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Abstract

kernlab is an extensible package for kernel-based machine learning methods in R. It takes
advantage of R’s new S4 object model and provides a framework for creating and using kernel-
based algorithms. The package contains dot product primitives (kernels), implementations
of support vector machines and the relevance vector machine, Gaussian processes, a ranking
algorithm, kernel PCA, kernel CCA, kernel feature analysis, online kernel methods and a
spectral clustering algorithm. Moreover it provides a general purpose quadratic programming
solver, and an incomplete Cholesky decomposition method.

Keywords: kernel methods, support vector machines, quadratic programming, ranking, clustering,
S4, R.

1. Introduction

Machine learning is all about extracting structure from data, but it is often difficult to solve prob-
lems like classification, regression and clustering in the space in which the underlying observations
have been made.

Kernel-based learning methods use an implicit mapping of the input data into a high dimensional
feature space defined by a kernel function, i.e., a function returning the inner product 〈Φ(x),Φ(y)〉
between the images of two data points x, y in the feature space. The learning then takes place
in the feature space, provided the learning algorithm can be entirely rewritten so that the data
points only appear inside dot products with other points. This is often referred to as the “kernel
trick” (Schölkopf and Smola 2002). More precisely, if a projection Φ : X → H is used, the dot
product 〈Φ(x),Φ(y)〉 can be represented by a kernel function k

k(x, y) = 〈Φ(x),Φ(y)〉, (1)

which is computationally simpler than explicitly projecting x and y into the feature space H.

One interesting property of kernel-based systems is that, once a valid kernel function has been
selected, one can practically work in spaces of any dimension without paying any computational
cost, since feature mapping is never effectively performed. In fact, one does not even need to know
which features are being used.

Another advantage is the that one can design and use a kernel for a particular problem that could be
applied directly to the data without the need for a feature extraction process. This is particularly
important in problems where a lot of structure of the data is lost by the feature extraction process
(e.g., text processing). The inherent modularity of kernel-based learning methods allows one to
use any valid kernel on a kernel-based algorithm.

1.1. Software review

The most prominent kernel based learning algorithm is without doubt the support vector machine
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(SVM), so the existence of many support vector machine packages comes as little surprise. Most
of the existing SVM software is written in C or C++, e.g. the award winning libsvm1 (Chang and
Lin 2001), SVMlight2 (Joachims 1999), SVMTorch3, Royal Holloway Support Vector Machines4,
mySVM5, and M-SVM6 with many packages providing interfaces to MATLAB (such as libsvm),
and even some native MATLAB toolboxes7 8 9.

Putting SVM specific software aside and considering the abundance of other kernel-based algo-
rithms published nowadays, there is little software available implementing a wider range of kernel
methods with some exceptions like the Spider10 software which provides a MATLAB interface to
various C/C++ SVM libraries and MATLAB implementations of various kernel-based algorithms,
Torch 11 which also includes more traditional machine learning algorithms, and the occasional
MATLAB or C program found on a personal web page where an author includes code from a
published paper.

1.2. R software

The R package e1071 offers an interface to the award winning libsvm (Chang and Lin 2001), a
very efficient SVM implementation. libsvm provides a robust and fast SVM implementation and
produces state of the art results on most classification and regression problems (Meyer, Leisch,
and Hornik 2003). The R interface provided in e1071 adds all standard R functionality like object
orientation and formula interfaces to libsvm. Another SVM related R package which was made
recently available is klaR (Roever, Raabe, Luebke, and Ligges 2004) which includes an interface
to SVMlight, a popular SVM implementation along with other classification tools like Regularized
Discriminant Analysis.

However, most of the libsvm and klaR SVM code is in C++. Therefore, if one would like to extend
or enhance the code with e.g. new kernels or different optimizers, one would have to modify the
core C++ code.

2. kernlab

kernlab aims to provide the R user with basic kernel functionality (e.g., like computing a kernel
matrix using a particular kernel), along with some utility functions commonly used in kernel-based
methods like a quadratic programming solver, and modern kernel-based algorithms based on the
functionality that the package provides. Taking advantage of the inherent modularity of kernel-
based methods, kernlab aims to allow the user to switch between kernels on an existing algorithm
and even create and use own kernel functions for the kernel methods provided in the package.

2.1. S4 objects

kernlab uses R’s new object model described in “Programming with Data” (Chambers 1998) which
is known as the S4 class system and is implemented in the methods package.

In contrast with the older S3 model for objects in R, classes, slots, and methods relationships must
be declared explicitly when using the S4 system. The number and types of slots in an instance
of a class have to be established at the time the class is defined. The objects from the class are

1http://www.csie.ntu.edu.tw/~cjlin/libsvm/
2http://svmlight.joachims.org
3http://www.torch.ch
4http://svm.dcs.rhbnc.ac.uk
5http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/index.eng.html
6http://www.loria.fr/~guermeur/
7 http://www.isis.ecs.soton.ac.uk/resources/svminfo/
8 http://asi.insa-rouen.fr/~arakotom/toolbox/index
9 http://www.cis.tugraz.at/igi/aschwaig/software.html

10http://www.kyb.tuebingen.mpg.de/bs/people/spider/
11http://www.torch.ch

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://svmlight.joachims.org
http://www.torch.ch
http://svm.dcs.rhbnc.ac.uk
http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/index.eng.html
http://www.loria.fr/~guermeur/
http://www.isis.ecs.soton.ac.uk/resources/svminfo/
http://asi.insa-rouen.fr/~arakotom/toolbox/index
http://www.cis.tugraz.at/igi/aschwaig/software.html
http://www.kyb.tuebingen.mpg.de/bs/people/spider/
http://www.torch.ch
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validated against this definition and have to comply to it at any time. S4 also requires formal
declarations of methods, unlike the informal system of using function names to identify a certain
method in S3.

