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INTRODUCTION

Species distribution modelling is central to both fundamental

and applied research in biogeography. Over the past 10 years

species distribution models have become commonplace in

studies of biogeography, conservation biology, ecology, palaeo-

ecology and wildlife management. Model fitting is usually

based on pattern-recognition approaches, whereby associations

between geographic occurrence of a species and a set of

predictor variables are explored to allow or support statements

of the mechanisms governing species’ distributions. These

models allow estimation of species’ ecological requirements,

although the degree to which causal relationships between

species distributions and the predictor variables are unveiled

depends on the adequacy of the predictors used for model

building. In spite of the widespread use of niche-based species

distribution models (e.g. Guisan & Thuiller, 2005), important

conceptual, biotic and algorithmic uncertainties still need to be

investigated if models are to make important contributions for

conservation and biogeographical research. As with climate

change research (e.g. Smith, 2002), the species’ distribution

modelling community needs to deepen the ongoing debate,

where the strengths and limitations of available approaches are

investigated, fuelled by more rigorous assessments of the

sensitivity of model outcomes to initial assumptions and

parameters (Whittaker et al., 2005). In this essay, we identify

five high-priority areas of inquiry for niche-based species

distribution modelling: (1) clarification of the niche concept;

(2) improved designs for sampling data for building models;

(3) improved parameterization; (4) improved model selection

and predictor contribution; and (5) improved model evalua-

tion. The challenges discussed in this essay do not preclude the

need for development of other areas of species distribution

modelling research, but are critical for allowing this science to

move forward.

CHALLENGE 1: CLARIFICATION OF THE NICHE

CONCEPT

The foundations of niche modelling are deeply rooted in

Hutchinson’s (1957) fundamental and realized niche concepts.

Even though a majority of modellers would subscribe to

Hutchinson’s framework, there are conflicting views about

what the models truly represent. For example, recently

Soberón & Peterson (2005) concluded that niche models

provide an approximation to the species’ fundamental niche.

Others have regarded models as providing a spatial represen-

tation of the realized niche (e.g. Austin et al., 1990; Guisan &

Zimmermann, 2000; Pearson & Dawson, 2003) on the grounds

that the observed species’ spatial distributions that are utilized
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to estimate species–climate relationships are constrained by

non-climatic factors (e.g. Araújo & Pearson, 2005). Conflicting

interpretations of the niche component being represented by

models arise from ambiguities in the original formulation of

the fundamental and realized niche concepts, and from

difficulties in translating Hutchinson’s conceptual framework

into niche modelling, particularly at large biogeographical

scales.

Hutchinson defined the fundamental niche (N) as the

‘n-dimensional hypervolume’ where a species S1, in the

absence of competition with species S2, is able to persist

indefinitely. The realized niche of species S1 (N 01) is the part of

the fundamental niche (N1) where the species is not absent due

to competition with species S2. Following Hutchinson’s

notation, N 01 would be the subset of N1 that does not contain

N2:

N 01 ¼ N1 � N2 \ N1 � N2; where S1 survives: ð1Þ

And, reciprocally,

N 02 ¼ N2 � N1 \ N1 � N2; where S2 survives: ð2Þ

There are a number of difficulties in adopting such a strict

Hutchinsonian framework in the context of niche modelling.

First, the word niche became firmly entangled with the notion

of interspecific competition (Chase & Leibold, 2003). How-

ever, there is increasing evidence that positive biotic interac-

tions (e.g. mutualism and facilitation) may be as important as

negative interactions for species survival (e.g. Callaway et al.,

2002; Yamamura et al., 2004; Travis et al., 2005). The

entanglement of the niche concept with competition partly

reflects the disproportionate weight given to competition in

Hutchinson’s original writings, but also to ambiguity as to how

other types of interactions would fit in the fundamental and

realized niche framework. Two statements from his ‘conclu-

ding remarks’ (1957) may, however, shed some light on

Hutchinson’s thinking regarding how to integrate biotic

interactions into the niche framework:

(1) it will be apparent that if this procedure [defining the

hypervolume] could be carried out, all…variables, both

physical and biological, being considered, the fundamental

niche of any species will completely define its ecological

properties. (p. 416)

(2) Interaction of any of the considered species [defining the

realized niche] is regarded as competitive…All species other

than those under consideration are regarded as part of the

coordinate system. (p. 417)

It is reasonable to interpret these statements as indicating

that Hutchinson saw biotic interactions other than competi-

tion as comprising the n-dimensional hypervolume defining

the fundamental niche.

