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Summary

1. Species distribution models (habitat models) relate the occurrence or abundance of
a species to environmental and/or geographical predictors that then allow predictions to
be mapped across an entire region. These models are used in a range of policy settings
such as managing greenhouse gases, biosecurity threats and conservation planning.
Prediction errors are almost ubiquitous in habitat models. An understanding of the
source, magnitude and pattern of these errors is essential if  the models are to be used
transparently in decision making.
2. This study considered the sources of errors in habitat models. It divided them into
two main classes, error resulting from data deficiencies and error introduced by the spec-
ification of the model. Common and important data errors included missing covariates,
and samples of species’ occurrences that were small, biased or lack absences. These
affected the types of models that could be developed and the probable errors that would
occur. Almost all models had missing covariates, and this introduced significant spatial
correlation in the errors of the analysis.
3. A challenging aspect of  modelling is that species’ distributions are affected by
processes operating in both environmental and geographical space. We differentiated
between global (aspatial) and local (spatial) errors, and discussed how they arise and
what can be done to alleviate their effects.
4. Synthesis and applications. This study brings together statistical and ecological thinking
to consider the appropriate techniques for habitat modelling. Ecological theory suggests
models capable of defining optima, while allowing for interactions between variables.
Statistical considerations, including impacts of data errors, suggest models that deal
with multimodality and discontinuity in response surfaces. Models are typically simple
approximations of the true probability surface. We suggest the use of flexible regression
techniques, and explain what makes such methods superior for ecological modelling.
The most robust modelling approaches are likely to be those in which care is taken to match
the model with knowledge of ecology, and in which each is allowed to inform the other.
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Introduction

Predictions of species distributions are important for a
range of land management activities. Examples include
management of threatened species and communities,

risk assessment of non-native species in new environ-
ments, and estimation of the likely magnitude of bio-
logical responses to environmental changes such as
global warming (Ferrier et al. 2002).

However, despite the wide use of predictive models,
many applications give insufficient consideration to
model error and uncertainty. Models are an attempt
to summarize complex distributional patterns with a
reduced set of predictor variables, and will inevitably
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contain some degree of mismatch between their predic-
tions and the actual distributional patterns they describe.
Here we use ‘error’ and ‘uncertainty’ interchangeably,
understanding that ‘error’ includes not only ‘mistakes’
and ‘faults’ but also the statistical concept of ‘variation’.

While error analysis could be considered a purely
statistical problem, this narrow view fails to address the
question from an ecological perspective. Rather, the
adequacy of models relies on the interplay of the eco-
logical processes driving the true distribution and the
process used to observe and model it. Understanding
these issues therefore requires an understanding of the
joint impact of a species’ ecology and the measurement
and prediction process.

The arguments made in this paper represent a new
analysis of the species prediction problem. Previous
attempts to identify sources of modelling error have
followed three main approaches. The first class, of the-
oretically based papers (e.g. Austin 1976), focused on the
response of species to environmental gradients; while the
arguments were based on observations, their empirical
basis was not formalized. For example, the relationship
between response and environment was considered
abstractly, and not related to productivity, growth rate or
presence and absence. The second class of papers com-
pared the performance of different models when used to
analyse particular data sets (e.g. Manel, Dias & Ormerod
1999; Moisen & Frescino 2002). These studies were
useful but limited because the adequacy of a particular
model depends on the complexity of the response surface,
making results difficult to generalize. Further, many such
studies do not use independent data for evaluation, and
therefore cannot address the impact of data error. The
third class of papers has attempted to reconcile theory and
observation (Austin 1980; Leathwick & Whitehead 2001).
These papers are the precursors of this work but, while
they focus on the ecological rigour of the modelling pro-
cess, they provide minimal consideration of statistical
rigour. This contribution provides the statistical context.

The ultimate impacts of errors on models typically
depend on the context within which the model is being
fitted and used. In this study we sought to define more
accurately the nature of errors in species distribution
models, review and discuss how these errors occur, and
explore the key issues leading to the success and failure
of common species prediction techniques. In this paper,
we first describe the species prediction problem and
outline modelling techniques and the nature of the
responses that ecologists are trying to model. We then
define two different types of error, global and local, and
use them as a framework for understanding the errors
that occur as the result of data errors and model mis-
specification. Finally, we make recommendations about
techniques to control and diagnose errors.