An S4 method is declared by a call to setMethod along with the name and a “signature” of
the arguments. The signature is used to identify the classes of one or more arguments of the
method. Generic functions can be declared using the setGeneric function. Although such formal
declarations require package authors to be more disciplined than when using the informal S3

classes, they provide assurance that each object in a class has the required slots and that the
names and classes of data in the slots are consistent.

An example of a class used in kernlab is shown below. Typically, in a return object we want to
include information on the result of the method along with additional information and parameters.
Usually kernlab’s classes include slots for the kernel function used and the results and additional
useful information.

setClass("specc",

representation("vector", # the vector containing the cluster

centers="matrix", # the cluster centers

size="vector", # size of each cluster

kernelf="function", # kernel function used

withinss = "vector"), # within cluster sum of squares

prototype = structure(.Data = vector(),

centers = matrix(),

size = matrix(),

kernelf = ls,

withinss = vector()))

Accessor and assignment function are defined and used to access the content of each slot which
can be also accessed with the @ operator.

2.2. Namespace

Namespaces were introduced in R 1.7.0 and provide a means for packages to control the way global
variables and methods are being made available. Due to the number of assignment and accessor
function involved, a namespace is used to control the methods which are being made visible outside
the package. Since S4 methods are being used, the kernlab namespace also imports methods and
variables from the methods package.

2.3. Data

The kernlab package also includes data set which will be used to illustrate the methods included
in the package. The spam data set (Hastie, Tibshirani, and Friedman 2001) set collected at
Hewlett-Packard Labs contains data on 2788 and 1813 e-mails classified as non-spam and spam,
respectively. The 57 variables of each data vector indicate the frequency of certain words and
characters in the e-mail.

Another data set included in kernlab, the income data set (Hastie et al. 2001), is taken by a
marketing survey in the San Francisco Bay concerning the income of shopping mall customers. It
consists of 14 demographic attributes (nominal and ordinal variables) including the income and
8993 observations.

The ticdata data set (van der Putten, de Ruiter, and van Someren 2000) was used in the 2000
Coil Challenge and contains information on customers of an insurance company. The data consists
of 86 variables and includes product usage data and socio-demographic data derived from zip area
codes. The data was collected to answer the following question: Can you predict who would be
interested in buying a caravan insurance policy and give an explanation why?

The promotergene is a data set of E. Coli promoter gene sequences (DNA) with 106 observations
and 58 variables available at the UCI Machine Learning repository. Promoters have a region where
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a protein (RNA polymerase) must make contact and the helical DNA sequence must have a valid
conformation so that the two pieces of the contact region spatially align. The data contains DNA
sequences of promoters and non-promoters.

The spirals data set was created by the mlbench.spirals function in the mlbench package
(Leisch and Dimitriadou 2001). This two-dimensional data set with 300 data points consists of
two spirals where Gaussian noise is added to each data point.

2.4. Kernels

A kernel function k calculates the inner product of two vectors x, x′ in a given feature mapping
Φ : X → H. The notion of a kernel is obviously central in the making of any kernel-based
algorithm and consequently also in any software package containing kernel-based methods.

Kernels in kernlab are S4 objects of class kernel extending the function class with one additional
slot containing a list with the kernel hyper-parameters. Package kernlab includes 7 different
kernel classes which all contain the class kernel and are used to implement the existing kernels.
These classes are used in the function dispatch mechanism of the kernel utility functions described
below. Existing kernel functions are initialized by “creator” functions. All kernel functions take
two feature vectors as parameters and return the scalar dot product of the vectors. An example
of the functionality of a kernel in kernlab:

> rbf <- rbfdot(sigma = 0.05)

> rbf

function (x, y = NULL)

{

if (!is(x, "vector"))

stop("x must be a vector")

if (!is(y, "vector") && !is.null(y))

stop("y must a vector")

if (is(x, "vector") && is.null(y)) {

return(1)

}

if (is(x, "vector") && is(y, "vector")) {

if (!length(x) == length(y))

stop("number of dimension must be the same on both data points")

return(exp(sigma * (2 * crossprod(x, y) - crossprod(x) -

crossprod(y))))

}

}

<environment: 0xaa339b4>

attr(,"kpar")

attr(,"kpar")$sigma

[1] 0.05

attr(,"class")

[1] "rbfkernel"

attr(,"class")attr(,"package")

[1] "kernlab"

> x <- rnorm(10)

> y <- rnorm(10)

> rbf(x, y)

[,1]

[1,] 0.5965224
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The package includes implementations of the following kernels:

• the linear vanilladot kernel implements the simplest of all kernel functions

k(x, x′) = 〈x, x′〉 (2)

which is useful specially when dealing with large sparse data vectors x as is usually the case
in text categorization.

