
 

Journal of Applied 
Ecology

 

 2006 

 

43

 

, 1223–1232

 

© 2006 The Authors. 
Journal compilation 
© 2006 British 
Ecological Society

 

Blackwell Publishing Ltd

 

METHODOLOGICAL INSIGHTS

 

Assessing the accuracy of species distribution models: 
prevalence, kappa and the true skill statistic (TSS)

 

OMRI ALLOUCHE, ASAF TSOAR and RONEN KADMON

 

Department of Evolution, Systematics and Ecology, Institute of Life Sciences, The Hebrew University, Givat-Ram, 
Jerusalem 91904, Israel 

 

Summary

1.

 

In recent years the use of species distribution models by ecologists and conservation
managers has increased considerably, along with an awareness of the need to provide
accuracy assessment for predictions of such models. The kappa statistic is the most
widely used measure for the performance of  models generating presence–absence
predictions, but several studies have criticized it for being inherently dependent on
prevalence, and argued that this dependency introduces statistical artefacts to estimates
of  predictive accuracy. This criticism has been supported recently by computer
simulations showing that kappa responds to the prevalence of the modelled species in a
unimodal fashion.

 

2.

 

In this paper we provide a theoretical explanation for the observed dependence of
kappa on prevalence, and introduce into ecology an alternative measure of accuracy, the
true skill statistic (TSS), which corrects for this dependence while still keeping all the
advantages of kappa. We also compare the responses of kappa and TSS to prevalence
using empirical data, by modelling distribution patterns of 128 species of woody plant
in Israel.

 

3.

 

The theoretical analysis shows that kappa responds in a unimodal fashion to vari-
ation in prevalence and that the level of prevalence that maximizes kappa depends on
the ratio between sensitivity (the proportion of  correctly predicted presences) and
specificity (the proportion of correctly predicted absences). In contrast, TSS is inde-
pendent of prevalence.

 

4.

 

When the two measures of accuracy were compared using empirical data, kappa
showed a unimodal response to prevalence, in agreement with the theoretical analysis.
TSS showed a decreasing linear response to prevalence, a result we interpret as reflecting
true ecological phenomena rather than a statistical artefact. This interpretation is
supported by the fact that a similar pattern was found for the area under the ROC curve,
a measure known to be independent of prevalence.

 

5.

 

Synthesis and applications

 

. Our results provide theoretical and empirical evidence
that kappa, one of the most widely used measures of model performance in ecology, has
serious limitations that make it unsuitable for such applications. The alternative we
suggest, TSS, compensates for the shortcomings of  kappa while keeping all of  its
advantages. We therefore recommend the TSS as a simple and intuitive measure for the
performance of species distribution models when predictions are expressed as presence–
absence maps.
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Introduction

 

Ecologists and conservation managers increasingly
rely on predictive models as a means for estimating
patterns of species distribution (Loiselle 

 

et al

 

. 2003;
Vaughan & Ormerod 2003; Rushton, Ormerod & Kerby
2004; Sanchez-Cordero 

 

et al

 

. 2005). Distribution
models are used to evaluate the spreading potential of
invading species (Peterson & Robins 2003; Rouget

 

et al

 

. 2004; Thuiller 

 

et al

 

. 2005b), identify and manage
threatened species (Engler, Guisan & Rechsteiner
2004; Norris 2004), prioritize places for biodiversity
conservation (Araujo 

 

et al

 

. 2004; Ortega-Huerta &
Peterson 2004; Sanchez-Cordero 

 

et al

 

. 2005) and evalu-
ate the potential impact of climate change on patterns
of species distribution (Skov & Svenning 2004; Beaumont,
Hughes & Poulsen 2005; Bomhard 

 

et al

 

. 2005; Thuiller

 

et al

 

. 2005a; Thuiller, Lavorel & Araújo 2005).
One fundamental issue in the development of distri-

bution models is the assessment of predictive accuracy
(Guisan & Thuiller 2005; Barry & Elith 2006). A quan-
titative assessment of model performance assists in
determining the suitability of the model for specific
applications and may help to identify those aspects
of the model that need improvement (Vaughan &
Ormerod 2005; Barry & Elith 2006; Guisan 

 

et al

 

