). Most studies

have so far ignored the more complex indirect biotic interactions, as illus-

trated above by Harris (2016). We present a set of questions (Box 1) that

scientists and reviewers should ask, and answer, to avoid premature attri-

bution of species association patterns to biotic interactions. Our review

extends that ofWisz et al. (2013), where most of these key problems were

mentioned, but were not yet transformed into concrete suggestions for

interpretation and reporting. With this review, we want to call analysts

back to the drawing board, re-aligning their methods with the ecological

and evolutionary processes they seek to embrace. We present the ques-

tions in a sequence from data/methodological considerations, over con-

founding biotic interactions with environmental covariates, to challenges

posed by the dynamics of ecological systems.

2 | REVIEW OF PUBLISHED STUDIES

To obtain an overview of how species interactions were interpreted,

and whether and how the listed questions were addressed, we scanned

publications retrieved from Google Scholar (and cross-referencing)

dealing with biotic interactions in species distribution modelling (SDM;

Supporting Information Appendices S1 and S2).

In line with the cautionary remark with which we started in the Intro-

duction, many studies mention that spatial associations quantified by BI-

SDMs should not be interpreted as biotic interactions, but rather as the

patterns that may also result from similar environmental niches (e.g., Clark,

Gelfand, Woodall, & Zhu, 2014; Giannini et al., 2013; Ovaskainen, Hot-

tola, & Siitonen, 2010; Ovaskainen, Roy, Fox, & Anderson, 2016;

Sebasti�an-Gonz�alez, Dalsgaard, Sandel, & Guimar~aes, 2015;Warton et al.,

2015). They recommend BI-SDMs as hypothesis-generating tools (i.e., for

identifying an association that could be worth further ecological investiga-

tion for understanding or prediction, but not as interaction detectors).

Few studies used population dynamic models to represent biotic effects.

One of those studies found biotic interactions to be little supported by

the data; the Bayes factor suggested that the evidence was ‘barely worth

mentioning’ (Mutshinda, O’Hara, &Woiwod, 2010).

Moreover, studies commonly offered missing predictors as an

alternative explanation to purported biotic interactions, acknowledging

that missing predictions would lead to inflated type I errors for detect-

ing biotic interactions. Meier et al. (2010) suggest that the missing pre-

dictors might particularly represent environmental conditions changing

at small scales, such as soil, microclimate or land use. For instance, they

found less effect of purported biotic interactions on shade-intolerant

species, although these should exhibit a larger biotic interaction signal

(see Supporting Information Appendix S2 for the full list). Morueta-

Holme et al. (2016) offer some estimates on type II errors, which

increased with decreasing data set size.

Some issues additionally emerged from this review, which are

partly covered by our questions. For example, Williams, van der Meer,

Dekker, Beukema, and Holmes (2004) notice that many species are too

rare to be useful predictors, and Giannini et al. (2013) suggest that an

interactor may correlate with sampling effort.

3 | QUESTIONS FOR CAREFUL INTERPRETATION
OF BIOTIC INTERACTIONS

Given our review of the methodological and applied literature, we sug-

gest that the following 10 questions should be asked by each analyst

BOX 1 Questions aiding careful interpretation
and paper review of potential biotic interactions

Data and models
1. Can a causal chain be drawn, a priori, from a purported

interaction to the pattern of interest?
2. Are the data suitable for detecting interactions?
3. Is the modelling approach suitable for representing the

expected structure of the biotic interaction?
Confounding biotic interactions and environment
4. Is the purported biotic interaction a surrogate for a

missing predictor?
5. Are biotic interactions dependent on the environment?
6. Did the inclusion of joint abiotic and biotic interactions

improve the model?
7. Can phylogeny confound biotic interactions?
Dynamics, dispersal, and food web context
8. Are inferred biotic interactions confounded with dispersal

limitation?
9. Are purported biotic interactions attributable to temporal

dynamics?
10. Which food web components should be considered in a

biotic interactions species distribution model?
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to ensure an appropriate interpretation of state-of-the-art methods for

analysing biotic interactions or species covariances.