The species prediction problem

A wide variety of approaches is currently used for the
prediction of species’ distributions (Guisan & Zimmerman

2000; Phillips, Anderson & Schapire 2006). In this paper,
we restrict our attention to a subclass of methods in
which a model is used to relate the presence or abun-
dance of a species to some set of functionally relevant
predictors. In most studies this involves use of survey
data describing the distribution of a species, and asso-
ciated environmental data describing factors that are
either known to have a direct impact on the species or
are correlated with variables that do. Typically, envi-
ronmental data are known for the area in which the
model is to be used to make predictions and defined
over a grid or lattice of points.

Given that this correlative approach is the focus of
most practical systems, we restrict our attention to
statistical models. Here we use the word ‘statistical’ in a
very broad sense to refer to those methods that consider
the prediction problem by conditioning on the known
environmental information for the site, and inferring
the presence or absence of the species from relationships
in the sampled data. More specifically, the approaches
we consider are: envelope approaches, distance-based
approaches and regression models. The following
paragraphs describe these more fully.

Envelope approaches (e.g. BIOCLIM; Busby 1991)
use presence records and environmental data to form a
profile for a species that summarizes how the known
presences are distributed with respect to the environ-
mental variables. With several environmental variables,
the aggregated profile forms a multidimensional space
(a hyper-rectangle or ‘environmental envelope’) that
defines the environmental domain of the species. This
envelope specifies the model in terms of upper and lower
tolerances, and does not allow for regions of absence
(i.e. ‘holes’) within the envelope. The concept is one of
extremes and cores. A habitat map can be produced
from the model by ranking each location according to
its position in the species’ environmental profile. Com-
monly these maps are grid-based and classify each cell
into one of several ranked classes of environmental
suitability for the species.

Distance-based measures (e.g. DOMAIN; Carpenter,
Gillison & Winter 1993) estimate the environmental
distance between a site of interest and the nearest pres-
ence record in environmental space. DOMAIN uses
the Gower metric, a distance measure that standardizes
each variable by its range over all presence sites to
equalize the contribution of all variables. The scaling
means that one unit in any direction in environmental
space gives an equal change in similarity. A different
distance metric (e.g. Euclidean distance) would give a
different model of change. At a conceptual level, distance-
based methods differ from envelope approaches because
they focus on distances from adjacent sites of known
occurrence rather than defining bounding envelopes
that enclose all sites of known occurrence.

Regression models comprise a broad class of methods
that include generalized linear models (GLM), gener-
alized additive models (GAM), decision trees and
multivariate adaptive regression splines (MARS) (Hastie,
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Tibshirani & Friedman 2001). The unifying theme in
all these methods is that, in a univariate setting, they fit
a curve through a set of  points using some goodness-
of-fit criterion. There are numerous variations: the
response can be calculated with respect to many vari-
ables; the response between a species and variable can
be linear or non-linear; the models can be purely additive
or include interactions between predictor variables.
Depending on the method used, the response could be
modelled as one with no optimum, or with single or
multiple optima. For the purpose of exploring the
characteristics of errors in models, we consider regres-
sion models as a broad class but highlight where par-
ticular regression methods have strengths or limitations.

Model realism

While ecological theory and observation suggest that
there should be non-random associations between
environmental variables and species presence and
absence or abundance, the ecological processes leading
to the associations are generally complex. Both abiotic
and biotic factors may influence the distribution and
abundance of a species, and different processes may
dominate in different parts of its range. For example,
the limit of distribution of a plant at some point in envi-
ronmental space may be determined by physiological
responses to environment, but these responses are
likely to be influenced, perhaps strongly, by interac-
tions with other species (Leathwick & Austin 2001). It
is therefore important not to be overly optimistic about
the ability of purely environment-based predictions to
recover the nature and pattern of abundance for most
species. Further, the pattern of presence and absence of
a species depends in part on the scale at which meas-
urements are made and how these are related to the
spatial scales over which variation occurs in the pro-
cesses determining the distribution. For these reasons,
most techniques used to model species’ distributions
rely on correlative approaches rather than mechanistic
models. Even though the processes driving a species’
relationship with an environmental gradient may vary,
the correlative approach can still characterize, in a statis-
tical sense, the complex response of a species to these
different processes, as reflected in its distribution.

