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Species distribution models have been widely used to predict species distributions for various purposes, including
conservation planning, and climate change impact assessment. The success of these applications relies heavily on the
accuracy of the models. Various measures have been proposed to assess the accuracy of the models. Rigorous statistical
analysis should be incorporated in model accuracy assessment. However, since relevant information about the statistical
properties of accuracy measures is scattered across various disciplines, ecologists find it difficult to select the most
appropriate ones for their research. In this paper, we review accuracy measures that are currently used in species
distribution modelling (SDM), and introduce additional metrics that have potential applications in SDM. For the
commonly used measures (which are also intensively studied by statisticians), including overall accuracy, sensitivity,
specificity, kappa, and area and partial area under the ROC curves, promising methods to construct confidence intervals
and statistically compare the accuracy between two models are given. For other accuracy measures, methods to estimate
standard errors are given, which can be used to construct approximate confidence intervals. We also suggest that as
general tools, computer-intensive methods, especially bootstrap and randomization methods can be used in constructing
confidence intervals and statistical tests if suitable analytic methods cannot be found. Usually, these computer-intensive
methods provide robust results.

Species distribution modelling (SDM) has become a use-
ful tool for fundamental ecological and biogeographical
research and it is an increasingly important tool for bio-
diversity management and conservation planning (Guisan
and Zimmermann 2000, Araújo and Pearson 2005,
Thuiller et al. 2005, Pearson et al. 2007). Species distribu-
tion models are used to predict the geographic range of
a species from occurrence records and relevant environ-
mental data. Two types of model output are common:
binary results where sites are classified as either part of the
distribution of the species or outside their distribution; and
continuous results where each site is given a probability of
being part of the species distribution or suitability for the
species. This kind of modelling methodology has long
been used in medical diagnostics (Yerushalmy 1947, Hand
1992), where patients (rather than sites) are predicted as
either positive � suffering from or susceptible to a parti-
cular malady or otherwise, and meteorology (Finley 1884,
Murphy and Winkler 1984, Glahn 2004), where a specific
meteorological event is predicted to occur or not occur.

Assessing the utility of such models requires an eva-
luation of the performance or accuracy of the models.
This is a critical element of model-building (Guisan and
Zimmermann 2000). Robust assessment of performance
will identify the relative strengths and weaknesses of

models and delimit the range of uses to which they can
be usefully applied.

Model performance assessment is based on accuracy
measures calculated from a set of independent test data
(Heikkinen et al. 2006). Researchers often calculate the
values for the accuracy measures they choose without any
indication of the precision for the calculated values. If the
test data set is large, this is unlikely to be a significant
problem since the variation will usually become smaller as
sample size increases. However, ecological researchers often
develop models with relatively small datasets due to lack of
available survey data, budgetary constraints, or because of
the restricted distribution or rarity of the species. In this
situation, simply calculating a value for each of the accuracy
measures used is inadequate, since variations associated
with the estimated accuracy measures exist to some un-
known extent. Ignorance of this aspect may ultimately
provide misleading conclusions. Therefore, as good prac-
tice, assessment of the precision of the estimated accuracy
measure, e.g. a standard error, or even better, a confidence
interval (CI) for each of the estimated accuracy measures,
should be provided (Jolliffe 2007). When different models
are contrasted, a formal statistical test should be conducted,
or the confidence interval for the difference of measure
between two models be provided (see Fielding (2007) for
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additional comments on this topic). Although some
methods for statistical inference related to accuracy mea-
sures have been introduced to ecology (Fielding and Bell
1997, Couto 2003, Allouche et al. 2006), many promising
methods exist outside the ecological literature, especially
those for constructing confidence intervals and for compar-
ing models using the same test data set, which are scattered
in other fields, including statistics, biometry, medicine,
psychology, meteorology and machine learning.

In this paper, we review the various accuracy measures
that are currently applied to SDM, and suggest several
additional, promising measures. For each measure, we
attempt to provide methods to calculate the standard error
and construct confidence intervals, as well as provide
methods to compare alternate models in terms of their
accuracy measures. When more than one method for a
specific measure exists in the literature, we attempt to
provide details for the most appropriate and parsimonious
approach. More than one method may be provided if a
consensus is not evident from the literature. Our aim is to
provide ecological researchers with a useful approach to
implementing the most appropriate statistical analysis of the
accuracy measure they have selected to use. We also provide
six appendices (Supplementary material Appendix S1�S6)
as supplementary material to give more details for the
recommended methods.

Accuracy measures

There are two facets to measuring the accuracy of species
distribution models: discrimination capacity and reliability
(Pearce and Ferrier 2000), although the former has been
generally viewed as more important than the latter (Ash and
Shwartz 1999). Discrimination capacity refers to a model’s
ability to distinguish between sites where the subject species
has been detected (presence sites) and those sites where the
species is known to be absent (absence sites). Reliability
refers to the agreement between predicted probabilities of
occurrence and the observed proportions of sites occupied
by the species (Pearce and Ferrier 2000). Reliability is an
essential attribute of the quality of probabilistic predictive
models.

Both aspects of model performance (discrimination
capacity and reliability) can be assessed when the modelling
result is continuous. When the modelling result is binary,
only discrimination capacity can be assessed. A range of
indices are available to evaluate either discrimination
capacity and/or reliability. A number of these can only be
applied to binary results or to continuous results that have
been transformed into a binary solution by using a specific
cut-off value or threshold. These are called threshold-
dependent measures. Those that can be applied directly to
continuous predictions are called threshold-independent
measures. If the threshold value is changed systematically,
the optimal value of a threshold-dependent measure can be
obtained (subject to an agreed definition of optimality).
Since this process is not dependent on a specific threshold
value, these types of optimal values can also be treated in the
same manner as threshold-independent values.