3.1 | Data and models

3.1.1 | Question 1: Can a causal chain be drawn, a priori,

from a purported interaction to the pattern of interest?

We realize that the inference of biotic interaction is currently often of

an exploratory nature, meaning that there are no clear hypotheses for-

mulated for the data analysis. Although this is generally permissible,

one should realize and communicate the ample opportunities for false

positives in such an approach. In an exploratory analysis with a large

number of tests for pairwise interactions among multiple species pairs,

relying on p-values alone is a misguided way to draw inferences (e.g.,

Peres-Neto, 1999). Correction for multi-testing can solve this problem,

but costs power. We suggest that, before data analysis, analysts should

first try to reason which interactions between species pairs are ecologi-

cally plausible and how they link to the pattern at hand.

3.1.2 | Question 2: Are the data suitable for detecting

interactions?

The majority of large-scale data are collected or compiled with perti-

nent biases (Guillera-Arroita et al., 2015). Records from opportunistic

observations [e.g., GBIF (www.gbif.org), eBird (www.ebird.org) or iNa-

turalist (www.iNaturalist.org)], data gridded to arbitrary resolutions, and

expert-drawn range maps (International Union for Conservation of

Nature) may provide reasonable information on the distribution of spe-

cies but may obscure real co-occurrences at ecologically relevant spa-

tial and temporal scales. On what spatial or temporal scale and

resolution can we expect a signal of competition between trees, symbi-

otic effects of mycorrhiza, or herbivory by leaf miners using such data?

As more surveys devoted to specific interactions (e.g., pollination or

seed dispersal, host–parasitoid networks, herbivory) become available,

such signals may or may not emerge (e.g., Tylianakis et al., 2008), sug-

gesting that indeed local interactions may be detectable in specific

large-scale data. At present, however, the burden of proof for the biotic

interactions as cause of this pattern lies with the claimant.

A necessary, but not sufficient, condition for detecting an effect of

species B on species A from presence or presence–absence data is that

within the range of A there exist regions without B (see Figure 1, sce-

narios 5 and 8; for a full picture on how one species affects the other,

all possible combinations of A and B are needed). As an illustration,

assume that B occurs whenever, say, the probability (P) of A to occur is

< 0.3. We have no statistical tool for telling us whether P(A) < 0.3

because B is present, or whether these sites are, say, simply too cold.

The situation is similar for data on abundances, except that we require

variation in the abundance of B across different expected abundances

of A (Figure 1, scenario 6). This condition was used to quantify Lotka–

Volterra-style interactions among microbiota in grasslands (Shang et al.,

2017). Computing and visualizing the overlap of A and B in (environ-

mental) space can address this issue.

3.1.3 | Question 3: Is the modelling approach suitable

for representing the expected structure

of the biotic interaction?

Before putting our faith in analytical results, we must verify whether

the modelling approach is suitable for detection and representation of

expected biotic interactions. For example, as Box 2 and Table 1 detail,

most joint species distribution models (jSDMs) use a parameterization

of a symmetrical ‘association matrix’ (representing the correlation in the

residuals among the different species). This is in contradiction to eco-

logical experiments at the local scale, which show that the effect of A

on B typically is not the same as that of B on A (think of predator–prey

relationships, or competition for light; Lawton, & Hassell, 1981;

Weiner, 1990). Likewise, coefficients for the effect of a species on the

FIGURE 1 Schematic illustration of eight alternative occurrence scenarios of the target species A and the interacting species B along a
simplified environmental gradient (e.g., temperature). Scenarios 1–3 represent species with different niches. In scenario 3, species A
excludes species B from the intersection. In scenarios 4–8, species have the same niche and overlap to different degrees. In scenario 5, the
effect of B on A can be evaluated, as there is an area of A without B. In contrast, in scenario 6 the effect of B on A cannot be evaluated, as
A does not occur outside the niche of B. This need not indicate an interaction, only a smaller niche. In scenario 7, we can assess the effect
of B on A only at the margin, but not in the core niche area, as again there are no sites with A but without B. In contrast, scenario 8 allows
for an evaluation of the effect of B throughout A’s niche, and this effect can be positive or negative. Note the subtle differences between
scenarios 5, 7 and 8, which severely affect our ability to interpret an association signal