It follows from our reading of Hutchinson that limiting

factors (e.g. temperature and presence of mutualist species)

and resource factors (e.g. energy and presence of prey) should

be part of the coordinate system characterizing the funda-

mental niche. Some authors have already implemented this

idea by incorporating distributions of interacting species as

predictor variables within niche models (e.g. Leathwick &

Austin, 2001; Anderson et al., 2002; Gutiérrez et al., 2005).

One consequence of including both positive and negative

interactions within the niche framework is that the clear-cut

dichotomy between fundamental and realized niches becomes

artificial and its usefulness debatable. If positive interactions

were considered part of the fundamental niche (as implied by

Hutchinson’s statements), then why should negative interac-

tions alone be associated to the realized niche? If the rationale

– as we interpret it – is that the fundamental niche is defined

by the resources and limiting factors required for species’

persistence, and that the realized niche is defined by the

constraints preventing the exploitation of resources, should the

absence of mutualists or facilitators (thus preventing the use of

resources) be included as part of the factors defining the

realized niche? Ambiguities concerning the role of biotic

interactions within the niche framework need to be resolved in

order to allow appropriate integration of these neglected issues

into niche models.

Additional difficulties arise from the utilization of the

Volterra–Gause principle (Hutchinson, 1957) to justify

distinction between fundamental and realized niches. The

principle postulates that two species utilizing, and limited

by, a common resource cannot coexist in the same physical

space. This observation is equivalent to stating that the

realized niches of two co-occurring species do not intersect

and that the species distribution can be restricted by a

superior competitor. However, the relevance of this principle

is likely to be contingent on the spatial grain of the analysis

and the type of organism being considered. Hutchinson was

mainly concerned with small species’ ranges and niches at

the scale of the community, but species distribution models

are often fitted at regional to continental scales. The

characterization of niches is made from gridded species’

occurrence records on maps; the size of the grids can be

large (1–50 km) and species competing for the same

resource may well co-occur within the same grid since they

can shift positions in order to avoid competition. In practice

this means that species with intersecting modelled realized

niches can co-occur in geographical space. Even if geo-

graphical units were small enough to detect patterns of

competitive exclusion, species competing for the same

resources could still reach local equilibrium. Examples

include the case of species with lower degrees of compet-

itiveness that establish in randomly vacant portions of

geographical space (Hutchinson’s ‘fugitive’ species), or

species that use the same resources, at the same place, but

in different periods of time (e.g. diurnal vs. nocturnal

species). Therefore, co-occurring species can have intersect-

ing realized niches and coexist in space and time (see also

Amarasekare, 2003).

Given the discussion above, it is worth asking whether the

distinction between fundamental and realized niches is useful

for niche modelling. A possibility is to discard the fundamental

and realized niche concepts altogether, accepting that any

characterization of the niche is an incomplete description of
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the abiotic and biotic factors allowing species to satisfy their

minimum ecological requirements. In a major revision of the

niche theory, Chase & Leibold (2003) dropped the funda-

mental and realized niche concepts and provided an updated

definition of niche: the environmental conditions that allow a

species to satisfy its minimum requirements so that birth rate

of a local population is equal to or greater than its death rate.

(p. 19)

This definition is essentially a modern translation of the

original formulation of the niche concept proposed by Grinnell

(1917, 1924). However, Chase and Leibold extended this

concept to include ‘the per capita impacts of that species on

these environmental conditions’. Even if conceptually useful,

this extension is of limited utility for niche-based modelling

because niche models explore snapshot correlations and it is

difficult to assess feedback mechanisms of species with their

environment. Furthermore, models are usually implemented

for areas with broad extents and/or using coarse resolutions

where feed-back mechanisms are difficult to detect.

Niche theory is also hampered by inadequate consideration

of species dispersal. Some authors have noted that dispersal

limitation, not competition, causes species to be absent from

significant portions of the fundamental niche at large ecolog-

ical scales (e.g. Pulliam, 2000; Svenning & Skov, 2004; Araújo

& Pearson, 2005; Guisan & Thuiller, 2005; Soberón &

Peterson, 2005; Peterson, 2006). However dispersal is a spatial

(and temporal) process. Hence, dispersal and dispersal limi-

tation are more adequately treated as extrinsic dimensions of

the niche concept (e.g. Araújo & Williams, 2000). We suggest

that modellers should make a clearer distinction between niche

models and the modelling of spatially explicit features. Niche

models based on environmental predictors only yield projec-

tions of potential habitats for species (Guisan & Zimmermann,

2000). When niche and spatially explicit factors are combined,

models can be said to yield projections of potential geographical

distributions of species. This distinction is important, although

researchers have often treated the two concepts interchange-

ably. For example, assessments of species extinction-risk that

make assumptions on the relationship between shifts in niche

space for species and species range losses (Thomas et al., 2004)

assume a linear relationship between species range size and

availability of suitable habitats for species, which may not

always apply (Araújo et al., 2005c).