Threshold-dependent measures

All threshold-dependent measures are based on some or all
of the elements of the confusion matrix (Table 1). Some
measures in this group are shown in Table 2. Sensitivity
(Se) and specificity (Sp) are conditional probabilities widely
used in many disciplines including SDM. Se is the pro-
bability that the model correctly predicts an observation
of a species at a site, and Sp is the probability that a known
absence site is correctly predicted. While both Se and Sp
are probabilities conditional on the observations, positive
predictive value (PPV, also called positive predictive power)
and negative predictive value (NPV, also called negative
predictive power) are their counterparts that are conditional
upon the predictions. PPV is the probability that a site
predicted as presence is actually a presence and NPV is the
probability that a site predicted as absence is truly an
absence. In the field of image classification, Se and Sp are
referred to as producer’s accuracy for the two classes �
presence and absence, and PPV and NPV are called user’s
accuracy for the two classes (Liu et al. 2007). In the fields
of machine learning and information retrieval, positive
predictive value and sensitivity are called precision and
recall (Fawcett 2006) respectively. These measures have
been used in SDM (Drake et al. 2006). The pair Se and
Sp and the pair PPV and NPV are complementary to
each other (Hand 2001).

Positive and negative likelihood ratios (PLR and NLR)
are two indices frequently used in medical diagnostic tests.
PLR is the ratio of predicted presence sites among the real
presence sites to that among the real absence sites, and
NLR is the ratio of predicted absence sites among the
real presence sites to that among the real absence sites
(Glas et al. 2003). When false positives are zero, PLR is
undefined; when true negatives are zero, NLR is undefined.
Likelihood ratios are purported to be more efficient and
more powerful performance measures than sensitivity,
specificity and predictive values alone, by combining the
attributes of both sensitivity and specificity into one index
(Riddle and Stratford 1999).

Single overall measures of model performance are
generally preferred by researchers. Overall accuracy (ao),
defined as the probability that a site (either presence or
absence) is correctly predicted, is the most common mea-
sure used in various disciplines including ecology (Field-
ing and Bell 1997). Its application can be traced back to
Finley (1884) who employed this measure for assessing the
accuracy of tornado activity forecasts.

Table 1. Confusion table with sample parameters, where n is total
number of sites, n�j is the number of sites predicted as class j (j�0,
1), ni� is the number of sites observed as class i (i�0, 1), nij is the
number of sites observed as class i and predicted as class j, and class
0 is absence and class 1 is presence.

Observed

Presence Absence Total

Predicted Presence n11 n01 n�1

Absence n10 n00 n�0

Total n1� n0� n
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Cohen’s (1960) kappa is another widely used measure in
various disciplines including SDM. It has been adopted to
alleviate the problem of overestimating accuracy with ao. It
measures the extent to which the agreement between
observed and predicted is higher than that expected by
chance alone. This measure has been used in meteorology
since the late of 1800s (Murphy 1996), and it is commonly
called Heidke’s skill score in that field (Stephenson 2000).

The odds ratio (OR) is a familiar measure in
epidemiology (Glas et al. 2003), and is defined as the
ratio of the odds of positivity in the presences relative
to the odds of positivity in the absences, or the ratio of the
odds of positivity in predicted presences relative to
the odds of positivity in predicted absences. This index
has also been introduced to SDM (Fielding and Bell
1997), and has been used in a few studies (Manel et al.
2001). OR is unbounded and is undefined when either
false positives or false negatives are zero, which is not an
unusual situation, especially for models with high accu-
racy. In this case, adding 0.5 to each of the four cells of
Table 1 is a common practice to calculate an approxima-
tion of the OR (Glas et al. 2003). However, two closely
related measures, Yule’s Y and Yule’s Q, have better
properties than OR. They can be considered as correlation
coefficients ranging from �1 to 1 (Kraemer 2006).
Furthermore, simple manipulation solves the ‘‘no defini-
tion’’ problem (Table 2). Yule’s Q has also been termed
the Gamma coefficient (Kraemer 2006) and odds ratio
skill score (Stephenson 2000).

F-measure, which is the weighted harmonic mean of
precision and recall (Daskalaki et al. 2006), is widely used
in machine learning field, especially when the parameter
b�1 (Fawcett 2006). This measure has been used in SDM
(Drake et al. 2006). Prescribed in this common way, the F-
measure will be undefined when all sites are predicted as
one class (i.e. absence), as Drake et al. (2006) encountered.

This can be resolved by some simple algebraic manipulation
as presented in Table 2.

Stimulated by Gilbert’s (1884) remarks on the accuracy
of Finley’s (1884) tornado forecasts, Peirce (1884) propo-
sed a ‘‘measure of the science of the method’’, which is
the difference between true positive rate and false negative
rate. This metric has more recently been ‘‘rediscovered’’
and reworked (Stephenson 2000), and termed variously
‘‘Hanssen-Kuipers discriminant’’ or ‘‘Kuipers’ performance
index’’ (Hanssen and Kuipers 1965), ‘‘true skill statistic’’
(TSS) (Flueck 1987), or ‘‘Pierce skill score’’ (Stephenson
2000). It has recently been introduced to SDM by Allouche
et al. (2006) using the TSS term.

TSS is also equivalent to Youden’s index J, which was
developed by Youden (1950) and is widely used in medical
diagnostic tests. It is defined as the average of the net
prediction success rate for presence sites and that for
absence sites. It has gained considerable theoretical interest
over many years (Böhning et al. 2008), and it is considered
the best available summary measure of model performance
in medical diagnostic tests by some researchers (Biggerstaff
2000). This index is closely related to the arithmetic mean
of sensitivity and specificity (Table 2).

The Phi coefficient (f) is a counterpart of the Pearson
product correlation coefficient that measures the strength
of the relationship between two dichotomous variables
(Kraemer 2006). To our knowledge, it has not been used in
SDM. But its intuitive meaning makes it attractive for this
application.

The normalized mutual information (NMI) was intro-
duced to ecology by Fielding and Bell (1997) as well as
Couto (2003), and used in SDM by Manel et al. (2001).
NMI is undefined whenever there is a zero in any cell of
the confusion matrix. However, this problem can easily

be solved if we take lim
x00

x ln x , which resolves to 0 (Finn

1993), instead of calculating 0 ln 0 directly, which is

Table 2. Threshold-dependent accuracy measures. See Table 1 for the explanation of the basic parameters.