4 | DORMANN ET AL.

http://www.gbif.org
http://www.ebird.org
http://www.iNaturalist.org


occurrence of another in a species-as-predictor approach (Box 2) have

little to do with abundance-affecting interaction coefficients in a

Lotka–Volterra model (see question 9). This is not necessarily a prob-

lem, as one would in any case expect that the local interaction struc-

ture does not translate one to one to the interactions at the

macroscale, but such considerations are crucial when interpreting mac-

roscale patterns as local interactions.

3.2 | Confounding biotic interactions and environment

3.2.1 | Question 4: Is the purported biotic interaction a

surrogate for a missing predictor?

The presence or absence of a species, through habitat requirements,

conveys information about the local environment (leading to the con-

cept of ‘indicator species’; Dufrêne & Legendre, 1997). Hence, using

species as covariates in BI-SDMs potentially confounds their role as

environmental indicators with that of biotic interactors. The results of

Giannini et al. (2013) showed that species known not to interact are

nevertheless good predictors for each other, suggesting that it was not

the species, but the proxy for missing environmental variables that

improved their models. Or, in the words of Clark et al. (2011; p. 1283):

‘in the absence of detailed environmental information, species provide

most information about one another’. The implication of this insight is

that the failure to include an important environmental predictor (in the

correct functional form) for a target species will result in an apparent

biotic interaction if other species can ‘indicate’ the missing environmen-

tal information (Bar-Massada, 2015; Blois et al., 2014). Species with

similar habitat requirements will appear to interact positively, whereas

species that have contrasting requirements will appear to interact neg-

atively. To avoid this problem, both the distributional and the environ-

mental data on which the BI-SDMs are based must be of high quality.

Scepticism is warranted: (a) if the number of predictors is unreasonably

low; (b) if the predictive quality of the single-species SDMs is much

lower than SDMs for the same or related species in other studies; and

(c) if substitute variables for environmental predictors, such as a spatial

field or spatial eigenvector (Borcard & Legendre, 2002), can remove

the estimate of the biotic interaction.

3.2.2 | Question 5: Are biotic interactions dependent

on the environment?

Most BI-SDMs assume that biotic interactions are constant in space

and time. It is more likely, however, that interaction strengths are

modulated by the biotic and abiotic environment. Experimental studies

showed that rates of biological interactions depend on environmental

conditions: rates of herbivory are temperature dependent (Burnside,

Erhardt, Hammond, & Brown, 2014); mycorrhizal symbioses change

BOX 2 Methods for estimating species associations in species distribution models

There are five main approaches for modelling species associations in macroecological species distribution models (see Table 1 for more
details; Nieto-Lugilde et al., 2018 and Ovaskainen et al., 2017 for a recent review). All essentially look for excess or deficits in co-
occurrence, relative to a baseline occurrence rate set by the environment or a random null model.
Correlation methods are the simplest case. They evaluate correlations between species’ occurrences or abundances, which confounds
environment and interactions. Instead of raw data correlations, residuals of regression models should be used to avoid this problem. Partial
correlations additionally control for indirect correlations among species (Harris, 2016; Morueta-Holme et al., 2016; Schäfer & Strimmer,
2005).
Interactor-as-predictor approaches use potentially interacting species as covariates in the model of the target species. In the case of
occurrence data, this is:

logit P Að Þð Þ5Xb1Ba1E;

Where a is the estimate of the effect of B on the probability of occurrence of A, P(A). B can be either occurrence or abundance. b 5 slope
of the regression coefficients; E 5 error term. Environmental and biotic effects are estimated simultaneously. Originally conceived for one
target species (Leathwick & Austin, 2001), this can be extended to many species (Harris, 2016; Sierra & Stephens, 2012).
Ordination approaches, probably the most common approach to representing species associations, consider all species simultaneously and
allow for species-specific environmental effects (Legendre & Legendre, 2013).