We have highlighted some difficulties in applying Hutchin-

son’s (1957) niche concept to niche modelling. The definition

of niche recently proposed by Chase & Leibold (2003) offers

much promise, but it needs to be considered in the context of

larger scale species’ distribution modelling, where detailed

population parameters are not measurable.

CHALLENGE 2: IMPROVED DESIGNS FOR

SAMPLING DATA FOR BUILDING MODELS

A major assumption of traditional parametric procedures is

that data used for calibration represent a random sample of the

population being studied. Of course, it is rarely the case that

such unbiased data exist for large numbers of species across

wide geographical areas. Even if random samples of species

locational records were obtainable, they would unlikely be the

best for niche modelling (Hirzel & Guisan, 2002), particularly

for species with a high degree of niche specialization and/or

restricted range (e.g. Edwards et al., 2005; Guisan et al.,

2006a). In practice, modellers would be reasonably happy if

they could stratify sampling in order to obtain data that were

representative of the species’ frequencies of occurrence in a

given region and the kinds of environments in which species

can live. These attributes are important because niche models

are sensitive to both sample size and biases in the distribution

of data (e.g. Peterson & Cohoon, 1999; Stockwell & Peterson,

2002; Kadmon et al., 2003; Araújo et al., 2005c; Visscher,

2006). The purpose of improved statistical sampling design is

to limit these biases while increasing model performance.

Currently, the vast majority of data available for species

distribution modelling come from museum and other natural

history collections (e.g. Graham, 2001; Ponder et al., 2001;

Reutter et al., 2003; Stockman et al., 2006). These data are

often incomplete and biased in relation to the true spatial or

environmental distributions of species. The option of sampling

entirely new data by means of a statistically-sound recording

scheme (e.g. random-stratified or other random-based proce-

dure) is appealing but unfeasible in many circumstances

(Balmford & Gaston, 1999). Here, we argue that intermediate

solutions for handling and improving poor quality data may

exist, but they need to be thoroughly tested in the context of

species distribution modelling. In particular, we suggest the

sub-sampling of existing data or, as a better alternative, the use

of design-based or model-based environmental stratifications

to help targeting additional field sampling.

Sub-sampling consists of selecting observations from a

larger set with the aim to remove or reduce an identified bias.

For instance, a non-random sample might bias observations to

the neighbourhood of urban centres or roads because these

areas are more easily accessed by recorders. Such biases in

geographical space might translate into biases in environmen-

tal space, which can produce spurious assessments of the

relationship between the response and predictor variables.

However, when sampling occurs across broad geographical

areas or sharp environmental gradients, there is a possibility

that the environmental conditions limiting species distribu-

tions are well sampled, thus enabling useful models to be fitted

(Peterson, 2006). If these conditions are not met, sub-sampling

may help reduce existing biases and produce more balanced

samples for model calibration, but with the corollary that the

model can then only be applied within the range of resampled

environmental conditions. Furthermore, this approach will not

remove any undetected bias. The sub-sampling of existing data

should be performed using a robust design (e.g. providing the

best performing model for a target species; Hirzel & Guisan,

2002) and this operation repeated several times to assess the

sensitivity of model outcomes to the sample data. Alterna-

tively, sub-sampling can be replaced by a process of down-

weighting observations that are over-represented or linked
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with an identified sampling bias. However, these two post hoc

strategies are not optimal and are likely to be useful only if: (1)

the initial data set is large-enough to allow sub-sampling or

weightings, leaving sufficient data for calibrating models; and

(2) environmental space has been comprehensively sampled

but in a very unbalanced way, such that some environmental

combinations are much more represented than others.

A more appropriate choice is to use design- or model-based

environmental stratifications (see Buckland et al., 2000) to

target additional sampling-effort needed to complement

existing species’ occurrence records. Use of this approach

assumes that if an environmental pattern is sampled across the

range of abiotic and biotic factors governing species distribu-

tions, an unbiased sample is gained of the species’ occurrence

along these gradients. This approach provides a framework for

sampling species when only incomplete distributional data are

available. The approach also allows the assessment of the

expected degree of environmental representativeness of exist-

ing records for modelling. The idea of using pattern variation

to sample biodiversity was first proposed for reserve selection

(Faith & Walker, 1996), but it has also been discussed in the

context of sampling biodiversity or single species for modelling

applications (e.g. Ferrier et al., 2002; Araújo et al., 2003;

Ferrier et al., 2004; Edwards et al., 2005; Hortal & Lobo, 2005;

Guisan et al., 2006a). Model-based stratifications are not very

different from previous design-based environmental-stratifica-

tion schemes used, for example, in vegetation science. The

difference is that stratifications using models can produce

species-specific quantitative assessments, thus increasing the

likelihood that outputs are realistic for large numbers of

species. An early example of model-based sampling (Mohler,

1983) showed that sampling more intensively the tails of pre-

defined unimodal species’ response curves along environmen-

tal gradients reduced the standard error and improved the

adjustment of the curves to the data, and thus improved the fit

of the model.