Index Definition Reference

Overall accuracy ao�(n11�n00)/n Finley (1884)
Sensitivity (recall) Se�n11/n1� Fielding and Bell (1997)
Specificity Sp�n00/n0� Fielding and Bell (1997)
Positive predictive value PPV�n11/n�1 Fielding and Bell (1997)
Negative predictive value NPV�n00/n�0 Fielding and Bell (1997)
Positive likelihood ratio PLR�Se/(1�Sp) Glas et al. (2003)
Negative likelihood ratio NLR�(1�Se)/Sp Glas et al. (2003)
True skill statistic TSS�Se�Sp�1 Peirce (1884)
F measure F�(b2�1)/(b2/Se�1/PPV)�(b2�1)n11/(b 2n1��n�1) Daskalaki et al. (2006)
Odds ratio OR�(n11n00)/(n10n01) Glas et al. (2003)

Yule’s Y Y�ð
ffiffiffiffiffiffiffi
OR

p
�1Þ=ð

ffiffiffiffiffiffiffi
OR

p
�1Þ�ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

n11n00

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n10n01

p Þ=ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
n11n00

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n10n01

p Þ Kraemer (2006)

Yule’s Q Q�(OR�1)/(OR�1)�(n11n00�n10n01)/(n11n00�n10n01) Kraemer (2006)

Phi coefficient f�
n11n00 � n01n10ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1�n0�n�1n�0

p Kraemer (2006)

Kappa k�(ao�ae)/(1�ae)
where ae�(n1�n�1�n0�n�0)/n2

Cohen (1960)

Normalized
mutual information

NMI�(Ho�Ho/p)/Ho

where Ho�(nlogn�n1�logn1��n0�logn0�)/n

Hojp�ðn�1log n�1�n�0logn�0� a
1

i¼0
a
1

j¼0
nijlognijÞ=n

Finn (1993)

Extreme dependency
score

EDS�2ln(n1�/n)/ln(n11/n)�1 Stephenson et al. (2008)
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undefined. However, as Liu et al. (2007) discussed, NMI
has some weaknesses. It only measures the agreement bet-
ween two patterns. It cannot differentiate ‘‘worse-than-
random’’ models from ‘‘better-than-random’’ models, and
as a result is not considered a useful accuracy measure.

Rare species are a major conservation concern to
ecologists and management agencies. In addition to
difficulties with predictive modelling of their distribution,
assessment of accuracy for these models is challenging. It is
well-recognized that accuracy measures without chance-
adjustment are not suitable in this situation, and that
chance-adjusted measures are also problematic in this
situation since these measures have trivial, non-informative
limits as species becomes rarer (Stephenson et al. 2008). In
order to address this issue, the extreme dependency score
(EDS) was introduced by Coles et al. (1999). It falls in
the range [�1, 1], where �1 corresponds to the worst
predictions, 0 to random predictions, and 1 to perfect
predictions. However, EDS does not properly use the
information about false presences and true absences. There-
fore, it should be provided together with the ratio of
predicted presences to true presences in order to give a

complete summary of model performance (Stephenson
et al. 2008). EDS has been used in meteorology (Stephenson
et al. 2008), and has the potential to be applied to SDM.

Threshold-independent measures

Threshold-independent accuracy measures are shown in
Table 3. Area under the receiver operating characteristic
curve (AUC) is one of the most widely used accuracy
measures in various disciplines, including ecology (Raes
and ter Steege 2007). In the context of SDM, the AUC
of a model is equivalent to the probability that the model
will rank a randomly chosen presence site higher than a
randomly chosen absence site (Pearce and Ferrier 2000).
This is equivalent to the Wilcoxon test of ranks (Hanley
and McNeil 1982). AUC can also be interpreted as the
average value of sensitivity over all possible values of
specificity or alternatively as the average value of specificity
over all possible values of sensitivity (Jiang et al. 1996). The
AUC is also closely related to the Gini coefficient (Breiman
et al. 1984), which is twice the area between the diagonal
and the ROC curve. The Gini coefficient is a correlation

Table 3. Threshold-independent accuracy measures. See Table 1 for the explanation of the basic parameters.

Index Definition Reference

Maximum overall accuracy amax�max(ao) Stockwell and Peterson (2002)
Maximum kappa kmax�max(k) Guisan et al. (1998)
Maximum vertical distance MVDr�max(TSS) Lee (1999)

Area under ROC
curve (AUC)

û�
1

n1�n0�

a
n0�

i¼1
a

n1�

j¼1
f(Xi; Yj)

where f(X,Y) equals 1 if Y�X, 1/2 if Y�X, and 0
otherwise;Xi and Yj are the predicted value for the
absence site i and presence site j.

Mason and Graham (2002)

Partial area under ROC curve (PAUC) See the text He and Escobar (2008)
Gini index Gini�2AUC�1 Hand and Hill (2001)

Point biserial correlation rpb�
P̄1 � P̄0

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1�n0�

n2

s
Tate (1954)

coefficient where, P̄1� a
oi¼1

pi=n1�; P̄0� a
oi¼0

pi=n0�;

s� a
n

i¼1
ðPi�P̄Þ2

=n

� �1=2

, P̄ � a
n

i¼1
pi=n;

pi and oi are the predicted value and observed
value (1 for presence and 0 for absence) for site i.

Rank biserial correlation rrb�2(R̄1�R̄2)=n Glass (1966)
coefficient where R̄1 and R̄0 are the mean ranks for the predicted

values of the presence and absence sites respectively.
Proportion of D2�1�V/V0 Mittlböck and Schemper (1996)

explained deviance where, V��2 a
n

i¼1
[oilogpi�(1�oi)log(1�pi)]

V0��2n[plog p�ð1�pÞlog ð1�pÞ�, p�n1þ=n

Adjusted proportion of
explained deviance

D2
adj�1�

n � 1

n � m
(1�D2) Guisan and Zimmermann (2000)

Mean square error MSE�
1

n
a
n

i¼1
(pi�oi)

2 Brier (1950)

Root mean square error RMSE�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
a
n

i¼1
(pi�oi)

2

s
Caruana and Niculescu-Mizil (2004)

Coefficient of determination R
2
�1�

1

n
a
n

i¼1
(pi�oi)

2

�
[ p(1�p)] Ash and Shwartz (1999)

Mean absolute prediction
error

MAPE�
1

n
a
n

i¼1
jpi�oij Schemper (2003)

Mean cross entropy MXE��
1

n
½ a
oi¼1

lnpi� a
oi¼0

ln(1�pi)� Caruana and Niculescu-Mizil (2004)
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coefficient, unlike AUC (Hand and Hill 2001, Kraemer
2006), and has been used in SDM by Engler et al. (2004).