. 2006).
An assessment of model performance can also provide
a basis for comparing alternative modelling techniques
(Loiselle 

 

et al

 

. 2003; Segurado & Araujo 2004; Pearson

 

et al

 

. 2006) and enables the user to investigate how dif-
ferent properties of the data and/or the species affect
the accuracy of predictive maps generated by the model
(Kadmon, Farber & Danin 2003; Segurado & Araujo
2004; Reese 

 

et al

 

. 2005; Seoane 

 

et al

 

. 2005).
Models generating presence–absence predictions

(hereafter presence–absence models) are usually evalu-
ated by comparing the predictions with a set of  vali-
dation sites and constructing a confusion matrix that
records the number of  true positive (a), false posi-
tive (b), false negative (c) and true negative (d) cases
predicted by the model (Table 1). Models generating
non-dichotomous scores on an ordinal scale (hereafter
ordinal score models) are often evaluated by applying a
certain threshold to transform the scores into a
dichotomous set of presence–absence predictions, and
constructing a corresponding confusion matrix. One
simple measure of accuracy that can be derived from
the confusion matrix is the proportion of  correctly
predicted sites (overall accuracy; Table 2). However,
this measure was criticized for ascribing high accuracies
for rare species (Fielding & Bell 1997; Manel, Dias
& Ormerod 1999). Two alternative measures that are often
derived from the confusion matrix are sensitivity and
specificity. Sensitivity is the proportion of observed
presences that are predicted as such, and therefore
quantifies omission errors. Specificity is the propor-
tion of observed absences that are predicted as such,
and therefore quantifies commission errors (Table 2).
Sensitivity and specificity are independent of each

other when compared across models, and are also inde-
pendent of prevalence ((

 

a

 

 + 

 

c

 

)/

 

n

 

, the proportion of sites
in which the species was recorded as present; Table 1).

An alternative method for assessing the accuracy of
ordinal score models is the receiver operating char-
acteristic (ROC) curve (Fielding & Bell 1997). ROC
curves are constructed by using all possible thresholds
to classify the scores into confusion matrices, obtaining
sensitivity and specificity for each matrix, and then
plotting sensitivity against the corresponding propor-
tion of false positives (equal to 1 

 

−

 

 specificity). The use
of all possible thresholds avoids the need for a selection
of a single threshold, which is often arbitrary (Manel,
Dias & Ormerod 1999; Manel, Williams & Ormerod
2001; Liu 

 

et al

 

. 2005), and allows appreciation of the
trade-off between sensitivity and specificity (Pearce &
Ferrier 2000). The area under the ROC curve (AUC) is
often used as a single threshold-independent measure
for model performance (Manel, Williams & Ormerod
2001; Thuiller 2003; Brotons 

 

et al

 

. 2004; McPherson,
Jetz & Rogers 2004; Thuiller, Lavorel & Araújo 2005).

AUC was shown to be independent of prevalence
(Manel, Williams & Ormerod 2001; McPherson, Jetz
& Rogers 2004) and is considered a highly effective

Table 1. An error matrix used to evaluate the predictive
accuracy of presence–absence models. a, number of cells for
which presence was correctly predicted by the model; b,
number of cells for which the species was not found but the
model predicted presence; c, number of cells for which the
species was found but the model predicted absence; d, number
of cells for which absence was correctly predicted by the model

Validation data set

Presence Absence

Model Presence a b
Absence c d

Table 2. Measures of predictive accuracy calculated from a
2 × 2 error matrix (Table 1). Overall accuracy is the rate of
correctly classified cells. Sensitivity is the probability that the
model will correctly classify a presence. Specificity is the
probability that the model will correctly classify an absence.
The kappa statistic and TSS normalize the overall accuracy by
the accuracy that might have occurred by chance alone. In all
formulae n = a + b + c + d

Measure Formula

Overall accuracy

Sensitivity

Specificity

Kappa statistic

TSS sensitivity + specificity – 1

a d
n

  +

a
a c  +

d
b d  +

a d
n

a b a c c d d b

n
a b a c c d d b

n

  
  

(   )(   )  (   )(   )

  
(   )(   )  (   )(   )