Even though model-based stratifications offer promise for

prioritizing the distribution of sampling effort for niche

modelling, further testing of the assumptions underlying these

models is needed. Indeed, tests developed for reserve selection

have provided only limited evidence for the value of particular

implementations of stratification-based models (Araújo et al.,

2001, 2004; Bonn & Gaston, 2005), particularly for restricted

range species (but see Sarkar et al., 2005; Trakhtenbrot &

Kadmon, 2005). These results contrast with those of recent

studies investigating the usefulness of stratification-based

models in the context sampling recording effort for niche

modelling (Edwards et al., 2005; Guisan et al., 2006a).

CHALLENGE 3: IMPROVED

PARAMETERIZATION STRATEGIES

Many modelling techniques are now available for species

distribution modelling and there is increased recognition that

different techniques yield different results, even when models

are calibrated with the same response and predictor variables

(e.g. Elith, 2000; Olden & Jackson, 2002; Thuiller et al., 2003;

Brotons et al., 2004; Segurado & Araújo, 2004; Araújo et al.,

2006; Elith et al., 2006; Pearson et al., 2006). In addition to

variability of model outputs due to using different modelling

techniques, variability arises from using different implemen-

tations of the same technique (e.g. Elith et al., 2006; Pearson

et al., 2006). Factors that affect parameterizations include the

type of variable selection strategy used, the way absences are

estimated, and the way spatial structures are considered (e.g.

Maggini et al., 2006; Segurado et al., 2006).

It is important to consider several implementations of the

same technique in order to improve our understanding of the

sensitivity of models to initial assumptions and parameters,

and to allow more robust model comparisons (e.g. Elith et al.,

2006; Pearson et al., 2006). In a modern regression framework,

tests and diagnostic tools are available and they should be used

more systematically to check for: (1) the appropriateness of the

distribution of residuals, and particularly of their variance and

dispersion parameters; (2) the appropriateness of the link

function; (3) the influence of outlying individual observations

on model fit; (4) the presence of autocorrelation in the

response and predictor variables; and (5) the appropriate level

of complexity allowed in response curves. Flexible solutions to

some of these problems are currently available in most GLM

and GAM utilities, but they are also available and still being

developed for other predictive modelling frameworks (for

review see Hastie et al., 2001).

When comparing different techniques using a single imple-

mentation of each technique, results may lead to concluding

that a technique is inferior to another simply because the latter

is more powerfully implemented (for discussion see Thuiller

et al., 2003; Segurado & Araújo, 2004). As a result, when

making comparisons of different techniques, the variation in

parameterization within each technique should be also

assessed. A useful question is whether variation arising from

alternative parameterizations within a single technique (i.e.

within-model comparison) differs significantly from variation

between modelling techniques (i.e. between-model compar-

isons).

CHALLENGE 4: IMPROVED MODEL SELECTION

AND PREDICTOR CONTRIBUTION

Model outputs are primarily driven by the choice of predictor

variables entering the models and by the type and level of

adjustment between the response and predictor variables. The

selection of predictor variables (model selection) is, therefore,

a central step in most modelling efforts (e.g. Guisan &

Zimmermann, 2000; Heikkinen et al., 2006). We suggest that

greater focus be given to the relative weight (explanatory

power) and causality (ecological basis for choosing variables)

of each predictor entering species distribution models.

It is unsurprizing that the choice of predictors affects the

modelled spatial distribution of species. More interestingly, it

was shown recently that differences among predictions can be

very great when models are used to project distributions of
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species into independent situations (e.g. Araújo et al., 2005c;

Pearson et al., 2006). There is no easy fix for this problem, but

increasing the stability of model selection is worth exploring.

For example, regression techniques use different stepwise

variable selection algorithms, but these are high-variance

operations with small perturbations in the response variable

leading to potentially very different subsets of the predictor

variables being selected (e.g. Guisan et al., 2002; Visscher,

2006). These problems have led statisticians to develop

alternative approaches for the selection of predictors in

regression-based frameworks, such as coupling a stepwise

approach with cross-validation (Maggini et al., 2006), using

shrinkage rules, such as ridge regression or lasso (Harrell, 2001;

Hastie et al., 2001), or averaging competing models (Johnson

& Omland, 2004). Similarly, traditional model selection

procedures for classification and regression tree (CART)

algorithms have now been out-competed by boosted versions

of these techniques that make use of a multitude of small sub-

trees branched to each other to form a final tree (Hastie et al.,

2001). These alternatives still need more thorough testing in

the context of species distribution modelling. Nonetheless,

recent analyses indicate that they may hold great promise

(Elith et al., 2006).

