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Transforming the results of species distribution modelling from probabilities of or
suitabilities for species occurrence to presences/absences needs a specific threshold.
Even though there are many approaches to determining thresholds, there is no
comparative study. In this paper, twelve approaches were compared using two
species in Europe and artificial neural networks, and the modelling results were
assessed using four indices: sensitivity, specificity, overall prediction success and
Cohen’s kappa statistic. The results show that prevalence approach, average
predicted probability/suitability approach, and three sensitivity-specificity-combined
approaches, including sensitivity-specificity sum maximization approach, sensitivity-
specificity equality approach and the approach based on the shortest distance to the
top-left corner (0,1) in ROC plot, are the good ones. The commonly used kappa
maximization approach is not as good as the afore-mentioned ones, and the fixed
threshold approach is the worst one. We also recommend using datasets with
prevalence of 50% to build models if possible since most optimization criteria might
be satisfied or nearly satisfied at the same time, and therefore it’s easier to find
optimal thresholds in this situation.
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Predicting species distributions is becoming increas-

ingly important since it is relevant to resource assess-

ment, environmental conservation and biodiversity

management (Fielding and Bell 1997, Manel et al.

1999, Austin 2002, D’heygere et al. 2003). Many

modeling techniques have been used for this purpose,

e.g. generalized linear models (GLM), generalized

additive models (GAM), classification and regression

trees (CARTs), principal components analysis (PCA),

artificial neural networks (ANNs) (Guisan and Zim-

mermann 2000, Moisen and Frescino 2002, Guisan et

al. 2002, Berg et al. 2004). And most of the techniques

give the results as the probability of species presence,

e.g. GLM, GAM and some algorithms of ANNs, or

environmental suitability for the target species, e.g.

PCA (Robertson et al. 2003) and some algorithms of

ANNs. However, in conservation and environmental

management practice, the information presented as

species presence/absence may be more practical than

presented as probability or suitability. Therefore, a

threshold is needed to transform the probability or

suitability data to presence/absence data. A threshold

is also needed when assessing model performance

using the indices derived from the confusion matrix

(Manel et al. 2001), which also facilitates the inter-

pretation of modelling results. Before reviewing thresh-

old determination approaches, we will review these

model assessment indices first because some of these
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indices are also the only or primary component of

some threshold determination approaches.

Model assessment indices

Many indices can be used in the assessment of the

predictions of species distributions, including sensitivity,

specificity, overall prediction success (OPS), Kohen’s

kappa statistic, the odds ratio, and the normalized

mutual information statistic (NMI). And some of them

have been incorporated into the approaches to determin-

ing thresholds. Fielding and Bell (1997) gave a compre-

hensive review (Manel et al. 2001). All these indices

(Table 1) need the information from the confusion

matrix, which consists of four elements: true positive

or presence (a), false positive or presence (b), false

negative or absence (c) and true negative or absence (d).

Since the value of an individual element in the confusion

matrix may take zero, the odds ratio and NMI cannot be

calculated in some cases. Precision, recall and F are three

indices used in the field of information retrieval. Preci-

sion is the proportion of the retrieved items that are

relevant, i.e. the proportion of predicted presences that

are real presences, recall is the proportion of the relevant

items that are retrieved, which is equal to sensitivity, and

F is the harmonic average of precision and recall (Nahm

and Mooney 2000). F varies from 0, when almost no

relevant items are retrieved, i.e. almost no real presences

are predicted as presences, to 1, when all and only the

relevant items are retrieved, i.e. all and only the real

presences are predicted as presences. a is a parameter,

which gives weights (a and 1�/a) to the two components

of F. Moreover, when a�/0.5, F is strongly towards the

lower of the two values (precision and recall); therefore,

this measure can only be high when both precision and

recall are high.

Kappa and OPS are two widely used indices (Guisan

et al. 1999, Manel et al. 1999, Hilbert and Ostendorf

2001, Luck 2002, Moisen and Frescino 2002). It should

be noted that OPS can be deceptively high when

frequencies of zeros and ones in binary data are very

different (Fielding and Bell 1997, Pearce and Ferrier

2000, Moisen and Frescino 2002). However, Kappa

measures the proportion of correctly predicted sites after

the probability of chance agreement has been removed

(Moisen and Frescino 2002).