All species distribution models assume that the spe-
cies is at equilibrium with the environment. Observed
patterns are assumed to reflect the species’ full biotic
potential, implying that the species can potentially
occur in all environmentally suitable locations, and its
distribution has not been constrained locally by factors
such as historic accidents. Whether this is plausible
depends on the scale of the model, the dispersal ability
of the organisms and the history and biology of the spe-
cies (Pulliam 2000; Tyre, Possingham & Lindenmayer
2001). In practice, errors resulting from the equilibrium
assumption are most acute when trying to predict dis-
tributions of species recently introduced to new loca-
tions. For clarity, we assume initially in this paper that

some degree of equilibrium exists, but return to the issue
of the mis-specification of a global equilibrium later.

Global and local errors

Having fitted a model, the next logical step is to evaluate
its fit to the modelling data, and/or its predictive ability.
A range of measures of error can assess the discrepancy
between data and model, but the end-use of the model
dictates the most relevant measures and data sets for
evaluation. If  using a technique that produces predic-
tions of presence or absence (rather than continuous
estimates of probability), omission and commission
errors or other statistics derived from a confusion
matrix are appropriate (Fielding & Bell 1997). The
confusion-matrix approach has two limitations in broader
settings. First, an arbitrary choice of threshold is required
in converting probabilistic predictions to binary ones.
We argue that it is better to consider the discrepancy
between the model inferences (such as predicted prob-
ability of occurrences) and the actual observations. This
leads to statistics such as the deviance of the model
(Hastie, Tibshirani & Friedman 2001), the area under the
receiver-operating characteristic (ROC) curve (Hanley
& McNeil 1982), Miller’s calibration equations (Miller,
Hui & Tierney 1991), and correlation tests (Zheng &
Agresti 2000). McCarthy et al. (2001) give a clear account
of the problems in ignoring the probabilistic nature of
predictions and explore the performance of  several
statistics for testing the accuracy of population models.
MacKenzie & Bailey (2004) present relevant tests of
model fit for imperfectly detected species.

The second limitation of confusion matrices, which
also applies to other measures of fit, is that they are
only marginally relevant to the model and ignore the
geographical pattern of the predictions. In particular,
measures of fit do not identify where and how the errors
occur, either spatially or environmentally. Others have
recognized this problem and suggested evaluations
that take into account the spatial context of the errors
(Fielding & Bell 1997). An analyst may want the pre-
dictions from their model to be ‘realistic’ at each geo-
graphical location in the study area, or may simply be
content with similar levels of realism at all geographical
locations sharing some common set of environmental
attributes. But where spatial processes such as dispersal
or disturbance play an important role, spatial terms or
other adjustments may be necessary in our models to
make them predict accurately in geographical space.
Legendre (1993) provides a clear description of the
important issues concerning spatial autocorrelation
and the partitioning of variation into its environmental
and spatial components.

A more intuitive way of expressing this is to say that
it is often desirable to have the outcomes of predictions
interpretable ‘locally’ in a geographical sense. This
thinking leads to a distinction between global (aspatial)
vs. local (spatial) errors. Global error impacts at all
environmentally similar locations in a similar way,
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regardless of their location. For example, the model may
consistently overpredict for a certain environment at all
locations. Alternately, local error has different effects
at environmentally similar sites, depending on their
locations.

Sources of modelling error

Species distribution models contain errors arising from
(i) deficiencies in the data and (ii) deficiencies in their
ecological realism. In practical terms, the overall error
in prediction results from the combination and inter-
action of these two components. We consider each of
these sources in turn.

 

In an ideal world modelling data would consist of a rep-
resentative and accurate sample of the species’ response,
and a set of  covariates such that a model could be
specified that had quantifiable and bounded local and
global error. In practice this is rarely achieved. We
describe five of the most common sources of data error,
exploring their particular characteristics. We analyse
from a theoretical perspective how different statistical
methods will respond to these errors, and from a more
pragmatic perspective what refinements might provide
a coherent solution to the problems that they cause.