Another important issue is the calculation of the contribu-

tion of each predictor in the model. In regressions, ANOVA

tables summarize the amount of deviance explained by each

predictor in a sequential way and this is a function of the order

in which each predictor enters the model. Hence, each

predictor ‘only explains what is left to explain’ once the

previous predictors have accounted for a part of the initial

deviance. Therefore, except the cases where predictors are

orthogonal, the deviance is not and cannot be interpreted as an

absolute measure of the contribution of predictors in the

model. This sensitivity weakens the utility of the model as it

confounds two key factors: which are the most important

predictors, and how much variance each predictor can

potentially explain. Solutions to the problem have been

proposed, but again they have not been extensively used in

species distribution modelling and sufficient statistical valid-

ation is lacking.

One approach for generalized regressions is hierarchical

partitioning (MacNally & Walsh, 2004; Heikkinen et al., 2005).

This procedure tests, for a single model, all entry order of

predictors (i.e. all permutations of the model formula), and

provides an assessment of the mean contribution of each

predictor. As these mean contributions are not additive,

hierarchical partitioning does not produce adequate models

for prediction – indeed that is not its purpose (MacNally,

2002). Nonetheless, hierarchical partitioning might provide a

useful framework for generating a detailed basis for inferring

causality in multivariate regression settings (Heikkinen et al.,

2005). Still, the rational for calculating these average contri-

butions needs further statistical testing. When the contribution

of predictors needs to be calculated from many competing

models, for the same species, model averaging (Burnham &

Anderson, 2002) can be used instead by summing the weights

of the models in which each predictor is present. This

procedure allows the calculation of the contribution of each

predictor as a weighted sum of all AIC-based scores attributed

to the models in which the predictor is present.

Variance partitioning is another approach, embedded within

a regression framework, which allows comparison of groups of

predictors (rather than individual predictors). The idea was

developed in the 1950s (Yoccoz & Chessel, 1988) to compare

two groups of predictors in ordinary least squares regressions

(OLS) and associated ordination techniques (Borcard et al.,

1992) and it is based on partial analyses of regression residuals.

First a model is fitted with the first group of predictors, then a

second model is fitted by regressing the residuals of the first

model with the second group of predictors. The same

procedure is then reversed, by fitting the first model with the

second group and the second model with the first group. A full

model is also fitted with both groups of predictors merged to

calculate the total amount of unexplained deviance. By

comparing the different models, one can derive the proportion

of pure deviance explained by group 1, of deviance explained

by group 2, of shared deviance between the two groups, and of

total unexplained deviance. An extension of the approach was

recently proposed to take more than two groups into account

(Heikkinen et al., 2005). While OLS is a powerful approach,

complications arise when trying to implement it into other

modelling frameworks. For instance, when a binary response is

used, such as the presence or absence of a species, and

modelled with a binomial generalized linear model, the

residuals take values along a probability scale, and thus have

a different distribution than the parent binary response

variable. This difference can make estimates of explained

deviance in the second model incomparable with those from

the first model. A clear statistical rationale needs to be

developed before the procedure can be safely generalized to

non-OLS situations.

A further complication arises in calculations of predictor

contribution if predictor interactions are allowed in the

models. The two approaches previously discussed – i.e.

hierarchical partitioning and variance partitioning – assume

additive effects of predictors. When interaction terms are

allowed, their contribution cannot be easily attributed to any

of the predictors involved in the interaction and new solutions

need to be developed (Guisan et al., 2006b).

The use of automated solutions to predictor selection and

contribution should not be seen as a substitution for pre-

selecting sound ecophysiological predictors based on deep

knowledge of the biogeographical and ecological theory

(Austin, 2002), No meaningful model can be built without

knowledge of the species’ ecology, population dynamics and

sensitivity to human and other disturbances and the approa-

ches described previously can hardly be successful if the initial

number of predictors is too large. A crucial question is thus

‘How much [variables or explained variance] is enough?’

(Huston, 2002). For instance, when predicting the likely

impact of climate change on species distributions, across large

regions, one can reasonably assume that using climate

Challenges for species distribution modelling
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predictors alone should prove sufficient to assess the main

changes in distributions (e.g. Pearson & Dawson, 2003).