Threshold determination approaches

There are many approaches to determining thresholds,

which fall into two categories: subjective and objective.

A representative in the first category is taking 0.5 as the

threshold, which is widely used in ecology (Manel et al.

1999, 2001, Luck 2002, Stockwell and Peterson 2002,

Bailey et al. 2002, Woolf et al. 2002). Sometimes 0.3

(Robertson et al. 2001) and 0.05 (Cumming 2000) are

also used as thresholds. These choices are very arbitrary

and lack any ecological basis (Osborne et al. 2001).

Sometimes, a specific level, e.g. 95%, of sensitivity or

specificity is desired or deemed acceptable, and it is

predetermined (Cantor et al. 1999). Thus, the corre-

sponding threshold can be found. This approach is also

subjective because a specific level for some attribute (e.g.

sensitivity or specificity, etc.) is predetermined by the

researchers.

There are many objective approaches. With these

approaches, thresholds are chosen to maximize the

agreement between observed and predicted distributions.

Cramer (2003) also realized the problem with fixed

threshold approach, especially taking 0.5 as the thresh-

old. He stated that with unbalanced samples, this gives

nonsense results. Therefore, the sample frequency, i.e. the

prevalence of species occurrence (which is defined as the

proportion of species occurrences among all the sites),

and the mean value of the predicted probabilities of

species presence were recommended as the threshold.

Table 1. Indices for assessing the predictive performance of species distribution models, a is true positives (or presences), b is false
positives (or presences), c is false negatives (or absences), d is true negatives (or absences), n (�/a�/b�/c�/d) is the total number of
sites and a is a parameter between 0 and 1 (inclusive).

Index Formula

Sensitivity (or Recall, R) a/(a�/c)

Specificity d/(b�/d)

Precision (P) a/(a�/b)

Overall prediction success (OPS) (a�/d)/n

Kappa /

(a � d) � [(a � c)(a � b) � (b � d)(c � d)]=n

n � [(a � c)(a � b) � (b � d)(c � d)]=n

Odds ratio (ad)/(cb)

Normalized mutual information statistic (NMI) /

�alna � blnb � clnc � dlnd � (a � b)ln(a � b) � (c � d)ln(c � d)

nlnn � [(a � c)ln(a � c) � (b � d)ln(b � d)]

F /

1

a=P � (1 � a)=R
(05a51)

386 ECOGRAPHY 28:3 (2005)



Fielding and Haworth (1995) used a threshold that was

calculated as the mid-point between the mean probabil-

ities of occupancy for the present and absent groups.

For other objective approaches, usually, either a

specific index, e.g. kappa, or the trade-off between two

conflicting properties, e.g. sensitivity and specificity,

is optimized in various ways. Kappa maximization

approach is popular in ecology (Huntley et al. 1995,

Lehmann 1998, Guisan et al. 1998, Collingham et al.

2000, Berry et al. 2001, Pearson et al. 2002). Similarly,

OPS and F can also be used in the determination of

thresholds (Shapire et al. 1998). The sum of sensitivity

and specificity can be maximized to give the threshold

(Manel et al. 2001), which is equivalent to finding a

point on the ROC (receiver operating characteristics)

curve (i.e. sensitivity against 1-specificity) whose tangent

slope is equal to 1 (Cantor et al. 1999). The point at

which sensitivity and specificity are equal can also be

chosen to determine the threshold (Cantor et al. 1999).

This approach can also be applied to precision and recall

(Shapire et al. 1998). Another approach is to select the

point on the ROC curve that is closest to the upper-left

corner (0,1) in the ROC plot since the point in this

corner represents a perfect classification with 100%

sensitivity and specificity (Cantor et al. 1999). Similarly,

the point on the P-R (i.e. precision-recall) curve that is

closest to the upper-right corner (1,1) in the P-R plot can

also be used to determine the threshold since the point in

this corner represents a perfect classification with 100%

precision and recall.