• the Gaussian radial basis function rbfdot

k(x, x′) = exp(−σ‖x− x′‖2) (3)

which is a general purpose kernel and is typically used when no further prior knowledge is
available about the data.

• the polynomial kernel polydot

k(x, x′) = (scale · 〈x, x′〉+ offset)
degree

. (4)

which is used in classification of images.

• the hyperbolic tangent kernel tanhdot

k(x, x′) = tanh (scale · 〈x, x′〉+ offset) (5)

which is mainly used as a proxy for neural networks.

• the Bessel function of the first kind kernel besseldot

k(x, x′) =
Besseln(ν+1)(σ‖x− x′‖)

(‖x− x′‖)−n(ν+1)
. (6)

is a general purpose kernel and is typically used when no further prior knowledge is available
and mainly popular in the Gaussian process community.

• the Laplace radial basis kernel laplacedot

k(x, x′) = exp(−σ‖x− x′‖) (7)

which is a general purpose kernel and is typically used when no further prior knowledge is
available.

• the ANOVA radial basis kernel anovadot performs well in multidimensional regression prob-
lems

k(x, x′) =

(

n
∑

k=1

exp(−σ(xk − x′k)2)

)d

(8)

where xk is the kth component of x.

2.5. Kernel utility methods

The package also includes methods for computing commonly used kernel expressions (e.g., the
Gram matrix). These methods are written in such a way that they take functions (i.e., kernels)
and matrices (i.e., vectors of patterns) as arguments. These can be either the kernel functions
already included in kernlab or any other function implementing a valid dot product (taking two
vector arguments and returning a scalar). In case one of the already implemented kernels is used,
the function calls a vectorized implementation of the corresponding function. Moreover, in the
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case of symmetric matrices (e.g., the dot product matrix of a Support Vector Machine) they only
require one argument rather than having to pass the same matrix twice (for rows and columns).

The computations for the kernels already available in the package are vectorized whenever possible
which guarantees good performance and acceptable memory requirements. Users can define their
own kernel by creating a function which takes two vectors as arguments (the data points) and
returns a scalar (the dot product). This function can then be based as an argument to the
kernel utility methods. For a user defined kernel the dispatch mechanism calls a generic method
implementation which calculates the expression by passing the kernel function through a pair of
for loops. The kernel methods included are:

kernelMatrix This is the most commonly used function. It computes k(x, x′), i.e., it computes
the matrix K where Kij = k(xi, xj) and x is a row vector. In particular,

K <- kernelMatrix(kernel, x)

computes the matrix Kij = k(xi, xj) where the xi are the columns of X and

K <- kernelMatrix(kernel, x1, x2)

computes the matrix Kij = k(x1i, x2j).

kernelFast This method is different to kernelMatrix for rbfdot, besseldot, and the laplacedot
kernel, which are all RBF kernels. It is identical to kernelMatrix, except that it also re-
quires the squared norm of the first argument as additional input. It is mainly used in kernel
algorithms, where columns of the kernel matrix are computed per invocation. In these cases,
evaluating the norm of each column-entry as it is done on a kernelMatrix invocation on
an RBF kernel, over and over again would cause significant computational overhead. Its
invocation is via

K = kernelFast(kernel, x1, x2, a)

Here a is a vector containing the squared norms of x1.

kernelMult is a convenient way of computing kernel expansions. It returns the vector f =
(f(x1), . . . , f(xm)) where

f(xi) =

m
∑

j=1

k(xi, xj)αj , hence f = Kα. (9)

The need for such a function arises from the fact that K may sometimes be larger than the
memory available. Therefore, it is convenient to compute K only in stripes and discard the
latter after the corresponding part of Kα has been computed. The parameter blocksize

determines the number of rows in the stripes. In particular,

f <- kernelMult(kernel, x, alpha)

computes fi =
∑m

j=1 k(xi, xj)αj and

f <- kernelMult(kernel, x1, x2, alpha)

computes fi =
∑m

j=1 k(x1i, x2j)αj .

kernelPol is a method very similar to kernelMatrix with the only difference that rather than
computing Kij = k(xi, xj) it computes Kij = yiyjk(xi, xj). This means that
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K <- kernelPol(kernel, x, y)

computes the matrix Kij = yiyjk(xi, xj) where the xi are the columns of x and yi are
elements of the vector y. Moreover,

K <- kernelPol(kernel, x1, x2, y1, y2)

computes the matrix Kij = y1iy2jk(x1i, x2j). Both x1 and x2 may be matrices and y1 and
y2 vectors.

An example using these functions :

> poly <- polydot(degree = 2)

> x <- matrix(rnorm(60), 6, 10)

> y <- matrix(rnorm(40), 4, 10)

> kx <- kernelMatrix(poly, x)

> kxy <- kernelMatrix(poly, x, y)

3. Kernel methods

Providing a solid base for creating kernel-based methods is part of what we are trying to achieve
with this package, the other being to provide a wider range of kernel-based methods in R. In the
rest of the paper we present the kernel-based methods available in kernlab. All the methods in
kernlab can be used with any of the kernels included in the package as well as with any valid
user-defined kernel. User defined kernel functions can be passed to existing kernel-methods in the
kernel argument.