Missing covariates

At least some predictor variables are missing from
most models (i.e. limited covariates), reflecting lack of
knowledge of which environmental factors constrain
the distribution of a species throughout its range, and
lack of spatial data sets describing attributes known to
be important. A ‘sufficient’ set of covariates may be
defined as that which allows a model to be specified that
does not have significant spatial errors or global errors,
with respect to a specific context and end use.

Predictor variables are incomplete in time and space,
over the range of scales at which processes operate, and
in relation to the suite of species’ interactions and his-
torical and current disturbances that affect a species’
occurrence (Van Horne 1983; Levin 1992). Further, even
for mechanisms that are relatively well understood,
directly relevant quantitative data that can be used for
modelling are usually unavailable. Rather than the
proximal variable that directly affects the distribution
of the species, the most common data quantify indirect
(distal) variables that are correlated with the causal
ones, to varying degrees (Austin 2002). For example,
average temperature at a location is typically correlated
with a set of more proximate temperature factors occur-
ring at the site, including cumulative heating inputs
(growing degree days), within-year or seasonal variation,
and extreme maximum or minimum temperatures.
These have lethal effects on some species, and may be
important at decadal or even longer intervals. It is rare

to have information on these causal variables and instead
modelling is done with the indirect ones.

No studies claim to use a comprehensive suite of
proximate predictors. Even with all covariates known
prediction is not perfect because of  demographic
variation (Tyre, Possingham & Lindenmayer 2001). In
practice, ecological thinking should be used to con-
struct the most appropriate variables from the data at
hand, but lack of relevant data can be beyond the con-
trol of the practitioner.

Small sample size

Small sample size is an error in the sense that the sam-
ple provides an insufficient basis for modelling. While
statistical approaches may be able to characterize this
error in simple cases, we focus here on problems caused
by the sample being insufficient to specify all but the
simplest models. For presence–absence data, sample
size needs to be assessed in relation to the least frequent
class rather than a simple count of total number of sites.
A species may be genuinely rare, and a random sample
of 500 sites may contain only five presence records.
While this sample is not biased or incorrect and may be
relatively large, it is nevertheless likely to be an inade-
quate sample for most modelling methods, because five
presence records are too few to specify the model pro-
perly. This may seem obvious, but there are many
ecological data sets with large numbers of sites but few
presence records for many species (Ferrier 2002), and
modellers need advice on the limitations of their methods
where this occurs. The minimum number of records
required for a method depends partly on the complexity
of the pattern being modelled. In general, the broader
the suite of explanatory variables and the more complex
the responses (in terms of shape and interaction), the
more data are required to construct a reliable model.

Models that include spatial autocorrelation terms
need intense local sampling in at least part of the spe-
cies range, and cannot be estimated accurately with
small or unevenly distributed samples. Sparse data can
lead to specifying simpler models that typically involve
both global and local specification errors.

Several modelling methods have been suggested for
small numbers of presence records. With very limited
species records, one option is to create a habitat suita-
bility index model (HSI; USFWS 1980). The method is
based on the judgements of experts who identify critical
variables that can be used to identify suitable habitat
through a conceptual model of how the species responds
to environment. It is difficult to test HSI models because
usually there are no data for evaluation, but recent eval-
uations demonstrate varied outcomes, with some suc-
cesses (Mitchell, Zimmerman & Powell 2002) and some
evidence of poor predictive performance (Guay et al.
2003; Loukmas & Halbrook 2001). Nevertheless, HSI
models are more useful than no model, with the advan-
tage that they quantify expert opinion and provide a
basis for ongoing discussion and refinement. Information
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about uncertainty can be represented as intervals or fuzzy
numbers, resulting in bounds (Burgman et al. 2001).

Another option is to use a statistical model, restrict-
ing the number of candidate variables to those that can
be supported numerically. For example, rules of thumb
for logistic regression suggest 10 records in the least
prevalent class per predictor degree of freedom (Wintle,
Elith & Potts 2005). So, for 20 presence records, coef-
ficients for two linear or one quadratic response can be
properly estimated. However, restricting a model to few
predictor variables averages the response over all the
omitted variables, and may result in a misleading model.