AUC has been criticized by some researchers as it can
give a misleading picture of model performance since it
covers parts of the prediction range that are of no practical
use (Briggs and Zaretzki 2008, Lobo et al. 2008). There-
fore, partial AUC (i.e. PAUC) was proposed (McClish
1989), which is the part of the area under the ROC curve
with false positives falling in the range [FPRl , FPRh].
Dividing the PAUC by (FPRh�FPRl) gives the normalized
partial area (nPAUC), which can be interpreted as the
average sensitivity over a fixed range of false positive rates
[FPRl , FPRh] (He and Escobar 2008).

Jiang et al. (1996) proposed a further measure, called
partial area index, which is the area under the ROC curve,
but above a pre-selected sensitivity (Se0) divided by the
constant (1�Se0). This metric can be interpreted as the
average value of specificity over all values of sensitivity
between Se0 and 1.

However, the choice of false positive range for McClish’s
method and Se0 for Jiang et al.’s method needs to be made
on a case-by-case basis, and neither of these methods allow
for probabilistic interpretations (Lee and Hsiao 1996).
Since the two methods are conceptually the same and
McClish’s method is more flexible, it will be discussed in
detail elsewhere in this paper.

Lee and Hsiao (1996) and Lee (1999) introduced other
accuracy indices, among which MVDr (i.e. the maximum
vertical distance between the ROC curve and the diagonal
line) is a promising one. It can be shown that MVDr�
max(TSS ).

The maximum overall accuracy and maximum kappa are
frequently used in SDM in a threshold-independent way to
indicate a model’s predictive capacity (Guisan et al. 1998,
Liu et al. 2005). The point biserial correlation coefficient
(rpb) has also been used in SDM (Elith et al. 2006), which
is the Pearson product moment correlation coefficient,
calculated under the condition that one variable (i.e. the
observed species occurrence) is dichotomous while the
remaining variable (i.e. the predicted probability) is con-
tinuous (Kraemer 2006). A closely related measure, rank
biserial correlation coefficient (rrb), has also been applied in
SDM (Phillips et al. 2009), which is the Spearman rank
correlation coefficient, calculated under the condition that
one variable is dichotomous and the other is ordinal
(Kraemer 2006). Glass (1966) modified it to improve its
statistical behaviour.

Guisan and Zimmermann (2000) introduced the pro-
portion of explained deviance (D 2) and its adjusted form
into ecology to assess the performance of generalized linear
models, and the latter has been used in subsequent studies
(Engler et al. 2004). While adjustment for the number of
explanatory variables is useful in the model-building stage
in order to avoid over-fitting, and to obtain a parsimonious
model, it seems unnecessary when the model is assessed
using independent test data.

Other threshold-independent measures include Brier’s
(1950) score, which is actually the mean square error
(MSE), and Brier’s skill score, which is equivalent to the
coefficient of determination (R 2 ). Both metrics are widely
used in meteorology for forecast verification (Bradley et al.
2008). R 2 has also been recommended for generalized

regression model performance assessment (Ash and Shwartz
1999). The square root of R 2 � a correlation measure was
proposed by Zheng and Agresti (2000) to summarize the
predictive power of a generalized linear model. Mean
absolute prediction error (MAPE) (Schemper 2003), the
root mean square error (RMSE) and mean cross entropy
(MXE) (Caruana and Niculescu-Mizil 2004) have also been
used as accuracy measures in other fields and have potential
application in SDM.

Methods of estimation and statistical
inference for accuracy measures

Methods for simple proportion measures

Methods for assessment of one model
Some simple measures are just binomial proportions,
including sensitivity, specificity, and overall accuracy, as
well as false positive and false negative error rates. Suppose
sample size is m and the ‘‘event’’ (true/false positive or
negative) of interest occurs k times, then the measure of
interest u is estimated as û�k=m, and the variance can be
estimated as ŝ2� û(1�û)=m (Kraemer 1992). For exam-
ple, if the measure is sensitivity (u�Se), k�n11, m�n1�,
then û�n11/n1�, and ŝ2�n11n10=n3

1�:
Under the above conditions, k has a binomial distribu-

tion with parameters m and u, and the Clopper-Pearson
confidence interval (CICP) for u, (uL, uU), with a coverage
probability � the proportion of the time that the CI
contains the true value of interest � of at least 1�a can be
obtained from this distribution (Seaman et al. 1996, Brown
et al. 2001, Pires and Amado 2008).

If m is not too small, and û not too close to 0 or 1 so that
as a rule of thumb min(mû;m(1�û))�5, then the CI for
the measure u can be calculated from the asymptotic
normal approximation to the binomial distribution with
mean u estimated as û and variance s2 estimated as ŝ2�
û(1�û)=m (Seaman et al. 1996), i.e. (û�u)=ŝ is
asymptotically normally distributed, which gives the
100(1�a) % CI of the measure u as û�z1�a=2ŝ, where
z1�a/2 is the 100(1�a/2)th percentile of the standard
normal distribution (Brown et al. 2001), e.g. if a�0.05,
z1�a/2�1.96; the upper operator corresponds to the lower
limit of the CI, and the lower operator corresponds to the
upper limit of the CI. This denotation will be used
throughout the paper. When the lower limit goes below
0, it will be replaced with 0; and when the upper limit goes
above 1, it will be replaced with 1 (Pires and Amado 2008).
The interval formed in this way is called the standard Wald
confidence interval (CIsW). In order for the estimate of the
measure to be reasonably unbiased and the estimated
variance reasonably accurate, Kraemer (1992) suggested
that each marginal sum (i.e. ni�and n�i ,i�0,1) must be
at least 10.