Some researchers went further to identify the appro-

priate threshold by incorporating the relative cost of FP

(false positive) and FN (false negative) errors and

prevalence (Zweig and Campbell 1993, Fielding and

Bell 1997) or by incorporating the C/B ratio (the ratio of

net FP cost and net true positive benefit) and prevalence

(Metz 1978, Cantor et al. 1999). The threshold is

corresponding to the point on the ROC curve at which

the slope of the tangent is (C/B)�/(1�/p)/p or (FPC/

FNC)�/(1�/p)/p, where p is the prevalence (of species’

presence) and FPC and FNC are the cost of false

positive and false negative respectively.

Although there are so many approaches to determin-

ing the threshold, there is no comparative study on their

Table 2. Threshold-determining approaches studied in this paper.

Code Approach Definition Reference

Subjective approach
1 Fixed threshold approach Taking a fixed value, usually 0.5, as the

threshold
Manel et al. (1999),
Bailey et al. (2002)

Objective approaches
Single index-based approaches:

2 Kappa maximization approach Kappa statistic is maximized Huntley et al. (1995),
Guisan et al. (1998)

3 OPS maximization approach Overall prediction success (OPS) is
maximized

Model-building data-only-based approach:
4 Prevalence approach Taking the prevalence of model-building

data as the threshold
Cramer (2003)

Predicted probability/suitability-based approaches:
5 Average probability/suitability approach Taking the average predicted probability/

suitability of the model-building data as
the threshold

Cramer (2003)

6 Mid-point probability/suitability approach Mid-point between the average
probabilities of or suitabilities for
the species’ presence for occupied and
unoccupied sites

Fielding and Haworth (1995)

Sensitivity and specificity-combined approaches:
7 Sensitivity-specificity sum maximization

approach
The sum of sensitivity and specificity is
maximized

Cantor et al. (1999),
Manel et al. (2001)

8 Sensitivity-specificity equality approach The absolute value of the difference
between sensitivity and specificity is
minimized

Cantor et al. (1999)

9 ROC plot-based approach The threshold corresponds to the point
on ROC curve (sensitivity against 1-
specificity) which has the shortest distance
to the top-left corner (0,1) in ROC plot

Cantor et al. (1999)

Precision and recall-combined approaches:
10 Precision-recall break-even point approach The absolute value of the difference

between precision and recall is minimized
Shapire et al. (1998)

11 P-R plot-based approach The threshold corresponds to the point on
P-R (Precision-Recall) curve which has the
shortest distance to the top-right corner
(1,1) in P-R plot

12 F maximization approach The index F is maximized. In this study, a�/

0.5 is used in F, i.e. there is no preference to
precision and recall

Shapire et al. (1998)
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behaviours, so we don’t know their relative performance.

In this paper we compared twelve different approaches

to determining thresholds (Table 2), and investigated

their behaviours in various situations, i.e. different

prevalence for model-building data and test data, using

artificial neural networks, which have been recognized by

many researchers, e.g. Ozesmi and Ozesmi (1999), Brosse

et al. (1999), Manel et al. (1999), Olden and Jackson

(2001), Berry et al. (2002), Pearson et al. (2002, 2004)

and Olden (2003), as a modeling technique better than

other traditional techniques in modeling complex phe-

nomena with non-linear relationships. We realized

that the probability-based approaches were used for

predicted probabilities, and our modeling result is

predicted suitability for species presence. However, we

believe this will not hinder our effort to use these

approaches since the ‘‘suitabilities’’ we get are ranged

from 0 to 1.