Spatial factor analysis (Thorson et al., 2015) describes species associations by regressing occurrence (or abundance) of multiple species
against common but unknown (latent) covariates, which are modelled as random spatial fields.
Joint hierarchical multispecies models finally estimate species-specific environmental responses of all interacting species and simultane-
ously describe residual covariance in species occurrence (here for two species, A and B):

logit P Að Þð Þ5XbA1EA

logit P Bð Þð Þ5XbB 1EB

ðEA; EBÞ�MVN 0;0ð Þ;Pð Þ
P

represents the positive and negative covariances in species occurrence after accounting for environment. The approaches differ in how
the variance–covariance matrix

P
is computed. As the number of species (hence regressions) increases,

P
grows quadratically in size, and

applications for many species become computationally expensive. To overcome this problem, one can make the entries of
P

a function of
a few random auxiliary (latent) covariates (Warton et al., 2015). Spatial structural constraints can be put on these covariates (Ovaskainen,
Roy, et al., 2016), similar to those in spatial factor analysis.
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with resource availability (Cox, Barsoum, Lilleskov, & Bidartondo, 2010;

Johnson, Wilson, Bowker, Wilson, & Miller, 2010); and plant–plant

interactions can shift from competitive to facilitative along a stress gra-

dient (Bertness & Callaway, 1994). Additionally, environmental change

can modulate biotic interactions via phenological mismatches, such as

for plant–pollinator interactions (Berg et al., 2010; Elzinga et al., 2007).

In these conditions, the model must also allow for the interplay of envi-

ronmental and biotic interactions (Clark et al., 2011), which has only

recently started to be explored in BI-SDMs (Tikhonov, Abrego, Dunson,

& Ovaskainen, 2017).

TABLE 1 Overview of statistical modelling methods that have been used to explore biotic interactions

Method Type Comments Spatial
Computing
pace

Asymmetrical
effects

Correlations Correlation of co-occurrences
(Ulrich, Almeida-Neto, & Gotelli,
2009)

No environment No Gallop No

Partial correlations (of residuals from
separate GLMs controlling for
environmental effects; Harris,
2016)

Conservative; removes all biotic
effects collinear with
environmental effects

Yes Gallop No

Interactor as predictor Single target species (Leathwick &
Austin, 2001)

The ‘original’ approach to including
biotic interactions

Yes Gallop Yes

Many independent GLMs (all other
species as predictor; Harris, 2016)

Convergence issues owing to high
collinearity

Yes Gallop Yes

Ordination Canonical Correspondence Analysis
(CCA), distance-based Redun-
dancy Analysis (db-RDA) (e.g.,
Legendre & Legendre, 2013),
multivariate regression trees
(De’ath, 2002)

Same environmental response for all
species

Yes Gallop No

Community-level models (Maguire
et al., 2016; Nieto-Lugilde et al.,
2018)

Extension of GLM; no explicit
modelling of interactions

No Gallop ?

Spatial factor analysis Spatial factor analysis (Thorson et al.,
2015)

Includes spatial dimension Yes Trot No

Spatial dynamic factor analysis
(Thorson et al., 2016)

Uses multiple time slices and allows
for temporal variation in latent
factors

Yes Walk No

Joint hierarchical
multispecies model

Artificial neural network (€Ozesmi &
€Ozesmi, 1999); mistnet (Harris,
2015)

Non-hierarchical, but same idea;
uses back-propagation instead

No Canter Yes

jSDM (Pollock et al., 2014) Hierarchical modelling of environ-
mental effects across species