+





−
+ + + + +

−
+ + + + +

2

21
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measure for the performance of ordinal score models.
However, practical applications of species distribution
models in conservation planning, such as the identifi-
cation of  biodiversity hotspots and the selection of
representative conservation sites, often require pres-
ence–absence maps of  species distribution, and thus
a selection of a threshold for transforming ordinal
scores into presence–absence predictions (Cumming
2000b; Loiselle 

 

et al

 

. 2003; Berg, Gardenfors & von
Proschwitz 2004). In such cases, predictive accuracy
should be evaluated based on the selected threshold
rather than on threshold-independent ROC curves. It
should also be noted that some of the most frequently
used models of  species distribution (e.g. BioCLIM,
Nix 1986; GARP, Stockwell & Peters 1999) generate
dichotomous presence–absence predictions of species
distribution, for which ROC curves cannot be applied.

The most popular measure for the accuracy of pres-
ence–absence predictions is Cohen’s kappa (Shao & Halpin
1995; Manel, Williams & Ormerod 2001; Loiselle 

 

et al

 

.
2003; Petit 

 

et al

 

. 2003; Berg, Gardenfors & von Proschwitz
2004; Parra, Graham & Freile 2004; Pearson, Dawson
& Liu 2004; Rouget 

 

et al

 

. 2004; Segurado & Araujo
2004). This measure corrects the overall accuracy of
model predictions by the accuracy expected to occur by
chance (Table 2). The kappa statistic ranges from 

 

−

 

1 to
+1, where +1 indicates perfect agreement and values
of zero or less indicate a performance no better than
random (Cohen 1960; Table 2). Other advantages of
kappa are its simplicity, the fact that both commission
and omission errors are accounted for in one para-
meter, and its relative tolerance to zero values in the
confusion matrix (Manel, Williams & Ormerod 2001).

In spite of its wide use, several studies have criticized
the kappa statistic for being inherently dependent
on prevalence and claimed that this dependency in-
troduces bias and statistical artefacts to estimates of
accuracy (Cicchetti & Feinstein 1990; Byrt, Bishop &
Carlin 1993; Lantz & Nebenzahl 1996). In a recent
study focusing on the evaluation of species distribution
models, McPherson, Jetz & Rogers (2004) used nume-
rical simulations to analyse the dependency of kappa on
prevalence of the modelled species and found that
kappa responds to variation in prevalence in a unimodal
fashion. Based on this finding they concluded that
‘kappa’s sensitivity to prevalence overall, however,
renders it inappropriate for comparisons of model
accuracy between species or regions unless certain pre-
cautions are taken’ McPherson, Jetz & Rogers (2004).

In this paper we explain the observed unimodal
dependency of kappa on prevalence, and introduce
into ecology a new measure for the performance of
presence–absence distribution models, the true skill
statistic (TSS), which corrects for this dependency
while still keeping all of the advantages of kappa

 

.

 

We begin with a theoretical explanation for the uni-
modal dependence of kappa on prevalence. To do so we
reformulate kappa in terms of prevalence, sensitivity
and specificity. We then show analytically that TSS is

largely immune to prevalence. We also compare the
effect of prevalence on kappa and TSS using real data
by modelling distribution patterns of 128 species of
woody plants in Israel. Finally we discuss some meth-
odological issues of kappa, TSS and other measures of
accuracy, and their relevance for the performance of
species distribution models.

 

Theoretical analysis

 

The mechanism underlying the unimodal dependency
of the kappa statistic on prevalence can be understood
by reformulating kappa in terms of three parameters:
prevalence, sensitivity and specificity. Such derivation
leads to the following form:

eqn 1

where 

 

P

 

, 

 

Sn

 

 and 

 

Sp

 

 are prevalence, sensitivity and spe-
cificity, respectively, 

 

P

 

o

 

 is the observed accuracy and 

 

P

 

e

 

is the accuracy expected to occur by chance. Kappa has
an extremum at 

 

P

 

 that satisfies both (

 

Sn

 

 

 

−

 

 

 

Sp

 

)

 

P

 

2

 

 

 

−

 

2(1 

 

−

 

 

 

Sp

 

)

 

P

 

 

 

+

 

 (1 

 

−

 

 

 

Sp

 

) 

 

=

 

 0 and 0 

 

≤

 

 

 

P

 

 

 

≤

 

 1. The extremum
is a maximum when 

 

Sn + Sp 

 

−

 