Materials and methods

Species and environmental data

Two species, Fagus sylvatica (beech) and Puccinellia

maritima (common salt marsh grass), with differing

European distributions were used in this study. Fagus

sylvatica is widespread in Europe and extends north-

wards to the edge of the boreal zone and eastwards into

Poland and Romania. Puccinellia maritima is a maritime

species that is found around the coast of Europe,

although it is absent from parts of southern Spain and

the Adriatic coast. Their current European distributions

were obtained as presence/absence data and mapped to a

0.58 latitude�/0.58 longitude grid (Fig. 1a, b). Five

bioclimatic variables were selected as predictors, which

are absolute minimum temperature expected over a

20-yr period, annual maximum temperature, growing

degree days above a base temperature of 58C, mean

soil water availability for the summer half year (May�/

September), and accumulated annual soil water deficit.

These data are also at the scale of 0.58�/ 0.58. They

were described in detail by Berry et al. (2001) and

Pearson et al. (2002).

Design of modelling experiment

Multilayer feed-forward ANNs with back-propagation

algorithm were trained with SAS software (release 8.1).

The networks contained one input layer, one hidden

layer and one output layer. There were 5 neurons in

the input layer, which correspond to the 5 input

variables, 5 neurons in the hidden layer, and 1 neuron

in the output layer. This architecture was chosen after

many modelling experiments with varying neurons in the

hidden layer. The five environmental variables were

standardized to have zero mean and unit standard

deviation.

In order to investigate the performance of the thresh-

old-determining approaches in varying situations, we set

seven levels of prevalence for both model-building data

(including training data and validation data) and test

data, i.e. 5, 10, 25, 50, 75, 90 and 95%. The sample size is

100 for each of the training, validation and test datasets.

For each level of the prevalence for model-building data,

one dataset for training was created by randomly

sampling specified numbers of presences and absences

without replacement from the original presences pool

and the original absences pool respectively; then another

dataset for validation and two datasets for testing were

created sequentially from the left-over data without

replacement. An ANN was trained using the created

training dataset and validation dataset, and the resulting

model was applied to the two test datasets for each of the

seven levels of prevalence. This procedure was repeated

five times for each level of prevalence for the model-

building data. There are 10 sets of predictions for each

combination of the levels of prevalence for model-

building data and test data, 70 sets of predictions for

each level of the prevalence for model building data, and

490 sets of predictions in total for each species.

For each set of model-building data, the threshold

was determined by each of the twelve approaches

(Table 2 for details). Then, these thresholds were applied

to each testing dataset, and the four assessment indices,

Fig. 1. The observed distributions of F. sylvatica (a) and P.
maritima (b).

388 ECOGRAPHY 28:3 (2005)



including sensitivity, specificity, OPS and Kappa, were

calculated.

Results

Overall assessment

The twelve approaches to determining thresholds were

assessed using all the 490 sets of predictions from the 490

combinations of training datasets and test datasets with

various prevalences for each species (Fig. 2). It can be

seen that the trend for the two species is similar. The only

exception is that approach 2 is better than approach

1 for F. sylvatica , but it is worse than approach 1 for

P. maritima in specificity. The ranking of the twelve

approaches given by specificity is different from those

given by the other three indices (sensitivity, OPS and

kappa), the latter three give similar ranking and OPS

and kappa give almost the same ranking for the twelve

approaches. It can be seen that approaches 4, 5, 7, 8, and

9 are relatively better than the other approaches (1, 2, 3,

6, 10, 11 and 12) according to the four indices, especially

OPS and kappa. In the following two sections, we will

take approaches 4 and 2 as representatives for the above

two groups to investigate their further behaviours.

Assessment using model-building datasets with

different prevalence

The twelve approaches were investigated using the

training data with different prevalence, and the trends

Fig. 2. Overall assessment of the
twelve threshold-determining
approaches using four indices:
sensitivity (a, e), specificity (b, f),
OPS (c, g) and kappa (d, h) for
F. sylvatica (a, b, c, d) and
P. maritima (e, f, g, h). The bars
show the9/1 standard errors.
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for the two species are the same. The results of the two

approaches (2 and 4) for F. sylvatica are shown in Fig. 3.