However, it has been criticized that the coverage
probabilities of the CIsW can be erratically poor even
when the proportion u is not close to 0 or 1 (Brown et al.
2001). Therefore, various alternative CIs have been pro-
posed (Vollset 1993, Newcombe 1998a, Brown et al. 2001,
Pires and Amado 2008). After comparing eleven methods,
Brown et al. (2001) recommended the Wilson interval
(CIW) for small samples and the Agresti-Coull interval

236



(CIAC) for large samples. They also showed that
CIW also has better performance than the exact Clopper-
Pearson interval. CIW has been used in weather forecasting
(Stephenson 2000). Vollset (1993) recommended the CIW

with continuity correction (CIWcc) from comparison of
seventeen methods. From comparison of seven methods,
Newcombe (1998a) recommended CIW and CIWcc, while
a comparison of twenty methods led Pires and Amado
(2008) to recommend CIAC.

Methods for comparison of two models
For those indices that are in the form of proportions,
the difference of each index between two models can be
compared statistically. Two situations will be considered:
1) the two samples used to assess the two models are
independent, i.e. the test sites used for the two models
are different; and 2) the two samples are dependent, and we
only consider the most common situation that the same
set of sites are used for the two models. The correspond-
ing data are called independent data and paired (or here,
interchangeably, dependent) data in the two situations
respectively.

For the situation with independent data, suppose
sample sizes are m1 and m2, and the ‘‘event’’ of interest
occurs k1 and k2 times for the two samples. The mea-
sure of interest u for the two samples is estimated
as û(1)�k1=m1 and û(2)�k2=m2, and the difference d�
u(1)�u(2) can be estimated as d̂ � û(1)� û(2) with the
variance estimated as ŝ2�k1(m1�k1)=m3

1�k2(m2�
k2)=m3

2 (Newcombe 1998b). With this variance estimate,
a standard Wald confidence interval for the difference can
be constructed, but it behaves very poorly (Newcombe
1998b). Among the eleven methods compared by New-
combe (1998b), he found that the two methods based on
the tail area profile likelihood achieve the best coverage
properties, but the calculation is complex; fortunately, two
methods based on the Wilson score (CIWs for without
continuity correction and CIWscc for with continuity
correction) perform well and are easy to calculate.

For the situation with paired data, a contingency table
(Table 4) can be constructed. In this table, we use m, instead
of n, to denote the sample size, i.e. the number of sites used
in the calculation of the target index. Only when the overall
accuracy (OA) is the target index, m�n; for other indices,
m"n. For example, if the target index is sensitivity (Se),
m�n1�; and if the target index is specificity (Sp), m�n0�.

For the data in Table 4, the index for model 1 and 2 can be
estimated as û(1)� (e� f )=m and û(2)� (e�g )=m respec-
tively. The difference of the index between the two models,
d�u(1)�u(2), can be estimated as d̂ � û(1)�û(2)� (f �
g )=m: The variance of this difference d can be estimated as
ŝ2� [(e�h)(f �g )�4fg ]=m3 (Newcombe 1998c) or
equivalently ŝ2� (1=m2)½f �g �(f �g )2=m� (Hawass
1997). With this variance estimation, the Wald confidence
interval for the difference d can be constructed as
d̂ �z1�a=2ŝ, where z1�a/2 is the 100(1�a/2)th percentile
of the standard normal distribution (Newcombe 1998c).
This method can be applied only if the sample size is over
40; below 40, this should only be applied if the sample
size is above 20, and that mû (1), m(1�û(1)), mû(2), m(1�
û(2)) are all greater than 5; otherwise, the critical value from
the Student’s t distribution should replace the normal
critical value z1�a/2 (Hawass 1997). However, as stated by
Newcombe (1998c), this method can produce confidence
limits outside the range of validity. After comparing ten
methods, he found that the methods based on the profile
likelihood are superior to the others, and a computationally
simpler method based on the Wilson score interval (CIWsP)
also performed well.

For paired data, the difference in accuracy between
two models d�u(1)�u(2) can also be tested with the
McNemar test, which tests the null hypothesis H0: u(1)�
u(2) with the test statistic x2

1� (f �g )2=(f �g ) , which
has an asymptotic x2 distribution with one degree of
freedom (Hawass 1997). The statistic with a continuity
correction x2

1� (j f �g j� 1)2=(f �g ) may be preferred
(Hawass 1997). This method can be applied if the sample
size is greater than 40; otherwise, it should be applied only
when the sample size is between 20 and 40, and f�g]10
(Hawass 1997).

It is better to simultaneously test the significance of
difference of both sensitivities and specificities between two
models than to separately test for sensitivity and specificity,
since the type I error of the test can be better controlled in a
simultaneous test (Hawass 1997). The null hypothesis that
Se(1)�Se(2) and Sp(1)�Sp(2) can be tested by the extended
McNemar test x2

2� (c�a)2=(c�a)�(d �b)2=(d �b),
where a, b, c, and d are from another contingency table
(Table 5) (Hawass 1997).

Methods for the Kappa statistic

The standard Wald confidence interval for the kappa
coefficient (k) can be calculated as k�z1�a=2s, where s is
the standard deviation of k (Blackman and Koval 2000),

Table 4. Contingency table with sample parameters, where m is the
number of ‘‘sites’’ (NS) involved in the calculation of the target
index. The ‘‘sites’’ mean the presence sites for sensitivity, absence
sites for specificity, and general sites for the overall accuracy. e is the
NS predicted correctly by both models, h is the NS predicted
incorrectly by both models, f is the NS predicted correctly by model
1 and incorrectly by model 2, and g is the NS predicted incorrectly
by model 1 and correctly by model 2.

NS predicted by model 1

Correct Incorrect Total

NS Predicted Correct e g e�g
by model 2 Incorrect f h f�h

Total e�f g�h m

Table 5. Contingency table used in the extended McNemar test for
the simultaneous sensitivities and specificities significance test with
paired data. T, F, P and A stand for true, false, presence and absence
repectively. ‘‘-’’ means that there is no value for the cell.

Model 2 Model 1

TP FP FA TA

TP x - c -
FP - y - d
FA a - u -
TA - b - v
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which can be estimated as ŝ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ao(1�ao)=n

p
=(1�ae )

(Cohen 1960, Kundel and Polansky 2003) (see Table 2 for
ao and ae). The asymptotic variance (s2) of k can also be
estimated in several other ways: ŝ2

FCE (Fleiss et al. 1969, see
also Hanley 1987), ŝ2

BK (Bloch and Kraemer 1989), and ŝ2
G

(Garner 1991). Jackknife method has also been used to
calculate the variance (ŝ2

J ) of kappa (Blackman and Koval
2000).