 

 

1

 

 >

 

 0 and a minimum
when 

 

Sn + Sp 

 

−

 

 

 

1

 

 <

 

 0. We will focus on the former
case, which characterizes models with performance
better than random. The prevalence that maximizes
the kappa score of a given model is thus a function of
the sensitivity and specificity of the model. If  sensitivity
and specificity are equal, a maximal kappa score is
obtained for equal proportions of presences and
absences. If  sensitivity is larger than specificity, kappa
is maximized by higher prevalence rates. If  specificity is
larger than sensitivity, kappa is maximized by lower
prevalence rates. In any case, kappa inherently depends
on prevalence. An alternative measure is thus required
for assessing the performance of presence–absence
models, which is largely insensitive to prevalence.

It is rewarding first to define theoretically when two
modelling methods are of equal performance. It seems
reasonable to assume that two methods are equal in
their overall performance if  they are equal in both sen-
sitivity and specificity, and hence are equal in their abil-
ity to detect presences and absences. It also seems
reasonable to expect that properties of the specific data
set for which alternative methods are applied should
not affect their rating. Taking into account the fact that
the confusion matrix can be fully described by sensitiv-
ity, specificity, prevalence and the size of the validation
set, an ideal measure of model performance should not
be affected by prevalence or the size of the specific data
set used for model validation (both being properties of
the specific data set) and it should combine sensitivity
and specificity so that both omission and commission
errors are accounted for. We propose the true skill
statistic (TSS), also known as the Hanssen–Kuipers discri-
minant, as a measure that satisfies these requirements.

Kappa  
  

  
,       (   )  ,

  (     ) (   )  

=
−

−
= ⋅ + − ⋅

= − + − − +

P P
P

P P Sn P Sp

P Sn Sp P P P

o e

e
o

e o

1
1

2 1 1
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This statistic, traditionally used for assessing the accur-
acy of  weather forecasts (McBride & Ebert 2000;
Saseendran 

 

et al

 

. 2002; Elmore, Weiss & Banacos 2003;
Accadia 

 

et al

 

. 2005), compares the number of correct
forecasts, minus those attributable to random guessing,
to that of a hypothetical set of perfect forecasts (see
Appendix S1 in the supplementary material). For a
2 

 

×

 

 2 confusion matrix TSS is defined as:

eqn 2

Like kappa, TSS takes into account both omission and
commission errors, and success as a result of random
guessing, and ranges from 

 

−

 

1 to +1, where +1 indicates
perfect agreement and values of  zero or less indicate
a performance no better than random. However, in
contrast to kappa, TSS is not affected by prevalence. It
can also be seen that TSS is not affected by the size of
the validation set, and that two methods of equal per-
formance have equal TSS scores. In Appendix S1 in the
supplementary material we describe in more detail the
relation of TSS to kappa. TSS is a special case of
kappa, given that the proportions of presences and
absences in the validation set are equal.

Computer simulations were conducted to allow
more thorough comparison of kappa and TSS and
their responses to prevalence. Confusion matrices
consisting of 100 cases each were created by tagging
presences and absences to be correctly classified at
probabilities equal to predetermined values of sensitiv-
ity and specificity, respectively. Three possible scenar-
ios were simulated: (i) equal sensitivity and specificity
(both set to 0·8); (ii) higher sensitivity (sensitivity = 0·9,
specificity = 0·7); and (iii) higher specificity (sensitivity
= 0·7, specificity = 0·9). The number of presence cases
was varied systematically from 1 to 99 in increments of
1. For each level of prevalence we randomly simulated
100 000 confusion matrices. The kappa and TSS scores
were determined for each of the 9 900 000 matrices and
their mean values were calculated for each level of pre-
valence under the three scenarios. The corresponding
theoretical expectations were also calculated for each
value of prevalence based on equations 1 and 2. The
results (Fig. 1) showed that TSS scores were largely
unaffected by prevalence while kappa scores exhibited
a unimodal response to prevalence, as found by
McPherson, Jetz & Rogers (2004). We conclude that, in
contrast to kappa, documented effects of prevalence on
TSS can be interpreted as evidence for real ecological
phenomenon rather than statistical artefacts.