Community models are a third alternative. These
can be used to model either the collective properties of
the biota (Ferrier 2002) or to make predictions for indi-
vidual species from a community model in which infor-
mation for a wider set of species is used to construct a
context in which individual species distributions are
then described. Methods include generalized dissimi-
larity modelling (Ferrier et al. 2002), neural networks
(Olden 2003), and multivariate adaptive regression
splines (Leathwick et al. 2005).

Biased samples

The ideal data for modelling are collected using a planned
sampling regime, structured to sample the major envi-
ronmental gradients likely to be important for the
species, and covering the spatial extent of the region of
interest (Austin & Heyligers 1989; Cawsey, Austin &
Baker 2002). However, species data available for model-
ling are often not specifically collected for the pur-
pose, and instead may consist of an ad hoc collection of
existing data, biased in geographical and/or environ-
mental space. For instance, sampling is often more
frequent close to roads (Kadmon, Farber & Danin 2004)
and population centres, focused on particular landscapes
or vegetation types, and/or biased away from ecotones.

Biases in data mean that the modelled relationships
are dominated by the patterns at sampled sites rather
than the patterns across the entire study area, and this
in turn is likely to lead to marked spatial variation in
prediction uncertainty, i.e. to spatial error.

Such biases can be diagnosed by exploratory techniques.
Examples include making plots of site locations in geo-
graphical space, analysing site density in environmental
strata (Wintle, Elith & Potts 2005) and using statistics
such as p-medians (Faith & Walker 1996) to measure
distances between sets of sites in multivariate environ-
mental space. Biased data sets can be supplemented with
new data from targeted surveys that aim to increase
representation from poorly sampled regions (Cawsey,
Austin & Baker 2002). Implications of bias on model
performance are discussed by Kadmon, Farber & Danin
(2004).

Samples can also be biased in relation to the observa-
tions. Mobile and cryptic species are difficult to detect, and
tend to be underestimated by common field survey tech-
niques. Repeat surveys can be used to quantify detecta-

bility (MacKenzie & Royle 2005). If not adequately
dealt with, false-negative observations are likely to
affect both variable selection and coefficient estimation
in models (MacKenzie et al. 2002; Tyre et al. 2003).

Lack of absence records

Lack of absence records is a data error in the sense that
it limits the creation of models that accurately discrim-
inate between suitable and unsuitable habitats. In
particular, lack of absence data leads to inaccurate
identification of the attributes of unsuitable sites. Data
sets without absence records (presence-only data) are
common, particularly in natural history collections
(NHC), ad hoc collections of field observations (Graham
et al. 2004) and distribution data used in biosecurity risk
analysis (Panetta & Mitchell 1991). Because NHC data
cover many species, have large numbers of records and are
accessible through searchable World Wide Web databases,
they are used frequently in distributional modelling
(Anderson 2003). These types of presence-only samples
often have other errors associated with them, such as small
sample sizes and bias (Graham et al. 2004). An alterna-
tive source of presence-only data is radio-telemetry
records (Keating & Cherry 2004; Rushton, Ormerod &
Kerby 2004) and these are less error-prone because they
tend to be structured samples with precise geo-locations.

Presence-only data are commonly modelled with
methods that only use the presence data (e.g. climate
envelopes and DOMAIN) or methods that character-
ize the background, either as a space over which to model
(Manly et al. 2002; Phillips, Anderson & Schapire
2006) or using a sample in place of absence records (e.g.
regression methods). The latter are sometimes treated
as a surrogate for absences and called pseudo-absences
(Zaniewski, Lehmann & Overton 2002). Analyses
of predictive performance have shown that regression
models developed with presence-only data may have
reasonable predictive performance, although usually
poorer than equivalent models fitted with true presence–
absence data (Ferrier & Watson 1997).

The absence of  true zeros in these models results
in different response shapes than those fitted with
presence–absence data, resulting in both global and
local errors. In many cases, the fitted values, rather than
reflecting the true prevalence of the species, will simply
reflect the balance between the presences and the con-
structed absences. For example, increasing the number
of absences will reduce the average of the fitted prob-
abilities. The most statistically accurate way to model with
pseudo-absence data is through the use of specialized
models such as case control (Keating & Cherry 2004;
Pearce and Boyce 2006) and resource selection func-
tions (Manly et al. 2002).