After comparing the lower bound of the confidence
intervals based on the above four variance estimates,
Blackman and Koval (2000) found that there is no
uniformly best method, and the accuracy of estimation
depends on the species’ prevalence, sample size and true
degree of agreement. When degree of agreement is
moderate (0.45kB0.6), prevalence is extreme (P50.2
or P]0.8), and sample size is large (n]40), the jackknife
method is recommended; when the degree of agreement is
slight to fair (05kB0.4), prevalence is not too extreme
(0.1BPB0.9), and sample size is not too small (n]20),
BK and FCE methods are recommended; when the degree
of agreement is at least moderate (k]0.4), prevalence is
not too extreme (0.1BPB0.9), and sample size is not
too small (n]20), the Garner method is recommended
(Blackman and Koval 2000).

As Blackman and Koval (2000) stated, none of the above
four methods perform well over all parameter values;
and under extreme values of the true degree of agree-
ment and species prevalence as well as in small samples,
non-symmetric intervals may be used.

Flack (1987) compared the performance of four con-
fidence interval estimation methods including the above
FCE method, the Edgeworth skewness correction method
(which is a jackknife-based method), the logarithmic
transformation method, and the square-root transformation
method. He found that the square-root transformation
method provides confidence intervals with a better coverage

rate, which is 1� ½
ffiffiffiffiffiffiffiffiffiffiffi
1�k

p
9z1�a=2ŝFCE=(2

ffiffiffiffiffiffiffiffiffiffiffi
1�k

p
)�2:

Hale and Fleiss (1993) compared three methods
(including the above FCE method, the Edgeworth skewness
correction method, and the Cornfield’s test-based method),
and found that the Cornfield’s test-based method is better
than the others. However, Lee and Tu (1994) compared the
square-root transformation method, the FCE method and
other two methods based on profile variance, and recom-
mended a profile-variance-based method.

The variance and confidence intervals for kappa were
also estimated with (the approximate) bootstrap method
(Fung and Lee 1991). For small samples, the exact
bootstrap confidence intervals can be constructed for k
(Klar et al. 2002).

The null hypothesis that k�0 can be tested using the
statistic Z � k̂=s0; which has an asymptotic standard
normal distribution under the null hypothesis, and s0

can be estimated as ŝ0�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ae=[n(1�ae )]

p
(Cohen 1960,

Sheskin 2007).
For two kappas k̂(1) and k̂(2) calculated from two

independent samples, their equivalence can be tested with
the statistic z � (k̂(1)�k̂(2))=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2

1�ŝ2
2

p
(Cohen 1960,

Sheskin 2007), which has an asymptotic standard normal
distribution under the null hypothesis that the two kappas
are equal, where ŝ2

1 and ŝ2
2 are the variance of the two

kappas calculated with the FCE method.

For two kappas k̂(1) and k̂(2) calculated from the same set
of sites, their equivalence can be tested with the statistic
(Barnhart and Williamson 2002) z � (k̂(1)�k̂(2))=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2

1�ŝ2
2�2ŝ12

p
, which has an asymptotic standard

normal distribution under the null hypothesis that the
two kappas are equal, where ŝ2

1 and ŝ2
2 are the variance of

the two kappas, which can be estimated with the FCE
method as well as weighted least-squares (WLS) method
introduced by Barnhart and Williamson (2002), and ŝ12 is
the covariance between the two kappas, which needs to be
calculated with WLS method.

Williamson et al. (2000) also used generalized estimating
equation (GEE) method to compare two correlated kappas.
McKenzie et al. (1996) used bootstrap and randomization
methods to compare two correlated kappas. Vanbell and
Albert (2008) used bootstrap method to estimate the mean
and variance-covariance matrix of several correlated kappas,
and hence provided a way to test their equivalence using
Hotelling’s T2 statistic. They also compared their method
with Barnhart and Williamson’s (2002) WLS method and
Williamson et al.’s (2000) GEE method, and found that the
estimates of kappa obtained with the bootstrap method
were slightly biased, and the bootstrap method also yielded
slightly higher standard errors than the WLS and GEE
methods.

Methods for other threshold-dependent measures

It has been proved that ŝ2[ln(u1=u2)]� (1�û1)=(m1û1)�
(1� û2)=(m2û2) if u1 and u2 are two proportion measures
from two independent samples (Agresti 2002). Taking
u1�Se and u2�1�Sp, we get ŝ2(ln PLR)�1=n11�
1=n1��1=n01�1=n0�; and taking u1�1�Se and u2�
Sp, we get ŝ2(lnNLR)�1=n10�1=n1��1=n00�1=n0�:
Therefore, we can get the standard Wald confidence
intervals for ln PLR and ln NLR.

With an exponential transformation, we can calculate
the confidence intervals for PLR and NLR. That is, if we
denote (L,U) as the confidence intervals for ln PLR and
ln NLR, the confidence intervals for PLR and NLR can be
expressed as (exp(L),exp(U )).

Through simple transformation, we know that PPV �
[1�(1�P )P�1PLR�1]�1 and NPV � [1�P (1�P )�1

NLR]�1 , where P is the species prevalence, which can be
estimated as P̂ �n1�=n: This means that PPV is a
monotonically increasing function of PLR, and NPV is a
monotonically decreasing function of NLR. Therefore, the
confidence intervals for PPV and NPV can be easily
obtained by transforming those for PLR and NLR. That
is, the lower and upper limits of the confidence interval for
PPV correspond to the lower and upper limits of the
confidence interval for PLR, and the lower and upper limits
of the confidence interval for NPV correspond to the upper
and lower limits of the confidence interval for NLR.