Nonetheless, it is reasonable to ask what else is left, when all

the climate-related variance has been explained. Answering this

question requires quantifying how much climate can explain

species distributions compared to other predictors, such as

soils, site history, human influences, or other factors (e.g.

Pearson et al., 2004; Thuiller et al., 2004a; del Barrio et al.,

2006; Coudun et al., 2006; Luoto et al., 2006). Clearly, this

amount will depend upon the type of organism being modelled

and the spatial scale considered (for discussion see Pearson &

Dawson, 2003; Guisan & Thuiller, 2005). Indeed, in most

cases, it would be suspect to explain 100% of the variance

through climate predictors alone. One can reasonably expect

climate to explain more in regions with extreme climates, e.g.

alpine or arctic environments, than in tropical regions where

biotic interactions are likely to play a greater role. We know

very little about these issues. A further complication is that the

maximum possible variance explained by all climatic predic-

tors in a model does not necessarily correspond to the absolute

maximum climatic variance that can be potentially explained,

because some key climatic predictors are likely to be missing.

Further research is needed to assess the varying influence of

climate on the distribution of different groups of species

(particularly animals) in different regions (e.g. Thuiller et al.,

2004a; Heikkinen et al., 2005; Luoto et al., 2006). Once the

maximum climatic variance has been assessed for many species

in many distinct groups, one should be able to relate these

amounts to various species traits and the climatic character-

istics of the study areas, in order to seek ways to predict a priori

the maximum explainable climatic variance for a given

organism.

CHALLENGE 5: IMPROVED MODEL

EVALUATION STRATEGIES

Model evaluation describes the testing process required to justify

the acceptance of a model for its intended purpose. The

semantics, logic and philosophy underpinning model evaluation

are thorny and have been widely debated in the environmental

modelling literature (e.g. Konikow & Bredehoeft, 1992; Oreskes

et al., 1994; Rykiel, 1996). However, in the context of species’

distribution modelling a rather pragmatic question still remains

to be addressed convincingly: What evaluation procedure is

required to justify acceptance of models fitted for a variety of

different purposes? Although most modellers would accept that

validation (a model’s ability to predict events with independent

test data) is preferable to verification (a model’s ability to fit the

training data), there are cases where simple forms of verification

are sufficient, and others where model evaluation may be

unnecessary or even impossible. Because model evaluation is

inextricably related to its intended purpose, the choice of the

evaluation strategy needs to be explicitly related to the subject

and goals of modelling.

We suggest that evaluation strategies be discussed in the

context of three possible uses: description, understanding and

prediction. A purely descriptive model is one in which the

strength of the relationship between a response and predictor

variables is measured without additional considerations. A

model aimed at understanding goes a step further in that the

hypotheses concerning the relationships being measured are

tested. Finally a predictive model is one where confidence in

the hypothesized relationships allows projections of observed

patterns into independent situations. Complexity of model

evaluation increases from explanation to prediction to the

point where models that simply seek to describe a given

pattern may not need to be evaluated, whereas the evaluation

of models aiming at prediction is desirable but not always

conceptually possible.

Take the simplest case of ‘curve-fitting’ models, commonly

applied to the product of unsupervized data mining (reviewed

by Hastie et al., 2001). The goal of such models is to describe a

given pattern; the greater the flexibility given to ‘curve-fitting’

(e.g. number of polynomials in GLM, smoothing splines in

GAM, nodes in CART, or hidden layers in artificial neural

networks), the greater the likelihood that models will overfit

the data. Overfitting is not a problem if the goal is to describe a

pattern and simultaneously reduce false negatives, i.e. true

observations that are not predicted by models. This is the case

of models seeking to convert all presence records of a species

into a suitability score for an application, for example, in

conservation planning methodologies (e.g., Araújo & Williams,

2000; Araújo et al., 2002; Cabeza et al., 2004). Here, simple

forms of verification, such as measuring the number of false

negatives, can be implemented to check whether models are

performing as intended. We expect that, if appropriately

implemented, models fitting more flexible and complex

response shapes will reduce the number of false negatives. In

this context, verification is a tool to evaluate model imple-

mentation rather than model performance.

When models are implemented to understand the likely

mechanisms governing species’ distributions, model evaluation

[verification] is appropriately used to assess the ‘robustness’ of

inferred mechanisms. In a correlative setting, variable selection

is sensitive to the training data (e.g. Thuiller et al., 2004b;

Coudun et al., 2006; Luoto et al., 2006; Maggini et al., 2006).