 

Empirical analysis

 

 

 

An empirical comparison of the responses of kappa
and TSS to variation in prevalence was carried out by

re-analysing the data used by Farber & Kadmon (2003)
for introducing the Mahalanobis distance as an
approach for species distribution modelling. This data
set comprises 32 414 geo-referenced observations on
the distribution of 128 woody species in Israel (median
number of observations per species 159). The models
developed by Farber & Kadmon (2003) were validated
using an independent database consisting of lists of
species recorded in 96 validation sites of  5 

 

×

 

 5 km
covering the main climatic gradients of Israel. The
same calibration and validation data sets were used
here to compare the responses of kappa and TSS to
prevalence.

 



 

As in the theoretical analysis, prevalence was defined as
the proportion of validation sites in which the relevant
species was recorded. Predictive presence–absence
maps were produced using the Mahalanobis distance.
Three climatic factors were used as predictors in the
models: mean annual rainfall, mean daily temperature
of the hottest month (August) and mean minimum
temperature of the coldest month (January). Further

TSS Sensitivity Specificity  
  

(   )(   )
      =

−
+ +

= + −
ad bc

a c b d
1

Fig. 1. Effect of prevalence on kappa and TSS based on
theoretical calculations (continuous lines) and correspond-
ing numerical simulations (dots indicating mean values of
100 000 randomly simulated confusion matrices for each level
of prevalence). Three sets of parameters were used: (i)
Sn = 0·8, Sp = 0·8; (ii) Sn = 0·9, Sp = 0·7; (iii) Sn = 0·7,
Sp = 0·9. Differences between the three sets in TSS values are
indistinguishable. The total number of cases (n) was set to 100
in all simulations.
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details of the modelling approach and the data can be
found in Farber & Kadmon (2003).

We quantified the accuracy of the predictive map
produced for each of the 128 species using four measures
of  accuracy: kappa, TSS, sensitivity and specificity.
We also calculated the AUC statistic for each species
non-parametrically using the Wilcoxon statistic (Hanley
& McNeil 1982). Each of these five measures was
regressed against prevalence using two types of models:
a linear model and a quadratic model.

 



 

When kappa was regressed against prevalence with a
linear model, prevalence had a positive but very weak
effect on kappa (

 

P

 

 = 0·047). The portion of variance
explained by this model was extremely low (0·02).
When the same data were analysed using a quadratic
model the portion of variance explained increased to
0·12 and the coefficient of the quadratic term was neg-
ative and highly significant (< 0·001), as expected from
the theoretical analysis.

The linear models constructed for AUC and TSS
showed that both measures were negatively and sig-
nificantly correlated with prevalence (Table 3). This
response suggested that distribution ranges of rare spe-
cies were more predictable than those of more common
species. When AUC and TSS values were analysed by
quadratic models, the coefficients of the quadratic term
were not statistically significant (Table 3).

The effect of prevalence on sensitivity was not sta-
tistically significant for both the linear and quadratic
models but the corresponding effect on specificity was
negative and highly significant (Table 3). These results
indicated that the decrease of TSS with increasing pre-
valence was caused by an increase in the magnitude
of commission errors. As can be expected from these
results, when the five measures of accuracy were plotted
against prevalence, kappa showed a unimodal response,
TSS, AUC and specificity showed a negative response,
and sensitivity showed no response (Fig. 2).

Spearman correlation analysis indicated that all
pair-wise correlations between AUC, TSS and kappa
were statistically significant (

 

P

 

 < 0·01). However, the
correlation between AUC and TSS was higher than
the correlation of AUC with kappa or the correlation
between TSS and kappa (0·85 vs. 0·65 and 0·66,
respectively).

 

Discussion

 

McPherson, Jetz & Rogers (2004) demonstrated with
numerical simulations that kappa, one of the most
common measures of predictive accuracy in ecology, is
inherently sensitive to prevalence, showing a unimodal
dependency with a maximum at intermediate levels of
prevalence. This bias has long been recognized in other
research fields, such as clinical epidemiology (Cicchetti
& Feinstein 1990; Byrt, Bishop & Carlin 1993; Lantz &

Nebenzahl 1996). In this paper we provide an analytical
explanation for the results obtained by McPherson,
Jetz & Rogers (2004), and propose a new measure of
accuracy, TSS, that is insensitive to prevalence while
still keeping all the advantages of the kappa statistic.
We also provide empirical data supporting the hypo-
thesis that the two measures of accuracy respond differ-
entially to variation in prevalence, and demonstrate
that the relationship between kappa and prevalence is
unimodal, as expected from the theoretical analysis.
Several previous studies have documented unimodal
responses of  kappa to species’ prevalence (Manel,
Williams & Ormerod 2001; Petit 

 

et al

 

. 2003; Liu 

 

et al

 

.
2005) but none of these studies attributed this response
to statistical artefact.