No Walk No

BayesComm (Golding & Purse,
2016); gjam (Clark, Nemergut,
Seyednasrollah, Turner, & Zhang,
2017)

Independent environmental effects
across species

No Canter No

Spatial jSDM (Finley, Banerjee, &
Carlin, 2007; Latimer, Banerjee,
Sang, Mosher, & Silander, 2009)

Spatial prediction allows for large
sample size (but for few species)

Yes Walk No

Spatio-phylogenetic jSDM
(Kaldhusdal et al., 2015)

Spatio-phylogenetic models Yes Walk No

Latent variable jSDMs
(Warton et al., 2015)

Simplified fitting of covariance
matrix through latent covariates

No Trot Yes

Spatial latent variable jSDM
(Ovaskainen, Roy, et al., 2016;
Tikhonov et al., 2017)

Spatial structure in latent covariates.
Interactions are changing along
environmental gradients
(Tikhonov et al., 2017, only)

Yes Walk Yes

GLM5 generalized linear model; jSDM; joint species distribution model. Note. In contrast to Nieto-Lugilde et al. (2018), we focus on methods that
allow, in some way, a quantification of species associations. ‘Spatial’ refers to whether space could be incorporated in some form. ‘Computing speed’
will depend on the size of the data set, so we indicate only whether it will be fast (gallop; within seconds), intermediate (canter to trot) or slow (walk;
days to weeks). This assessment is based on our own experience with these methods and self-reported computation times. The last column refers to
the ability of the method to allow for asymmetrical effects (i.e., the effect of A on B being different from that of B on A).
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3.2.3 | Question 6: Did the inclusion of a biotic interactor

improve the model?

A question that should also be analysed more frequently is, whether

and by how much are predictions improved by including a biotic predic-

tor? Recent approaches to partition the variation build on comparison

of pure biotic, pure environmental, and joint environmental and biotic

models (e.g., de Ara�ujo, Marcondes-Machado, & Costa, 2014; Lobo,

Castro, & Moreno, 2001; Meier et al., 2010). Biotic and abiotic predic-

tors are separated, and the joint contribution of biotic and abiotic pre-

dictors to the explained deviance can be evaluated. This allows

quantification of the magnitude of overlap (i.e., the joint contribution),

providing an indication of how much we cannot uniquely attribute to

environmental or biotic interaction. In itself, this is not evidence for a

biotic interaction, but it helps us to put its potential importance into

perspective.

3.2.4 | Question 7: Can phylogeny confound

biotic interactions?

As a result of a phylogenetic signal in the ecological requirements of

species, the distributions of closely related species should also show

greater overlap than those of distantly related species. This phyloge-

netic signal should result in positive associations one could falsely inter-

pret as evidence of biotic interactions. A growing number of studies in

community ecology have documented that at broader spatial scales the

phylogenetic relatedness of ecological communities is often structured

along environmental gradients (but see Cavender-Bares, Kozak, Fine, &

Kembel, 2009; Davies, Meiri, Barraclough, & Gittleman, 2007). For

instance, the phylogenetic diversity of dragonfly assemblages decreases

with decreasing temperature, so that closely related species tend to

have more similar distributions than expected by chance, coinciding

with a phylogenetic signal in thermal tolerances (Pinkert, Brandl, &

Zeuss, 2017). Similar patterns are known for many different taxa (cf.

Hortal et al., 2011; Svenning & Skov, 2004). However, phylogeny is

only problematic if we ignore this potential source of bias in the asso-

ciational signal. We suggest following the lead of Kaldhusdal, Brandl,

M€uller, M€ost, and Hothorn (2015) on the integration of a method to

detect a phylogenetic signal underlying co-occurrence patterns into

SDMs, and Pollock, Morris, and Vesk (2012) for integration of measures

of phylogenetic diversity into SDMs (but see de Bello et al., 2017).

3.3 | Dynamic populations: Dispersal and food

web context

3.3.1 | Question 8: Are inferred biotic interactions

confounded with dispersal limitation?