3.1. Support vector machine

Support vector machines (Vapnik 1998) have gained prominence in the field of machine learning
and pattern classification and regression. The solutions to classification and regression problems
sought by kernel-based algorithms such as the SVM are linear functions in the feature space:

f(x) = w⊤Φ(x) (10)

for some weight vector w ∈ F . The kernel trick can be exploited in this whenever the weight
vector w can be expressed as a linear combination of the training points, w =

∑n
i=1 αiΦ(xi),

implying that f can be written as

f(x) =

n
∑

i=1

αik(xi, x) (11)

A very important issue that arises is that of choosing a kernel k for a given learning task. Intuitively,
we wish to choose a kernel that induces the “right”metric in the space. Support Vector Machines
choose a function f that is linear in the feature space by optimizing some criterion over the sample.
In the case of the 2-norm Soft Margin classification the optimization problem takes the form:

minimize t(w, ξ) =
1

2
‖w‖

2
+

C

m

m
∑

i=1

ξi

subject to yi(〈xi, w〉+ b) ≥ 1− ξi (i = 1, . . . ,m) (12)

ξi ≥ 0 (i = 1, . . . ,m)

Based on similar methodology, SVMs deal with the problem of novelty detection (or one class
classification) and regression.
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kernlab’s implementation of support vector machines, ksvm, is based on the optimizers found
in bsvm12 (Hsu and Lin 2002b) and libsvm (Chang and Lin 2001) which includes a very efficient
version of the Sequential Minimization Optimization (SMO). SMO decomposes the SVMQuadratic
Problem (QP) without using any numerical QP optimization steps. Instead, it chooses to solve the
smallest possible optimization problem involving two elements of αi because they must obey one
linear equality constraint. At every step, SMO chooses two αi to jointly optimize and finds the
optimal values for these αi analytically, thus avoiding numerical QP optimization, and updates
the SVM to reflect the new optimal values.

The SVM implementations available in ksvm include the C-SVM classification algorithm along with
the ν-SVM classification formulation which is equivalent to the former but has a more natural (ν)
model parameter taking values in [0, 1] and is proportional to the fraction of support vectors found
in the data set and the training error.

For classification problems which include more than two classes (multi-class) a one-against-one or
pairwise classification method (Knerr, Personnaz, and Dreyfus 1990; Kreßel 1999) is used. This
method constructs

(

k
2

)

classifiers where each one is trained on data from two classes. Prediction is
done by voting where each classifier gives a prediction and the class which is predicted more often
wins (“Max Wins”). This method has been shown to produce robust results when used with SVMs
(Hsu and Lin 2002a). Furthermore the ksvm implementation provides the ability to produce class
probabilities as output instead of class labels. This is done by an improved implementation (Lin,
Lin, and Weng 2001) of Platt’s posteriori probabilities (Platt 2000) where a sigmoid function

P (y = 1 | f) =
1

1 + eAf+B
(13)

is fitted on the decision values f of the binary SVM classifiers, A and B are estimated by minimizing
the negative log-likelihood function. To extend the class probabilities to the multi-class case, each
binary classifiers class probability output is combined by the couple method which implements
methods for combing class probabilities proposed in (Wu, Lin, and Weng 2003).

Another approach for multIn order to create a similar probability output for regression, following
Lin and Weng (2004), we suppose that the SVM is trained on data from the model

yi = f(xi) + δi (14)

where f(xi) is the underlying function and δi is independent and identical distributed random
noise. Given a test data x the distribution of y given x and allows one to draw probabilistic
inferences about y e.g. one can construct a predictive interval Φ = Φ(x) such that y ∈ Φ with

a certain probability. If f̂ is the estimated (predicted) function of the SVM on new data then

η = η(x) = y − f̂(x) is the prediction error and y ∈ Φ is equivalent to η ∈ Φ. Empirical
observation shows that the distribution of the residuals η can be modeled both by a Gaussian and
a Laplacian distribution with zero mean. In this implementation the Laplacian with zero mean is
used :

p(z) =
1

2σ
e−

|z|
σ (15)

Assuming that η are independent the scale parameter σ is estimated by maximizing the likeli-
hood. The data for the estimation is produced by a three-fold cross-validation. For the Laplace
distribution the maximum likelihood estimate is :

σ =

∑m
i=1 |ηi|

m
(16)

i-class classification supported by the ksvm function is the one proposed in Crammer and Singer
(2000). This algorithm works by solving a single optimization problem including the data from
all classes:

12http://www.csie.ntu.edu.tw/~cjlin/bsvm

http://www.csie.ntu.edu.tw/~cjlin/bsvm
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minimize t(wn, ξ) =
1

2

k
∑

n=1

‖wn‖
2
+

C

m

m
∑

i=1

ξi

subject to 〈xi, wyi
〉 − 〈xi, wn〉 ≥ bni − ξi (i = 1, . . . ,m) (17)

where bni = 1− δyi,n (18)

where the decision function is
argmaxm=1,...,k〈xi, wn〉 (19)

This optimization problem is solved by a decomposition method proposed in Hsu and Lin (2002b)
where optimal working sets are found (that is, sets of αi values which have a high probability of
being non-zero). The QP sub-problems are then solved by a modified version of the TRON13 (Lin
and More 1999) optimization software.