In our empirical analysis, TSS showed a negative
response to prevalence, a result we interpret as indica-
tive of  a true effect of  prevalence (or ecological char-
acteristics associated with prevalence) on predictive
accuracy. The fact that AUC, which is known to be
independent of prevalence, showed a similar response
to prevalence supports this interpretation. We explain
this result by the fact that prevalent species often
occupy wide niches. The area of predicted presence for
such species is therefore much larger than that of scarce
species. The increased area allows the Mahalanobis
distance method to keep high levels of sensitivity (cor-
rectly predicting a presence as such) but results in
a decrease in specificity, as many locations where the
species is absent are erroneously predicted as presence
locations.

Evidence for negative effects of prevalence on the
accuracy of species distribution models was found in
several previous studies. For example, Guisan & Hofer
(2003) analysed the distribution of reptiles in Switzer-
land using generalized linear models (GLM) and found
that highly common species showed exceptionally low
values of predictive accuracy. Segurado & Araujo
(2004) compared the performance of seven modelling
techniques in predicting the distribution of amphibians

Table 3. Results of linear regression models (y = b0 + b1x)
and quadratic regression models (y = b0 + b1x + b2x

2) for the
effect of prevalence of woody plant species on five measures of
accuracy (kappa, TSS, AUC, sensitivity and specificity).
Asterisks indicate significance levels of regression coefficients;
*P < 0·05, ***P < 0·001

Measure
Regression
model b1 b2

Adjusted
R2

kappa Linear 0·25* 0·02
Quadratic 1·54*** −2·33*** 0·12

TSS Linear −0·52*** 0·13
Quadratic −0·31*** −0·38 0·13

AUC Linear −0·25*** 0·14
Quadratic −0·192 −0·10 0·13

Sensitivity Linear −0·11 < 0·01
Quadratic −0·25 0·26 < 0·01

Specificity Linear −0·41*** 0·14
Quadratic −0·06 −0·64 0·15



1228
O. Allouche, 
A. Tsoar & 
R. Kadmon

© 2006 The Authors. 
Journal compilation 
© 2006 British 
Ecological Society, 
Journal of Applied 
Ecology, 43, 
1223–1232

and reptiles in Portugal and found that, in general,
widespread species had greater overall errors. Stockwell
& Peterson (2002) analysed patterns of  bird distribu-
tion in Mexico with GARP and found that range
size had a negative effect on the accuracy of model pre-
dictions. They suggested that widespread species show
local adaptations in ecological characteristics and that
ignoring such ecological differentiation overestimates
the species’ distribution range and reduces model accu-
racy.

As can be verified by assigning P = 0·5 in equation 1,
when the proportions of presences and absences are
equal, kappa is equal to TSS. The bias caused to kappa
by unequal proportions of presences and absences in
the validation set has led some to suggest that efforts
should be made to collect validation sets such that
prevalence would be around 50% (Lantz & Nebenzahl
1996; Hoehler 2000; McPherson, Jetz & Rogers 2004).
Unfortunately this recommendation is of questionable
practicability in ecological applications, particularly
for rare species for which a small number of presence
records is available. TSS satisfies this recommendation
without requiring special adjustments or sampling
efforts.

An alternative approach to obtaining a validation
set with effective prevalence of 50% is by random re-
sampling from the data available (Stockwell & Peterson
2002). This method suffers from stochasticity in the

selection of points, but if  the validation set is large
enough, or if  performance is averaged over several ran-
domly drawn validation sets, the results would con-
verge to the TSS statistic.