The sensitivity and specificity for approach 2 are severely

affected by the prevalence of model-building data, and

those for approach 4 are not. The ranking of the

approaches changes when the prevalence of model-

building data varies according to sensitivity and specifi-

city. But according to OPS and kappa, the ranking of the

approaches remains relatively stable, i.e. approach 4 is

almost always better than approach 2. Detailed investi-

gation shows that among the five good approaches

(4, 5, 7, 8 and 9), approach 7 is relatively more sensitive

to the prevalence of model-building data and approaches

4 and 5 are more robust when the prevalence of model-

building data changes. It is obvious that there is the least

difference among different approaches when the pre-

valence of model-building data is 50%.

Assessment using test datasets with different

prevalence

The twelve approaches were further investigated

using the test datasets with different prevalence when

the prevalence of model-building data is fixed, and

the results for P. maritima are consistent with those for

F. sylvatica . The results of the two representative

approaches (2 and 4) for F. sylvatica are shown in

Fig. 4. When the prevalence of test data changes,

ranking of different approaches keeps relatively

stable according to sensitivity and specificity; but it

varies according to OPS and kappa. In addition,

approach 4 is less severely affected by the prevalence

of test data than approach 2 according to OPS and

kappa. In this respect, approach 4 is also better than

approach 2.

Discussion

Finding a threshold and making the presence/absence

prediction is the final step in species distribution

modeling, and it is necessary in, for example, the

estimation of species range and the assessment of the

impact of climate change. It is important to give an

accurate presence/absence prediction in these situations.

However, in other situations, other considerations

should be included. For example, in species reintroduc-

tion programs, we may limit the reintroduction sites to

the most suitable areas; but in some conservation

planning programs, we may take a less restrictive

strategy, that is, purposely including some less suitable

areas in protection. It is expected that the larger the

predicted probability/suitability of presence at a site, the

more suitable is the site to the reintroduction of the

species. However, since the prevalence of model-building

data has significant effect on the predicted probability/

suitability of presence, i.e. the higher the prevalence, the

bigger the predicted probability/suitability (Cramer

2003, Liu et al. unpubl.), this makes it difficult to decide

the more suitable or less suitable sites. Therefore, even

in those applications with some subjective decision-

makings involved, it is still necessary to find the

appropriate threshold and take the ‘‘objective’’ pre-

sence/absence prediction as a reference.

In this study, we treated two kinds of errors, e.g. false

positive and false negative, as equally important and

gave no preference to either side. But approach 12 can be

Fig. 3. Assessment of two
threshold-determining
approaches, i.e. approach 2
(dashed line) and 4 (solid line),
which represent bad ones and
good ones respectively, using
sensitivity (a), specificity (b), OPS
(c) and Kappa (d) for F. sylvatica
when the prevalence of model-
building data is different. The
bars show the9/1 standard errors.
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adapted to the situation in which one of two conflicting

sides is emphasized by changing the parameter a from

0 to 1. A smaller a emphasizes recall, and bigger a
emphasizes precision. However, it is difficult to say to

what degree one side is emphasized. In this situation, the

subjective approach may be suitable, e.g., a ‘‘minimum

acceptable error’’ could be defined that depended on the

intended application of the model. For example, com-

pared with false negatives, we could tolerate more false

positives when we set up a conservation area for a

particularly endangered species. If the purpose of the

model was to identify experimental sites, where we could

find a species, we should minimize the false positive error

rate (Fielding and Bell 1997).

When some kind of cost for the false positive or false

negative and/or benefit for true positive or true negative

needs to be taken into account, Metz’s (1978) approach

can be adopted because the cost of false positive and the

benefit of true positive as well as prevalence were

explicitly considered. However, the relevant cost and

benefit are difficult to determine in environmental and

ecological practice. Zweig and Campbell (1993) sug-

gested that if FPC�/FNC, the threshold should favor

specificity, while sensitivity should be favored if FNC�/

FPC (Fielding and Bell 1997). Because estimation of the

cost and benefit may add more uncertainty to the

problem, caution must be taken when this approach is

adopted.