One-class classification or novelty detection (Schölkopf, Platt, Shawe-Taylor, Smola, andWilliamson
1999; Tax and Duin 1999), where essentially an SVM detects outliers in a data set, is another algo-
rithm supported by ksvm. SVM novelty detection works by creating a spherical decision boundary
around a set of data points by a set of support vectors describing the spheres boundary. The ν pa-
rameter is used to control the volume of the sphere and consequently the number of outliers found.
Again, the value of ν represents the fraction of outliers found. Furthermore, ǫ-SVM (Vapnik 1995)
and ν-SVM (Schölkopf, Smola, Williamson, and Bartlett 2000) regression are also available.

The problem of model selection is partially addressed by an empirical observation for the popular
Gaussian RBF kernel (Caputo, Sim, Furesjo, and Smola 2002), where the optimal values of the
hyper-parameter of sigma are shown to lie in between the 0.1 and 0.9 quantile of the ‖x − x′‖
statistics. The sigest function uses a sample of the training set to estimate the quantiles and
returns a vector containing the values of the quantiles. Pretty much any value within this interval
leads to good performance.

An example for the ksvm function is shown below.

> data(promotergene)

> tindex <- sample(1:dim(promotergene)[1], 5)

> genetrain <- promotergene[-tindex, ]

> genetest <- promotergene[tindex, ]

> gene <- ksvm(Class ~ ., data = genetrain, kernel = "rbfdot",

+ kpar = "automatic", C = 60, cross = 3, prob.model = TRUE)

Using automatic sigma estimation (sigest) for RBF or laplace kernel

> gene

Support Vector Machine object of class "ksvm"

SV type: C-svc (classification)

parameter : cost C = 60

Gaussian Radial Basis kernel function.

Hyperparameter : sigma = 0.016016016016016

Number of Support Vectors : 91

Objective Function Value : -50.5407

13http://www-unix.mcs.anl.gov/~more/tron/

http://www-unix.mcs.anl.gov/~more/tron/
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Training error : 0

Cross validation error : 0.108734

Probability model included.

> predict(gene, genetest)

[1] - - - + -

Levels: + -

> predict(gene, genetest, type = "probabilities")

+ -

[1,] 0.04222296 0.95777704

[2,] 0.49350553 0.50649447

[3,] 0.08291980 0.91708020

[4,] 0.90149828 0.09850172

[5,] 0.23503655 0.76496345

3.2. Relevance vector machine

The relevance vector machine (Tipping 2001) is a probabilistic sparse kernel model identical in
functional form to the SVM making predictions based on a function of the form

y(x) =

N
∑

n=1

αnK(x,xn) + a0 (20)

where αn are the model “weights” and K(· , · ) is a kernel function. It adopts a Bayesian approach
to learning, by introducing a prior over the weights α

p(α, β) =
m
∏

i=1

N(βi | 0, a
−1
i )Gamma(βi | ββ , αβ) (21)

governed by a set of hyper-parameters β, one associated with each weight, whose most probable
values are iteratively estimated for the data. Sparsity is achieved because in practice the posterior
distribution in many of the weights is sharply peaked around zero. Furthermore, unlike the SVM
classifier, the non-zero weights in the RVM are not associated with examples close to the decision
boundary, but rather appear to represent “prototypical” examples. These examples are termed
relevance vectors.

kernlab currently has an implementation of the RVM based on a type II maximum likelihood
method which can be used for regression. The functions returns an S4 object containing the
model parameters along with indexes for the relevance vectors and the kernel function and hyper-
parameters used.

> rvmm <- rvm(x, y, kernel = "rbfdot", kpar = list(sigma = 0.1))

> rvmm

Relevance Vector Machine object of class "rvm"

Problem type: regression

Gaussian Radial Basis kernel function.

Hyperparameter : sigma = 0.1

Number of Relevance Vectors : 14

Variance : 0.000952438

Training error : 0.00079788
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> set.seed(123)

> x <- rbind(matrix(rnorm(120), , 2), matrix(rnorm(120,

+ mean = 3), , 2))

> y <- matrix(c(rep(1, 60), rep(-1, 60)))

> svp <- ksvm(x, y, type = "C-svc")

> plot(svp, data = x)
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Figure 1: A contour plot of the SVM decision values for a toy binary classification problem using
the plot function
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Figure 2: Relevance vector regression on data points created by the sinc(x) function, relevance
vectors are shown circled.

> ytest <- predict(rvmm, x)

3.3. Gaussian processes

Gaussian processes (Williams and Rasmussen 1995) are based on the “prior” assumption that ad-
jacent observations should convey information about each other. In particular, it is assumed that
the observed variables are normal, and that the coupling between them takes place by means of
the covariance matrix of a normal distribution. Using the kernel matrix as the covariance matrix is
a convenient way of extending Bayesian modeling of linear estimators to nonlinear situations. Fur-
thermore it represents the counterpart of the “kernel trick” in methods minimizing the regularized
risk.