Migration lags following environmental change may lead to species

associations not developing as expected from biotic interactions and

species’ niches alone (Gilman, Urban, Tewksbury, Gilchrist, & Holt,

2010). This is particularly true if the direction of migration is correlated

with environmental gradients, making a differentiation of dispersal limi-

tation and environment statistically impossible (Figure 2). For instance,

ranges of neotropical marmosets (primates) are separated by the arms

of river systems, although the estimated potential distributions are

much broader (Ayres & Clutton-Brock, 1992). Such incomplete range

filling might be interpreted as the outcome of competition among spe-

cies, even if the reason is primarily a dispersal barrier (see also

Morueta-Holme et al., 2016). Likewise, post-glacial recolonization, dur-

ing which many species lag environmental change, left detectable his-

torical signals underlying contemporary distribution patterns of taxa

with very different biology, such as trees, amphibians, dung beetles and

dragonflies (Ara�ujo et al., 2008; Hortal et al., 2011; Pinkert, Dijkstra,

et al., 2017; Svenning & Skov, 2004).

Potential dispersal constraints on species ranges could be explored

by systematically comparing association coefficients (in Box 2) between

species of different range sizes (small ranges may indicate dispersal

constraints), between species with differing dispersal syndromes (Nor-

mand et al., 2011) or between species of different distance to glacial

refugia; if one of these drivers matters, interactions may well be

inferred incorrectly. An indirect implementation in a BI-SDM with only

one time-step could be achieved by masking unreachable habitat,

down-weighting probabilities with the distance to expert-knowledge

maps or by including dispersal barriers as additional predictors for each

species (Gilman et al., 2010; Merow, Wilson, & Jetz, 2017).

3.3.2 | Question 9: Are purported biotic interactions

attributable to temporal dynamics?

Local environmental dynamics can lead to false estimation of both

interaction strengths and environmental dependencies (Figure 3;

Yackulic, Nichols, Reid, & Der, 2015). At one location, environmental

FIGURE 2 Negative biotic interactions may cause dispersal constraints that are difficult to differentiate from environmental filtering if
dispersal follows an environmental gradient (e.g., postglacial recolonization). (a) Species A (grey shading) would be interpreted as occupying
a different niche from B, although species A might eventually outcompete B (stippled) but is delayed in its dispersal by the presence of
species B (priority effects). (b) This scenario could be detected in case (b), where areas with similar environmental conditions but differing
species composition may indicate biotic interactions or dispersal constraints. (c) Species A may also be limited in its dispersal only by
species B without negative effects on the occurrence of species B
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dynamics (e.g., disturbances) can drive transient shifts in community

compositions (e.g., succession), with different sets of species co-

occurring at different times (e.g., pioneer tree species at the beginning

of forest succession). Large-scale BI-SDMs may easily attribute these

co-occurrence patterns to direct biotic interactions.

To a certain extent, problems related to dynamic systems can be

overcome by using time-lagged drivers or time since a triggering event

(e.g., disturbance, start of colonization) as additional covariates. Species

abundance data from several time slices, or ideally time series, can give

more information about the dynamics and allow more reliable estima-

tion of such interactions (Thorson et al., 2016). Another solution is to

fit explicitly dynamic models or their static surrogates (see Box 3), with

the challenge that the interaction and environmental niche parameters

of even these simple models are more difficult to estimate than those

of a BI-SDM.

3.3.3 | Question 10: Which food web components should

be considered in a BI-SDM?

Most species are positioned in food webs consisting of several trophic

levels, which should create additional indirect effects. Sometimes, envi-

ronmental change cascades through the food web to all trophic levels

(Schmitz & Price, 2011). At other times, changes remain within a food

web module (see Gilman et al., 2010; Tylianakis et al., 2008; Wardle,

Barker, Yeates, Bonner, & Ghani, 2001).