Fig. 4. Assessment of the two
threshold-determining
approaches, i.e. approach 2
(dashed line) and 4 (solid line),
which represent bad ones and
good ones respectively, using
sensitivity, specificity, OPS and
Kappa for F. sylvatica when the
prevalence of test data is different
and the prevalence of model-
building data is fixed at 10 and
90%. The bars show the9/1
standard errors.
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It is interesting to note that among the twelve

approaches we studied, both sensitivity and specificity

for approaches 4, 5, 7, 8 and 9 are high (�/0.8) and are

higher than those for the other approaches. Since the

bigger the sensitivity, the smaller the false negatives rate,

and the bigger the specificity, the smaller the false

positives rate, therefore, both false positives rate and

false negatives rate are low (B/0.2) for the approaches 4,

5, 7, 8 and 9. These approaches are recommended to use.

The other approaches either have low false negatives rate

and high false positives rate (e.g. approach 12), or have

high false negatives rate and low false positives rate (e.g.

approach 10), or have both high false positives rate and

high false negatives rate (e.g. approaches 1 and 3),

therefore, these approaches are not recommended.

It is not unexpected that the fixed threshold approach

(threshold�/0.5) is one of the worst. Guisan and

Theurillat (2000) found that the threshold histogram is

not centered on 0.5 with symmetric tails in each opposite

direction (toward 0 and 1), rather all values range

between 0.05 and 0.65 with a mean at 0.35 and an

asymmetric shape. In fact, the prevalence of model-

building data affects all the results. The output is biased

towards the larger of the two groups (Fielding and Bell

1997, Cramer 2003), occupied sites and unoccupied sites.

When the prevalence is small, a 0.5 threshold would

classify most of the sites as unoccupied (Cumming

2000). However, the prevalence approach is one of the

most robust, i.e. although it is not the best in every

situation, it is good, at least not bad, even in the worst

situation. Actually it is one of the best as assessed using

sensitivity, OPS and kappa. This is also not unexpected.

In fact, in another study we found that the probabilities

corresponding to the maximum OPS and maximum

kappa for the test data are positively correlated to the

prevalence of model-building data (Liu et al. unpubl.).

We suggested that a good presence/absence prediction

would be obtained by taking the prevalence of model-

building data as the threshold. This hypothesis was

verified by this study.

From this study we also found that when the

prevalence of model-building data is 50%, there is little

difference among the twelve approaches as measured

by the four indices (Fig. 3), and the relative difference

(�/difference of the maximum and minimum among the

twelve values for each index divided by the maximum)

isB/5% for all the four indices and the two species.

Furthermore, in addition to approaches 1 and 4,

approaches 2, 3 and 7 (and also 11 for P. maritima ), 8

and 10, and 5 and 6 reach exactly the same result

respectively for each of the two species. The convergence

of approaches 1 and 4 is obvious. The convergence of

approaches 5 and 6 can be easily deduced because there

are equal number of occupied sites and unoccupied sites.

The convergence of approaches 2, 3 and 7 means that

kappa, OPS and the sum of sensitivity and specificity

were maximized at the same time. The convergence of

approaches 8 and 10 means that specificity�/sensitivity

(�/recall)�/precision at the same time. This means that

many conditions are satisfied or nearly satisfied at the

same time in this situation. Therefore, the best result will

most probably be obtained by any approach, even the

poor ones, which is verified by this study (Fig. 3c, d).

This is encouraging since it supports our recommenda-

tion that it is better to use model-building data with

prevalence of 50% in species distribution modeling (Liu

et al. unpubl.).

Conclusion

The prevalence approach and average probability/suit-

ability approach are simple and effective, and they are at

least as good as the more complicated approaches, i.e.

sensitivity-specificity sum maximization approach, sen-

sitivity-specificity equality approach and the ROC plot-

based approach. These five approaches fall into the

group of good ones. Unfortunately, one of the widely

used approaches, i.e. fixed threshold approach, is the

worst one, which is not therefore recommended. Another

popular approach, i.e. kappa maximization approach, is

also not a good one. We also recommend that if possible,

using datasets with prevalence of 50% to build models

since in addition to other advantages, it is easier to find

the optimal threshold.
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