For regression estimation we assume that rather than observing t(xi) we observe yi = t(xi) + ξi
where ξi is assumed to be independent Gaussian distributed noise with zero mean. The posterior
distribution is given by

p(y | t) =

[

∏

i

p(yi − t(xi))

]

1
√

(2π)m det(K)
exp

(

1

2
tTK−1t

)

(22)

and after substituting t = Kα and taking logarithms

ln p(α | y) = −
1

2σ2
‖y −Kα‖2 −

1

2
αTKα+ c (23)

and maximizing ln p(α | y) for α to obtain the maximum a posteriori approximation yields

α = (K + σ21)−1y (24)

Knowing α allows for prediction of y at a new location x through y = K(x, xi)α. In similar fashion
Gaussian processes can be used for classification.

gausspr is the function in kernlab implementing Gaussian processes for classification and regres-
sion.

3.4. Ranking

The success of Google has vividly demonstrated the value of a good ranking algorithm in real
world problems. kernlab includes a ranking algorithm based on work published in (Zhou, Weston,
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Gretton, Bousquet, and Schölkopf 2003). This algorithm exploits the geometric structure of the
data in contrast to the more naive approach which uses the Euclidean distances or inner products
of the data. Since real world data are usually highly structured, this algorithm should perform
better than a simpler approach based on a Euclidean distance measure.

First, a weighted network is defined on the data and an authoritative score is assigned to every
point. The query points act as source nodes that continually pump their scores to the remaining
points via the weighted network, and the remaining points further spread the score to their neigh-
bors. The spreading process is repeated until convergence and the points are ranked according to
the scores they received.

Suppose we are given a set of data points X = x1, . . . , xs, xs+1, . . . , xm in Rn where the first s

points are the query points and the rest are the points to be ranked. The algorithm works by
connecting the two nearest points iteratively until a connected graph G = (X,E) is obtained
where E is the set of edges. The affinity matrix K defined e.g. by Kij = exp(−σ‖xi − xj‖

2) if
there is an edge e(i, j) ∈ E and 0 for the rest and diagonal elements. The matrix is normalized as
L = D−1/2KD−1/2 where Dii =

∑m
j=1 Kij , and

f(t+ 1) = αLf(t) + (1− α)y (25)

is iterated until convergence, where α is a parameter in [0, 1). The points are then ranked according
to their final scores fi(tf ).

kernlab includes an S4 method implementing the ranking algorithm. The algorithm can be used
both with an edge-graph where the structure of the data is taken into account, and without which
is equivalent to ranking the data by their distance in the projected space.

3.5. Online learning with kernels

The onlearn function in kernlab implements the online kernel algorithms for classification, novelty
detection and regression described in (Kivinen, Smola, and Williamson 2004). In batch learning, it
is typically assumed that all the examples are immediately available and are drawn independently
from some distribution P . One natural measure of quality for some f in that case is the expected
risk

R[f, P ] := E(x,y) P [l(f(x), y)] (26)

Since usually P is unknown a standard approach is to instead minimize the empirical risk

Remp[f, P ] :=
1

m

m
∑

t=1

l(f(xt), yt) (27)

Minimizing Remp[f ] may lead to overfitting (complex functions that fit well on the training data
but do not generalize to unseen data). One way to avoid this is to penalize complex functions by
instead minimizing the regularized risk.

Rreg[f, S] := Rreg,λ[f, S] := Remp[f ] =
λ

2
‖f‖2H (28)

where λ > 0 and ‖f‖H = 〈f, f〉
1

2

H does indeed measure the complexity of f in a sensible way.
The constant λ needs to be chosen appropriately for each problem. Since in online learning one is
interested in dealing with one example at the time the definition of an instantaneous regularized
risk on a single example is needed

Rinst[f, x, y] := Rinst,λ[f, x, y] := Rreg,λ[f, ((x, y))] (29)

The implemented algorithms are classical stochastic gradient descent algorithms performing gra-
dient descent on the instantaneous risk. The general form of the update rule is :

ft+1 = ft − η∂fRinst,λ[f, xt, yt]|f=ft (30)
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> data(spirals)

> ran <- spirals[rowSums(abs(spirals) < 0.55) == 2, ]

> ranked <- ranking(ran, 54, kernel = "rbfdot", kpar = list(sigma = 100),

+ edgegraph = TRUE)

> ranked[54, 2] <- max(ranked[-54, 2])

> c <- 1:86

> op <- par(mfrow = c(1, 2), pty = "s")

> plot(ran)

> plot(ran, cex = c[ranked[, 3]]/40)
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Figure 3: The points on the left are ranked according to their similarity to the upper most left
point. Points with a higher rank appear bigger. Instead of ranking the points on simple Euclidean
distance the structure of the data is recognized and all points on the upper structure are given a
higher rank although further away in distance than points in the lower structure.
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where fi ∈ H and ∂f< is short hand for ∂ ∂f (the gradient with respect to f) and ηt > 0 is the
learning rate. Due to the learning taking place in a reproducing kernel Hilbert space H the kernel
k used has the property 〈f, k(x, · )〉H = f(x) and therefore

∂f l(f(xt)), yt) = l′(f(xt), yt)k(xt, · ) (31)

where l′(z, y) := ∂zl(z, y). Since ∂f‖f‖
2
H = 2f the update becomes

ft+1 := (1− ηλ)ft − ηtλ
′(ft(xt), yt)k(xt, · ) (32)

The onlearn function implements the online learning algorithm for regression, classification and
novelty detection. The online nature of the algorithm requires a different approach to the use of
the function. An object is used to store the state of the algorithm at each iteration t this object is
passed to the function as an argument and is returned at each iteration t+1 containing the model
parameter state at this step. An empty object of class onlearn is initialized using the inlearn

function.