A limited number of studies have attempted to integrate higher-

order trophic interactions in macroecological SDMs (e.g., Pellissier et al.,

2013; Rohr, Scherer, Kehrli, Mazza, & Bersier, 2010). This approach is

referred to as a community-level model (CLM; Maguire, Nieto-Lugilde,

Fitzpatrick, Williams, & Blois, 2015) or ‘assemble and predict together’

(Nieto-Lugilde et al., 2018). In communities with a large number of spe-

cies, this leads to an inflation of covariates, which can be counteracted

by including as predictors only the most abundant species (Le Roux, Pel-

lissier, Wisz, & Luoto, 2014), or only those species that are part of the

immediate food web of the focal species (Ovaskainen, Abrego, Halme, &

Dunson, 2016; Pellissier et al., 2013). However, implementing these

specifications requires considerable prior knowledge.

For food webs, a promising approach is the trophic interaction dis-

tribution model (TIDM), based on resource-selection theory (Trainor,

Schmitz, Ivan, & Shenk, 2014). In any case, reflecting on the food web

context forces the analyst to present a causal chain before interpreting

a statistical pattern as biotic interaction. Here, the developmental

stages of species (e.g., larvae versus adults), ontogeny and sex can also

affect rates of biological interactions through niche and diet displace-

ment (Berg et al., 2010).

4 | ONE AVENUE TOWARDS
A SOLUTION: GENERALIZATIONS
USING TRAITS

How should we move forwards? Technical advances may ameliorate

some of the issues we have listed (also see Supporting Information

Appendices S1 and S2), but we believe at a fundamental level that the

problem of inferring biotic interactions will rise and fall with the avail-

ability of high-quality data and information from dedicated experi-

ments. More specifically, we believe that the data currently used for

BI-SDMs must be combined with other, ideally independent, data sour-

ces. One such data source that could presumably guide improvements

in BI-SDMs is species traits (including surrogates, such as phylogenetic

or trophic position). A growing number of studies show that species

with similar functional traits interact with similar sets of species (e.g.,

Dehling, Jordano, Schaefer, B€ohning-Gaese, & Schleuning, 2016; Gari-

baldi et al., 2015). Such trait matching of interacting species pairs is

detectable across scales, from species interactions to co-variation of

functional trait combinations at the regional scale (Dehling et al., 2014).

Species traits can also be used to suggest competitive exclusion of spe-

cies that are ecologically too similar (Davies et al., 2007). The

BOX 3 Dynamic approaches to simulate
distributions of interacting species

Many dynamic models explicitly consider species interactions,
dispersal, or both (Cabral, Valente, & Hartig, 2017; Gravel,

2013; Snell et al., 2014; Svenning et al., 2014). Species
interactions can be described at different levels of abstraction
and complexity, ranging from individuals encountering and
interacting directly or exploiting a shared resource (e.g., trees
competing for light; Lischke, Zimmermann, Bolliger,
Rickebusch, & L€offler, 2006) to highly aggregated interaction
coefficients (Allesina & Tang, 2012). These interactions
influence species and community dynamics (e.g., Cabral &
Kreft, 2012; Lischke et al., 2006; Morin, Fahse, de
Mazancourt, Scherer-Lorenzen, & Bugmann, 2014) and,
combined with dispersal, species ranges (e.g., Epstein, Kaplan,
Lischke, & Yu, 2007; Lischke, 2005). Yet, many of these
models are complex and time consuming, and thus applying
them for many species and fitting them to macroecological
data remains challenging (but see Evans, Merow, Record,
McMahon, & Enquist, 2016; Hartig et al., 2012). Hence, the
current situation is that mechanistic models of biotic
interactions could be ecologically more informative, but
parameterization and validation can be difficult and may
ultimately lead to problems similar to those of correlational
approaches (Dormann et al., 2012).
A possible avenue to solve that dilemma is to create meta-