Confidence intervals for the predictive values (PPV
and NPV), the negative likelihood ratio (NLR) and the
reciprocal of the positive likelihood ratio (PLR�1) have also
been derived by Li et al. (2007) using two methods: Fieller’s
approach and the delta method, which are asymptotically
equivalent. Using the lower and upper limits, we can also
derive the confidence intervals for PPV and NPV.
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The odds ratio (OR) can be easily tested for significance
by considering the natural logarithm of OR (i.e. ln OR ),
which is asymptotically normally distributed with a
standard error estimated as (Stephenson 2000) ŝ� (n�1

11 �
n�1

10 �n�1
01 �n�1

00 )1=2: The asymptotic 100(1�a) % con-
fidence interval for the OR can be estimated as (L;U )�
OR�exp(�z1�a=2ŝ): From here we can easily construct
confidence intervals for Yule’s Q (i.e. Gamma statistic) and
Yule’s Y, because they are monotonically increasing func-
tions of OR, which are ((L�1)/(L�1),(U�1)/(U�1))
and ((

ffiffiffi
L

p
�1)=(

ffiffiffi
L

p
�1),(

ffiffiffiffiffi
U

p
�1)=(

ffiffiffiffiffi
U

p
�1)) , respec-

tively.
When sample size is small, the exact confidence limits

(L, U) for OR can be calculated by using an algorithm
developed by Thomas (1971).

The asymptotic variance of the true skill statistic (TSS)
has been derived in two different ways: ŝ2

1(TSS ) (Seaman
et al. 1996, Stephenson 2000, Allouche et al. 2006) and
ŝ2

2(TSS ) (Hanssen and Kuiper 1965). The two expressions
are asymptotically equivalent (Seaman et al. 1996). Using
these variance estimates, the standard Wald confidence
intervals can be constructed. However, if TSS is close to 1,
or if sample size is small, the upper limit of the confidence
interval may exceed 1, in which case 1 is taken as the upper
limit instead (Woodcock 1976).

As for the Phi coefficient f, it has been shown that
nf2�x2

1 , therefore, the x2 statistic with one degree of
freedom can be used to test the hypothesis that f�0
(Myers and Well 2003).

The asymptotic variance of NMI (Forbes 1995) and
the standard deviation of EDS (Stephenson et al. 2008)
have also been derived. Therefore, the standard Wald
confidence intervals for the two measures can be calculated.
More accurate confidence intervals for EDS have been
derived by Ferro (2007) by fitting a bivariate extreme-value
model.

Methods for AUC

Both parametric and nonparametric approaches have been
used for estimation and statistical inference regarding AUC.
While the parametric approaches have distributional
assumptions (usually binormal), nonparametric methods
make no such assumptions.

Let {Xi} and {Yj} be the sets of model predicted values
that correspond to the n0� absence sites and n1� presence
sites, respectively (i�1,2, . . .,n0�; j�1,2, . . .,n1�). The
AUC can be estimated nonparametrically as û (Table 3).

The commonly used formula for the standard error of
the nonparametric estimate (û) of AUC was introduced
by Hanley and McNeil (1982), which is ŝ�f[û(1� û)�
(n1��1)(Q1� û2)� (n0��1)(Q2� û2)]=(n1�n0�)g1=2

,
where Q1 and Q2 can be calculated approximately as Q1�
û=(2� û) and Q2�2û2=(1� û): Hanley and McNeil
(1982) also used another method to calculate the standard
error of the nonparametric estimate (û) of AUC in a more
complex way. When the standard error is estimated, the
confidence interval for û can be constructed, and the
variance and the confidence interval for the difference of
two independent AUCs can also be calculated.

In order to compare two dependent AUCs estimated
from the same set of sites, û(1) and û(2) , the covariance or
correlation coefficient (r) between them must be estimated,
since cov(û(1), û(2))�r ŝ2

1ŝ
2
2 , where ŝ2

1 and ŝ2
2 are the

variances of the two estimated AUCs. Hanley and McNeil
(1983) introduced a method to calculate the correlation
coefficient r. Two intermediate rank correlation coefficients
rP and rA between the two methods are calculated for the
presence sites and absence sites respectively. The predicted
values for the presence sites fY (k)

j j j�1; 2; . . . ; n1�g (k�
1,2) are used to calculate rP , and the predicted values for
the absence sites fX (k)

i ji�1; 2; . . . ; n0�g (k�1,2) are used
to calculate rA. From the average of the two correlation
coefficients (rP and rA) and the average of the two AUCs
(û(1) and û(2)) , the correlation coefficient r between the
two dependent AUCs can be obtained from Hanley and
McNeil’s (1983) Table I.

DeLong et al. (1988) proposed a method to non-
parametrically estimate the variance-covariance matrix of a
vector of AUCs from several models, and therefore, the
confidence intervals for the AUC, and for the difference of
any two dependent AUCs can be constructed. Hanley and
Hajian-Tilaki (1997) and Lasko et al. (2005) gave useful
descriptions of this method.

Hanley and Hajian-Tilaki (1997) introduced the jack-
knife method for estimating the variance and covariance of
two dependent AUCs using pseudo values. These values
have the same average as the calculated AUC values, but
they behave like independent identically distributed sam-
ples, so that the standard methods can be used to calculate
the variances and confidence intervals (Lasko et al. 2005). A
pseudo value Ui for a particular data point i is calculated
by taking the weighted difference of the û using all the data
points and the û�i generated with all but the point i, that
is Ui �nû�(n�1)û�i : The variance of the û is estimated
as var(û)�var(U )=n, and the covariance between the two
dependent AUCs is estimated as cov(û(1); û(2))�
cov(U (1);U (2))=n: The variance of the difference between
the two dependent AUCs can be estimated similarly as in
the above.

Bandos et al. (2005) developed an exact permutation test
for the comparison of two dependent AUCs. Their method
is based on the assumption of the exchangeability of within
subject (i.e. site here) rank-ratings. Therefore, instead of the
raw predicted values for each site, the ranks of these values
are used in the calculation. The hypothesis that the two
dependent AUCs (i.e. u(1) and u(2)) are equal can be tested
by the permutation method through simulation, or using

the test statistic ðû(1)� û(2)Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VV(û(1)� û(2ÞÞ

q
, which has

an asymptotically normal distribution, with mean 0 and
variance (under the null hypothesis) estimated as

VV(û(1)�û(2)):
Qin and Hotilovac (2008) compared nine non-parametric

methods for constructing confidence intervals of the AUC,
including Mann-Whitney and logit-transformation-based
confidence intervals, DeLong’s non-parametric interval,
empirical likelihood-based interval and three bootstrap
intervals. They found that the empirical likelihood-based
interval has nice asymptotic properties and good coverage
accuracy; however, it is complex and will not be described
here. In contrast, the bootstrap percentile-t interval is
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slightly conservative, but has good coverage accuracy when
AUC]0.95.