Hence, a major purpose of model evaluation is to measure the

stability of selected variables using, e.g. grouped cross-valid-

ation (also known as k fold partitioning), bootstrap and jack-

knife approaches (also known as leave-one-out; see extended

discussion in the ‘Challenge 4’ section). It is important to note

that the purpose of model evaluation in a ‘seeking to

understand’ context is not to measure the accuracy of model

projections, but the probability that any given predictor

variable is selected as the potential driving force of existing

species distributions.

Finally, when models are implemented for prediction, it is

generality or transferability (the ability to predict independent

events) that needs to be evaluated [validation]. Examples include

models that use sample distribution data to allow predictions of

species’ potential distributions within the same region and

resolution (e.g. Guisan et al., 1998; Olden & Jackson, 2002;

M. B. Araújo and A. Guisan
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Segurado & Araújo, 2004; Elith et al., 2006), same region but

different resolution (e.g. Araújo et al., 2005b; McPherson et al.,

2006), different regions (e.g. Fielding & Haworth, 1995; Thuiller

et al., 2005b; Randin et al., 2006; Segurado et al., 2006), or

different time periods (e.g. Austin, 1992; Huntley et al., 1995;

Sykes et al., 1996; Berry et al., 2002; Peterson et al., 2002;

Thuiller et al., 2005a; Araújo et al., 2006; Harrison et al., 2006).

It is precisely in the context of the two latter examples that over-

fitted models are likely to be less robust than more parsimonious

solutions (Randin et al., 2006).

At least two difficulties arise when validating niche models

for predictive purposes. First, models predict events (e.g.

species distributions in unsampled locations, different regions

or times) that have a degree of independence from the events

used to make the predictions. Therefore, the data used to train

the models should be evaluated against independent data.

However, a recent review showed that the majority of studies

using niche models to project distributions into the future use

a simple form of verification (the resubstituition approach) in

which the same data used for model calibration are used to test

the models (Araújo et al., 2005a); a similar observation was

documented for studies modelling current species distribu-

tions (e.g. Olden & Jackson, 2000). The ability to describe a

given situation by training of given model parameters does not

imply that models are able to predict independent situations

with accuracy, as demonstrated for models projecting

distributions of species into different regions (Randin et al.,

2006) or times (Araújo et al., 2005a). Attempts to circumvent

this problem have included one-time data splitting, bootstrap

and jack-knife approaches. These approaches share the

assumption that randomly selected samples from the original

data constitute suitable independent observations for testing,

but independence is not guaranteed if the training and test sets

are spatially autocorrelated (Araújo et al., 2005a). The problem

of non-independence is not overridden by carrying out

additional field sampling for testing models within the

modelled region (e.g. Feria & Peterson, 2002; Raxworthy

et al., 2003; Elith et al., 2006; Stockman et al., 2006) because

test data may be spatially autocorrelated with the data used to

train the models, thus providing unrealistic estimates of model

performance outside the training set. The solution for this

problem implies that models are tested with data recorded in

different regions or times. In the specific case of models used to

project species distributions under future climate change

scenarios, it is usually not possible to evaluate predictive

performance of models because events being predicted have yet

not occurred. An alternative is to make backward projections

(hind-casting) of species distributions and use the temporal

record for model validation (e.g. Martinez-Meyer et al., 2004;

Martı́nez-Meyer & Peterson, 2006).

Secondly, even when there is suitable independent distribu-

tion data for the testing of models (e.g. based on records

compiled from fossil and pollen records) it is often the case

that models cannot be validated because of inaccurate

formulation of the modelling problem (see discussion in the

‘Clarification of the niche concept’ section). For example, the

chief aim of niche modelling – to characterize a species’

suitable environmental space (or potential habitat range) – is

usually tested against the realized spatial distribution of a

species. However, unless spatial explicit features of species

distributions are modelled, models remain untested by simple

comparison of observed and modelled data since only realized,

rather than potential, ranges against which to validate models

are used (Araújo et al., 2005c).

CONCLUDING REMARKS

We have discussed five topics that are critical for the

development of the science of species distribution modelling.

They included the following.

Clarification of the niche concept

A majority of modellers subscribes to Hutchinson’s realized vs.

fundamental niche framework. Nonetheless, there are conflict-

ing views about what the models truly represent. Conflicting

interpretations arise from ambiguities in the original formu-

lation of the niche concept. We argue that a simpler definition,

such as the modern translation of Grinnell’s original formu-

lation (Grinnell, 1917, 1924) by Chase & Leibold (2003),

suffices for the purposes of niche modelling: the environmental

conditions that allow a species to satisfy its minimum

requirements so that birth rate of a local population is equal

to or greater than its death rate. It is also argued that a clearer

distinction between the modelling of niche and spatial-explicit

features would be useful. Niche models yield projections of

potential habitats for species, but when niche and spatial factors

(e.g. dispersal) are combined, models yield projections of

potential geographical distributions of species. This distinction

should be clarified further.