The dependence of kappa on prevalence has led to
the development of several modifications of kappa that
attempt to ‘adjust’ for this dependency (e.g. the pre-
valence and bias adjusted kappa, PABAK, proposed
by Byrt, Bishop & Carlin 1993; the adjusted kappa
coefficient, κ′ described by Hoehler 2000). However,
PABAK does not consider agreement as a result of
chance and therefore assigns high scores to algorithms
of  poor predictive ability (Henderson 1993; Fielding
& Bell 1997; Manel, Williams & Ormerod 2001;
Olden, Jackson & Peres-Neto 2002). The adjusted kappa
coefficient was also criticized for being sensitive to
variation in prevalence (Hoehler 2000).

AUC is commonly used as a measure of model per-
formance (Manel, Williams & Ormerod 2001; Thuiller
2003; Brotons et al. 2004; McPherson, Jetz & Rogers
2004; Thuiller, Lavorel & Araújo 2005) and has been
shown to be independent of prevalence, both theoretic-
ally (Hanley & McNeil 1982; Zweig & Campbell 1993)
and empirically (Manel, Williams & Ormerod 2001;
McPherson, Jetz & Rogers 2004). AUC is a threshold-
independent measure of model performance and is
therefore particularly suitable for evaluating the
performance of ordinal score models such as logistic

Fig. 2. Effect of prevalence on kappa, TSS, AUC, sensitivity and specificity of predictive maps produced for 128 species of woody
plants. Species were categorized into six prevalence categories and the mean (± 1 SE) score of each measure was calculated for each
prevalence category.
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regression. Yet, for practical applications, a dichoto-
mous prediction of presence–absence is often required,
and hence a threshold must be applied to transform
the probability/suitability scores to presence–absence
data. For example, most reserve selection algorithms
require presence–absence data on species composition
in the relevant area (Church, Stoms & Davis 1996;
Howard et al. 1998; Margules & Pressey 2000; Tsuji
& Tsubaki 2004). As available data are often partial,
species distribution models are often used to predict
the presence or absence of species in candidate areas
(Loiselle et al. 2003; Ortega-Huerta & Peterson 2004;
Sanchez-Cordero et al. 2005). Estimates of biodiver-
sity hotspots are also often based on presence–absence
predictions (Cumming 2000b; Schmidt et al. 2005).
ROC plots cannot be constructed for presence–absence
predictions and, therefore, AUC is not applicable for
evaluating the accuracy of predictive maps used in such
applications.

TSS provides a threshold-dependent measure of
accuracy that is readily applied for presence–absence
predictions. Our theoretical analysis demonstrates that
it is not affected by prevalence, and our empirical ana-
lysis indicates that its values are highly correlated with
those of the threshold-independent AUC statistic.
These findings suggest that TSS can serve as an appro-
priate alternative to AUC in cases where model predictions
are formulated as presence–absence maps. Several
recent studies have jointly used AUC as a threshold-
independent and kappa as a threshold-dependent
measure of predictive accuracy (Thuiller 2003; Huntley
et al. 2004; Pearson, Dawson & Liu 2004; Araujo et al.
2005; Pearson et al. 2006). Our results suggest that
TSS should be preferred over kappa as a threshold-
dependent measure in such studies.

As is evident from equation 2, TSS assigns equal
weights to sensitivity and specificity. Practical applica-
tions might require different weights. In conservation
planning, for example, when predicting distribution of
endangered species, one may wish to weight sensitivity
more than specificity. Unlike the kappa score, weights
can easily be introduced to the TSS in a straightforward
manner.

While our theoretical and empirical results support
the superiority of TSS over the kappa statistics, a thor-
ough comparison of the two measures should also con-
sider their variance and its dependency on prevalence.
It can be shown that the variance of TSS is given by:

eqn 3

where Sn, Sp, P and N are the sensitivity, specificity,
prevalence and size of the validation set, respectively.
As evident from Fig. 3a, TSS is highly variable for
extremely low and high levels of prevalence. The vari-
ability is caused by the large variability in sensitivity for
small data sets with very low prevalence range (as random-
ness can easily change the parameter from 1 to 0 or vice

versa) and in specificity for small data sets with very
high prevalence range. The variance of kappa can be
calculated non-parametrically for a finite N, by deter-
mining the probability of  obtaining each possible
confusion matrix and the corresponding kappa score.
Given a prevalence P, sensitivity Sn, specificity Sp
and N cases, the probability of obtaining a confusion
matrix with values a, b, c and d (as defined in Table 1) is
given by:

eqn 4

A plot of the variance of kappa against prevalence
(Fig. 3a) indicates that kappa does not suffer from the
border effects obtained for TSS, and that its variability
decreases for extremely low or high prevalence. How-
ever, the absolute value of kappa also decreases for low
or high prevalence (Fig. 1a). A more informative com-
parison of the two measures should therefore be based
on their coefficient of variation (CV; the standard devi-
ation divided by the mean). Such a comparison reveals
similar curves for the two measures (Fig. 3b). Similar
patterns have been shown to characterize AUC as well
(Cumming 2000a; McPherson, Jetz & Rogers 2004).
Instability at extremely low or high levels of prevalence
seems to be inherent in any model with low number of
cases in one of the cells of the confusion matrix (Nelson
& Cicchetti 1995).

Finally, when discussing the suitability of TSS vs.
kappa as measures for model performance, one should
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Fig. 3. Effect of prevalence on the variance (a) and coefficient
of variation (b) of kappa (dashed lines) and TSS (continuous
lines). Results are shown for n = 100 and equal scores of
sensitivity and specificity (both 0·8).
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distinguish between tests of agreement and validation.
Kappa was originally designed to measure reliability of
predictions by assessing agreement between two or
more observers (Tooth & Ottenbacher 2004). In such
applications none of the observers is treated as a ‘gold
standard’, i.e. is known to be accurate. For such a pur-
pose the prevalence effect on kappa is much desired
and kappa should not be adjusted for it (Hoehler
2000). However, in validation tests such as those per-
formed for evaluating the performance of distribution
models, a gold standard obviously exists. Under such
circumstances the prevalence effect of kappa turns
against it, and sensitivity and specificity, which are not
applicable for the purpose of assessing agreement between
two observers, become very informative. TSS accounts
for both sensitivity and specificity and is therefore bet-
ter suited than kappa for measuring performance of a
method in the presence of a gold standard.



In a recent review of  the challenge of  testing models
of species distribution, Vaughan & Ormerod (2005)
concluded that adequate testing of  such models is
still scarce and that their true value cannot yet be
appraised. The results of this study support their con-
clusions and provide theoretical and empirical support
that kappa, one of the most widely used measures of
model performance in ecology, has serious limitations
that make it unsuitable for such applications. The alter-
native we suggest, the TSS statistic, compensates for
the shortcomings of kappa while keeping all of its
advantages, and provides results that are highly cor-
related with those of the threshold-independent AUC
statistic. We therefore recommend the TSS as a simple
and intuitive measure for the performance of predictive
maps generated by presence–absence models.
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Appendix

We describe the generalization of TSS for a k × k con-
tingency table, adapting Doswell, Daviesjones & Keller
(1990). Let us denote the k categories as Ci …Ck. Let nij

be the number of cases that Ci was forecasted and Cj

was observed. Let ni. be the total number of cases that
Ci was forecasted, n.j be the total number of cases that
Cj was observed, and n.. the total number of cases. The
value expected to occur by chance for the ijth cell is
given by Eij = (ni.)(n.j)/n.. and should be subtracted from
the observed ijth element nij of  the matrix n to remove
success due to random guessing.

Let us now denote by R the matrix whose elements are
Rij = nij – Eij, and construct a standard matrix R*, that
will be compared to R. R* is a matrix of  perfect
forecasts, accounting for random guessing. A matrix
n* of  perfect forecasts has n•i in the iith diagonal

element and all zeros in the off-diagonal elements. The
number of cases expected to occur by chance is given by

 and thus R* = n* – E*. The trace of
R (the sum of the elements in the main diagonal) gives
the number of correct forecasts beyond those attribut-
able to chance. Using the trace of R* as a standard we
define the generalized version of TSS as

eqn 5

Using the above notation Cohen’s Kappa is defined by:

eqn 6

It is now clear that TSS = Kappa whenever E* is
replaced with E.

E n n nij i j*  ( *)( *)/ *= ⋅ ⋅ ⋅

TSS  
( )
( *)

  
(   )

( *  *)
= =

−
−

tr R
tr R

tr n E
tr n E

Kappa  
(   )

( *  )
=

−
−

tr n E

tr n E