> x <- rbind(matrix(rnorm(90), , 2), matrix(rnorm(90) +

+ 3, , 2))

> y <- matrix(c(rep(1, 45), rep(-1, 45)), , 1)

> on <- inlearn(2, kernel = "rbfdot", kpar = list(sigma = 0.2),

+ type = "classification")

> ind <- sample(1:90, 90)

> for (i in ind) on <- onlearn(on, x[i, ], y[i], nu = 0.03,

+ lambda = 0.1)

> sign(predict(on, x))

[1] -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[23] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 1 1 1 1

[45] 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

[67] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

[89] -1 -1

3.6. Spectral clustering

Spectral clustering (Ng, Jordan, and Weiss 2001) is a recently emerged promising alternative to
common clustering algorithms. In this method one uses the top eigenvectors of a matrix created
by some similarity measure to cluster the data. Similarly to the ranking algorithm, an affinity
matrix is created out from the data as

Kij = exp(−σ‖xi − xj‖
2) (33)

and normalized as L = D−1/2KD−1/2 where Dii =
∑m

j=1 Kij . Then the top k eigenvectors (where
k is the number of clusters to be found) of the affinity matrix are used to form an n× k matrix Y

where each column is normalized again to unit length. Treating each row of this matrix as a data
point, kmeans is finally used to cluster the points.

kernlab includes an S4 method called specc implementing this algorithm which can be used
through an formula interface or a matrix interface. The S4 object returned by the method extends
the class “vector” and contains the assigned cluster for each point along with information on the
centers size and within-cluster sum of squares for each cluster. In case a Gaussian RBF kernel is
being used a model selection process can be used to determine the optimal value of the σ hyper-
parameter. For a good value of σ the values of Y tend to cluster tightly and it turns out that the
within cluster sum of squares is a good indicator for the “quality” of the sigma parameter found.
We then iterate through the sigma values to find an optimal value for σ.
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> data(spirals)

> sc <- specc(spirals, centers = 2)

> plot(spirals, pch = (23 - 2 * sc))
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Figure 4: Clustering the two spirals data set with specc
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3.7. Kernel principal components analysis

Principal component analysis (PCA) is a powerful technique for extracting structure from possibly
high-dimensional datasets. PCA is an orthogonal transformation of the coordinate system in
which we describe the data. The new coordinates by which we represent the data are called
principal components. Kernel PCA (Schölkopf, Smola, and Müller 1998) performs a nonlinear
transformation of the coordinate system by finding principal components which are nonlinearly
related to the input variables. Given a set of centered observations xk, k = 1, . . . ,M , xk ∈ RN ,
PCA diagonalizes the covariance matrix C = 1

M

∑M
j=1 xjx

T
j by solving the eigenvalue problem

λv = Cv. The same computation can be done in a dot product space F which is related to the
input space by a possibly nonlinear map Φ : RN → F , x 7→ X. Assuming that we deal with
centered data and use the covariance matrix in F ,

Ĉ =
1

C

N
∑

j=1

Φ(xj)Φ(xj)
T (34)

the kernel principal components are then computed by taking the eigenvectors of the centered
kernel matrix Kij = 〈Φ(xj),Φ(xj)〉.

kpca, the the function implementing KPCA in kernlab, can be used both with a formula and a
matrix interface, and returns an S4 object of class kpca containing the principal components the
corresponding eigenvalues along with the projection of the training data on the new coordinate
system. Furthermore, the predict function can be used to embed new data points into the new
coordinate system.

3.8. Kernel feature analysis

Whilst KPCA leads to very good results there are nevertheless some issues to be addressed. First
the computational complexity of the standard version of KPCA, the algorithm scales O(m3) and
secondly the resulting feature extractors are given as a dense expansion in terms of the of the
training patterns. Sparse solutions are often achieved in supervised learning settings by using an
l1 penalty on the expansion coefficients. An algorithm can be derived using the same approach
in feature extraction requiring only n basis functions to compute the first n feature. Kernel
feature analysis (Smola, Mangasarian, and Schölkopf 2000) is computationally simple and scales
approximately one order of magnitude better on large data sets than standard KPCA. Choosing
Ω[f ] =

∑m
i=1 |αi| this yields

FLP = {w|w =

m
∑

i=1

αiΦ(xi)with

m
∑

i=1

|αi| ≤ 1} (35)

This setting leads to the first “principal vector” in the l1 context

ν1 = argmaxν∈FLP

1

m

m
∑

i=1

〈ν,Φ(xi)−
1

m

m
∑

j=1

Φ(xi)〉
2 (36)

Subsequent“principal vectors”can be defined by enforcing optimality with respect to the remaining
orthogonal subspaces. Due to the l1 constrain the solution has the favorable property of being
sparse in terms of the coefficients αi.