Improved designs for sampling data for building

models

Model outputs are sensitive to sampling biases in the input

data. Even though well-designed recording schemes are more

likely to produce useful data for modelling, it is the poor

quality of data that justifies the use of species’ distribution

models in many applications. Sub-sampling of existing data

to remove or reduce existing biases in the data may help

improve the predictive power of the models. However, this

procedure requires that there are enough observations in

the data to allow removal of sub-samples without decreasing

the ability of models to fit the data. Hence, a better

alternative, albeit more expensive procedure, is to target

strategically the location of additional samples in the field.

Model-based environmental stratifications can help target

the minimum number of samples that is required to obtain

a representative coverage of niche space. Yet, these ideas are

in their infancy and more effort is required to assess their

strengths and limitations in the context of niche-based

modelling of species distributions.

Challenges for species distribution modelling
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Improved parameterization

Different parameterizations of the same model may yield

considerably different projections of species potential habitats

or distributions. The existence of variability in model outputs

due to differences in model parameterization constitutes a

form of uncertainty that has been previously underestimated.

A better understanding is necessary of why and when different

modelling techniques, or parameterizations of the same

technique, provide different results.

Improved model selection and predictor contribution

There are a number of relatively novel model selection

strategies available that should be more widely used by

ecological modellers. Calculating the individual contribution

of predictors in multiple models is a distinct, and more

difficult, problem. Some of the proposed solutions, like

hierarchical or variance partitioning, still require further

testing by ecologists and statisticians.

Improved model evaluation

Evaluation of models is inextricably related to their intended

purpose. Even though this seems a trivial statement, modellers

often use model evaluation strategies without considering the

object and goals of the modelling exercise. We argue that

evaluation strategies can be usefully discussed in the context of

three possible implementations: explanation, understanding

and prediction. In some cases validation (a model’s ability to

predict events with independent test data) is preferable to

verification (a model’s ability to fit the training data), but there

are circumstances where simple forms of verification are

sufficient, and others where model evaluation may be unnec-

essary or even impossible.

By selecting these five challenges to species distribution

modelling, we hope to have highlighted important areas for

future work but have doubtless thereby neglected others. Some

issues have been recently debated in the literature (e.g. Guisan

& Thuiller; 2005, Ferrier & Guisan, 2006; Guisan et al., 2006b;

Heikkinen et al., 2006; Pearce & Boyce, 2006; Peterson, 2006),

but there is still considerable ground for discussion and

clarification. Some of the most prominent challenges missing

from our discussion include (1) the effects of spatial and

temporal autocorrelation on models – when does spatial and

temporal autocorrelation matter and what can be done about

it? (e.g. Segurado et al., 2006); (2) the effects of geographical

extent and resolution – how does variation in the extent and

resolution of the studied area affect variable selection and the

performance of models? (e.g. Nogués-Bravo & Araújo, 2006);

(3) the strategies for selecting pseudo-absences for model

fitting – do approaches that stratify the selection of pseudo-

absences improve the predictive ability of models on inde-

pendent data when compared with pseudo-absences chosen

randomly? (e.g. Zaniewski et al., 2002; Engler et al., 2004); and

(4) the rules used for transforming modelled probabilities of

occurrence into presence absence – how does choice of the rule

(e.g. maximizing the kappa statistic or using AUC index) affect

the characterization of the niche or spatial distributions of

species? (e.g. Liu et al., 2005).

The perceived usefulness of niche-based species distribution

models for applied biogeography and ecology is partly

dependent on the successful resolution of some of these

problems. We hope to have convinced the reader that there is a

need for deepening the debate on the strengths and limitations

of existing species distribution models and undertake more

rigorous assessments of the sensitivity of model outcomes to

starting assumptions and parameters. Our goal with this essay

was to spark discussion and stimulate researchers to invest

their energies into this vibrant and relatively new field of

enquiry.
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Araújo, M.B., Williams, P.H. & Fuller, R.J. (2002) Dynamics of

extinction and the selection of nature reserves. Proceedings of

the Royal Society London Series B, Biological Sciences, 269,

1971–1980.
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Thuiller, W., Araújo, M.B. & Lavorel, S. (2004a) Do we need

land-cover data to model species distributions in Europe?

Journal of Biogeography, 31, 353–361.

Challenges for species distribution modelling

Journal of Biogeography 33, 1677–1688 1687
ª 2006 The Authors. Journal compilation ª 2006 Blackwell Publishing Ltd



Thuiller, W., Brotons, L., Araújo, M.B. & Lavorel, S. (2004b)
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