or hybrid models that aggregate the known mechanisms of
species interactions into a simpler structure that is easier to
connect to large-scale data. An example is the possibility of
directly determining the equilibria of dynamic Lotka–Volterra
models (Lischke & L€offler, 2017). It incorporates the dynamic
effects of species interactions and yields a very simple static
model required for parameter estimation, complementing
correlational approaches with dynamic add-ons (leading to
hybrid models, such as KISSMIG; Nobis & Normand, 2014).
Another approach is to start from statistical models but try to
include essential dynamic mechanisms. An example is the

hierarchical statistical state–space models that simultaneously
estimate species distribution model and dynamic parameters
(e.g., Pagel & Schurr, 2012), but only if they can be extended
to many species (Evans et al., 2016).
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incorporation of species traits into BI-SDMs (e.g., by using hierarchical

modelling frameworks; Ovaskainen et al., 2017) would be most inform-

ative if the functional relevance of traits and trait surrogates is carefully

tested before they are used to infer and quantify species interactions

in ecological communities (Brousseau, Gravel, & Handa, 2017; Dehling

et al., 2014; Ibanez, Lavorel, Puijalon, & Moretti, 2013).

Another, more challenging, obstacle is the prediction of interac-

tions in communities (Gravel, Poisot, Albouy, Velez, & Mouillot, 2013;

Pearse, Harris, Karban, & Sih, 2013), because we lack in-depth informa-

tion on species interactions for most communities. By relating interac-

tions to real and latent traits, it is conceivable to predict unobserved

interactions (Naisbit, Rohr, Rossberg, Kehrli, & Bersier, 2012; Rohr,

Naisbit, Mazza, & Bersier, 2016; Rohr et al., 2010), including those in

novel communities in the future. Despite a growing interest in such

predictive models (Garibaldi et al., 2015; Gravel, 2013; Kissling et al.,

2012), there is not yet a fully established method to predict interac-

tions between species pairs from traits (for attempts, see Dehling et al.,

2016; Ibanez et al., 2013; Moretti et al., 2013; Morueta-Holme et al.,

2016). The further refinement of this methodology for a large number

of species and across spatial scales (Morales-Castilla et al., 2015;

Morueta-Holme et al., 2016) offers a great opportunity for improving

BI-SDMs. Nevertheless, this requires the same questions as outlined

above to be asked and answered, but it might offer an avenue for a

better mechanistic understanding of why macroecological signals of

species co-occurrences should be attributed to biotic interactions, or

not.

5 | CONCLUSIONS

Macroecology is at a point of deciding between barging ahead, accept-

ing by-and-large positive and negative associations in BI-SDMs as

biotic interactions, or remaining sceptical until multiple lines of evi-

dence confirm such patterns as genuinely representing biotic interac-

tions. Our review and caveats reported in previous studies give many

reasons why such scepticism seems warranted. We recommend careful

and reflective interpretation of BI-SDMs, ideally complemented by and

compared with experimental evidence, multiple independent data sets,

models representing alternative ecological hypotheses, and considera-

tion of the questions we have raised in this review. It seems easy to

misinterpret the findings of a superficial analysis, and it is much harder

to make a solid ecological case for it. Macroecologists should demand

rigorous evidence for any community process inferred at large spatial

scales and for methodological soundness of new approaches (particu-

larly type I error rates). At present, BI-SDMs are perceived as promis-

ing, particularly for generating hypotheses about which interactions

occur among species; yet asking, and answering, the questions we out-

lined here may lead to an improved ecological integration of biotic

interactions in SDMs in the future.

FIGURE 3 Temporal variation in the environment can, in combination with a time-delayed reaction of species abundance changes, enable
long-term species coexistence despite strong negative biotic interactions (Chesson, 2000). Light red indicates time periods with environmen-
tal conditions where species A would outcompete species B, and light blue indicates time periods when species B would outcompete spe-
cies A. Time delay in these negative species interactions (e.g., by priority effects) may delay species exclusion and thus allow coexistence in
fluctuating environments
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