The function kfa in kernlab implements Kernel Feature Analysis by using a projection pursuit
technique on a sample of the data. Results are then returned in an S4 object.

3.9. Kernel canonical correlation analysis

Canonical correlation analysis (CCA) is concerned with describing the linear relations between
variables. If we have two data sets x1 and x2, then the classical CCA attempts to find linear
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> data(spam)

> train <- sample(1:dim(spam)[1], 400)

> kpc <- kpca(~., data = spam[train, -58], kernel = "rbfdot",

+ kpar = list(sigma = 0.001), features = 2)

> kpcv <- pcv(kpc)

> plot(rotated(kpc), col = as.integer(spam[train, 58]),

+ xlab = "1st Principal Component", ylab = "2nd Principal Component")

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●●

●

●
●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●●

● ●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

−10 −5 0 5 10 15

−
5

0
5

10
15

1st Principal Component

2n
d 

P
rin

ci
pa

l C
om

po
ne

nt

Figure 5: Projection of the spam data on two kernel principal components using an RBF kernel
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> data(promotergene)

> f <- kfa(~., data = promotergene, features = 2, kernel = "rbfdot",

+ kpar = list(sigma = 0.013))

> plot(predict(f, promotergene), col = as.numeric(promotergene[,

+ 1]), xlab = "1st Feature", ylab = "2nd Feature")
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Figure 6: Projection of the spam data on two features using an RBF kernel
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combination of the variables which give the maximum correlation between the combinations. I.e.,
if

y1 = w1x1 =
∑

j

w1x1j

y2 = w2x2 =
∑

j

w2x2j

one wishes to find those values of w1 and w2 which maximize the correlation between y1 and y2.
Similar to the KPCA algorithm, CCA can be extended and used in a dot product space F which
is related to the input space by a possibly nonlinear map Φ : RN → F , x 7→ X as

y1 = w1Φ(x1) =
∑

j

w1Φ(x1j)

y2 = w2Φ(x2) =
∑

j

w2Φ(x2j)

Following (Kuss and Graepel 2003), the kernlab implementation of a KCCA projects the data
vectors on a new coordinate system using KPCA and uses linear CCA to retrieve the correla-
tion coefficients. The kcca method in kernlab returns an S4 object containing the correlation
coefficients for each data set and the corresponding correlation along with the kernel used.

3.10. Interior point code quadratic optimizer

In many kernel based algorithms, learning implies the minimization of some risk function. Typ-
ically we have to deal with quadratic or general convex problems for support vector machines of
the type

minimize f(x)
subject to ci(x) ≤ 0 for all i ∈ [n].

(37)

f and ci are convex functions and n ∈ N. kernlab provides the S4 method ipop implementing an
optimizer of the interior point family (Vanderbei 1999) which solves the quadratic programming
problem

minimize c⊤x+ 1
2x

⊤Hx

subject to b ≤ Ax ≤ b+ r

l ≤ x ≤ u

(38)

This optimizer can be used in regression, classification, and novelty detection in SVMs.

3.11. Incomplete cholesky decomposition

When dealing with kernel based algorithms, calculating a full kernel matrix should be avoided since
it is already a O(N2) operation. Fortunately, the fact that kernel matrices are positive semidefinite
is a strong constraint and good approximations can be found with small computational cost. The
Cholesky decomposition factorizes a positive semidefinite N ×N matrix K as K = ZZT , where Z
is an upper triangular N ×N matrix. Exploiting the fact that kernel matrices are usually of low
rank, an incomplete Cholesky decomposition (Wright 1999) finds a matrix Z̃ of size N ×M where
M ≪ N such that the norm of K−Z̃Z̃T is smaller than a given tolerance θ. The main difference of
incomplete Cholesky decomposition to the standard Cholesky decomposition is that pivots which
are below a certain threshold are simply skipped. If L is the number of skipped pivots, we obtain
a Z̃ with only M = N−L columns. The algorithm works by picking a column from K to be added
by maximizing a lower bound on the reduction of the error of the approximation. kernlab has
an implementation of an incomplete Cholesky factorization called inc.chol which computes the
decomposed matrix Z̃ from the original data for any given kernel without the need to compute a
full kernel matrix beforehand. This has the advantage that no full kernel matrix has to be stored
in memory.



Alexandros Karatzoglou, Alex Smola, Kurt Hornik 21

4. Conclusions

In this paper we described kernlab, a flexible and extensible kernel methods package for R with
existing modern kernel algorithms along with tools for constructing new kernel based algorithms.
It provides a unified framework for using and creating kernel-based algorithms in R while using all
of R’s modern facilities, like S4 classes and namespaces. Our aim for the future is to extend the
package and add more kernel-based methods as well as kernel relevant tools. Sources and binaries
for the latest version of kernlab are available at CRAN14 under the GNU Public License.

A shorter version of this introduction to the R package kernlab is published as Karatzoglou, Smola,
Hornik, and Zeileis (2004) in the Journal of Statistical Software.
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