Molodianovitch et al. (2006) compared DeLong et al.’s
(1988) nonparametric method, Wieand et al.’s (1989)
binormal-based parametric method, and their own trans-
formed normal method for the comparison of two
correlated AUCs. They found that their method performs
best, and the nonparametric method is robust for all kinds
of data they studied.

Methods for PAUC

The partial AUC (PAUC) can be estimated both parame-
trically and nonparametrically. The original methods
proposed by McClish (1989) and Jiang et al. (1996) are
parametric in nature. Wieand (1989) proposed a general-
ized nonparametric method for both AUC and PAUC, and
their asymptotic variances. However, these calculations are
mathematically complicated and thus have not been widely
used (He and Escobar 2008). Zhang et al. (2002) proposed
a much simpler method to estimate the variance-covariance
matrix for PAUCs, based on the nonparametric approach of
DeLong et al. (1988). However, their variance formula was
found to be incorrect by He and Escobar (2008), by whom
another nonparametric method was introduced.

He and Escobar (2008) compared this method with
McClish’s (1989) method and Zhang et al.’s (2002)
method through simulation. They found that their method
and McClish’s method produced very similar variances that
are very close to the simulated variances for data generated
from both Gaussian distribution and non-Gaussian dis-
tribution. However, for small sample sizes the behaviour of
these estimates is still uncertain as the comparisons were
made using large samples (at least 200 presences and 200
absences).

Li et al. (2008) compared several methods to test two
PAUCs, including McClish’s (1989) parametric method
based on maximum likelihood estimation, their own
method based on generalized p-value, and a nonparametric
method with the point estimate calculated using the method
described in this section and with the variance calculated
using a bootstrap method. They found their method is more
powerful than the others, however, the method is not only
parametric, but also very complicated, which hinders its
wider use.

Methods for other threshold-independent measures

The estimated point biserial correlation coefficient r̂ pb was
shown by Tate (1954) to be asymptotically normally
distributed, with mean rpb and variance s2(r̂ pb)�
[4PQ �r2

pb(6PQ �1)](1� r2
pb)2=(4nPQ ), where species

prevalence P can be estimated as P̂ �n1�=n and Q�1�
P, and rpb can be substituted by the estimated value r̂ pb:

The hypothesis that rpb�0 can be tested with the statistic

t � r̂ pb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n�2)=(1� r̂2

pb)
q

, which has a t-distribution with

n�2 degrees of freedom (Myers and Well 2003).
Bradley et al. (2008) derived the sampling variance for

the mean square error, i.e. Brier’s score, and the R2 based on
sum-of-squares, also known as Brier’s skill score.

Conclusion

In this paper we have reviewed various accuracy measures
currently used in species distribution modelling; and also
introduced some promising measures that have not pre-
viously been applied in this field. Among them, the partial
AUC (i.e. PAUC) is worthy of recommendation. It is partly
free of those criticisms raised to the use of AUC. However,
the subjectivity in choosing the range of false positive rate
for its calculation hinders its comparability among different
studies. Perhaps a fixed range applicable for most problems
could be introduced to standardize its application, as
has taken place within genomic studies. As reported by
Gribskov and Robinson (1996), many researchers in
genomics have adopted AUC50, the area under the lower
portion of the ROC curve up to the first 50 false positives
(He and Escobar 2008). However, using the absolute value
of false positives may not be suitable in SDM, and a relative
value, i.e. a false positive rate may be better. Therefore, we
tentatively suggest [0, 0.5] as the range of false positive
rates to be used for the calculation of PAUC. Additionally,
the true positive rate in some range, e.g. [0.5,1] can be
restricted (i.e. the calculated PAUC is the area under the
portion of the ROC curve that is within the upper-left
quarter of the plot square). However, for this statistic there
is no appropriate analytic method for statistical inference,
and computer-intensive methods need to be used for
variance estimation and hypothesis testing.

Special attention was paid to reviewing the methods for
estimating standard errors of accuracy measures, as well as
for constructing confidence intervals for both single
measures and the difference of a measure between two
models. For most accuracy measures reviewed in this paper
we provided methods to estimate their standard errors.
Using these estimates we can conduct significance tests by
calculating Z test statistics; and we can also construct the
standard Ward confidence interval û�z1�a=2ŝ for the
accuracy measure u. However, this is a very approximate
approach as it relies on the asymptotic distribution, which
means large samples are needed to guarantee accuracy.
Methods that can be used for small samples are generally
more attractive. They should be used if sample is not large
enough, as is usually the case.

We suggest that confidence intervals should be provided
for each accuracy measure used in accuracy assessment.
Even when comparing two models, the confidence interval
for the difference of the measure between the two models
should be provided. Confidence intervals contain more
information than statistical tests. For some measures
including those not reviewed in this paper, if no suitable
analytical methods exist, computer-intensive methods (such
as bootstrap or randomization methods) can be used for
both statistical tests and confidence interval construction.

However, it is not our intention that all the accuracy
measures described in this paper should be used, since some
measures contain very similar information as discussed by
Liu et al. (2007). Further work is still needed to investigate
the behaviours and their relations of the measures discussed
in this paper. Before that work is done, we can not give a list
of preferred measures. However, we provide the following
general suggestion. For continuous modelling results, it is
better to report both the discriminatory power of the model
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(e.g. AUC, PAUC, kmax, MVDr, rpb) and the reliability of
the model (e.g. D2, R2, RMSE ); for binary modelling
results, it is better to report both the producer’s accuracy
(i.e. Se and Sp) and the user’s accuracy (i.e. NPV and PPV)
in addition to other overall measurements (e.g. a0, k, TSS);
and whatever accuracy measures are used, it is preferable to
provide their confidence intervals.
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