Errors in variables

Predictor variables also have errors, and these errors can
be random, biased or spatially aggregated. For example,
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some variables are interpolated from point data and
will have errors consistent with those of the interpola-
tion method and the quality of the original point data.
Errors in digital elevation models can be globally small
and unbiased but locally large and spatially autocorre-
lated (Holmes, Chadwick & Kyriakidis 2000). In vari-
ables describing vegetation classes or soil types mapped
as polygons, the location of the polygon boundary is
uncertain, as is the width of the ecotone (Fortin &
Edwards 2001). Biases are often also linked to the spa-
tial scale. For example, as the grain at which data are
recorded becomes coarser, units that exist at a finer grain
may be subsumed into more prevalent ones, leading to
a bias against unusual classes (e.g. rare vegetation classes).

The problem of such errors in predictor variables can
become overwhelming, and a common reaction is to
ignore them, an approach that can have some justifica-
tion in a statistical sense. In cases where the prediction
sites have the same errors as those used for model build-
ing, the model will already reflect the errors and the
predictions will be consistent with the data. For regres-
sion models, random error in the predictor variables
will be reflected in the width of the confidence intervals.
However, a number of methods are available for improv-
ing coefficient and error estimates (measurement error
models; Reeves et al. 1998)

But even where such errors are ignored, difficulties
can arise. For example, strong spatial patterns in pre-
dictor variable errors will inevitably produce local pre-
diction errors. Sensitivity analyses can help to explore
the extent, location and impact on final predictions of
such problems (Van Niel, Laffan & Lees 2004). More
importantly, if the data used for prediction have an error
structure differing from that inherent in the modelling
data, then serious prediction errors may result. For
example, the relationship between proximal and distal
variables may change significantly with location
(Austin 2002). Subtle errors related to this phenom-
enon are particularly likely when predictions are made
from a model describing a natural distribution in one
location to some new region, as in pest risk assessment.
Typically, the relationship between the measured vari-
ables and the true underlying processes will vary signi-
ficantly over large distances and errors will result.

  

With a well-specified model and an adequately large
random sample from the population, the statistical
component of  error is easily quantified and incor-
porated into predictions. But in most practical settings,
the data sample is rarely random and the model not
fully adequate, and these factors combine to induce
error in the final predictions. We consider these sources
of error in the following sections.

Does our model approach the true model?

To consider the impacts of specification error on the

model it is useful to review briefly the statistical theory
describing the process of fitting models to data. Most
studies conclude that, provided the ‘true’ model is nested
within the model specification, the model estimated
using maximum likelihood or other consistent techniques
will converge to the true model as the sample size increases
(Welsh 1996). As an example, if the relationship between
the conditional mean of y given x is linear, regression
using a linear model will be arbitrarily close to the
population values if  the sample is sufficiently large.

If the ‘true’ relationship is not contained in the model,
then over- and underestimation will typically result in
different parts of the covariate space. For example, if
the true relationship is quadratic and the fitted model
is linear then errors are inevitable, will not be corrected
by an increased sample size and will lead to errors in
inference and prediction.

How do we estimate the response surface?

With the assumption of equilibrium described earlier,
we consider the possible response surface shapes in
environmental space as maps showing how the proba-
bility of presence of a species varies with the environ-
mental variables. As an example, consider the response
surface shown in the top panel of Fig. 1. This plots a
hypothetical example where probability of occurrence
depends on rainfall and temperature, and there is a sig-
nificant interaction between them. Note that there are
still marginal relationships between the variables and
the response (lower panels; Fig. 1). In this simple case
we can try to model the joint distribution in a number
of ways. Heuristically, we can attempt to estimate the
full response surface using some technique. Alterna-
tively, it can be approximated by using functions of the
marginal relationships.

Practical situations are more complicated. In fitting
a model, we are trying to estimate the response surface
that gives the best spatial predictions. In its most com-
plex form, this is a k-dimensional surface where k is the
number of predictor variables. In practical terms, how-
ever, estimation of such surfaces for values of k > 2 (i.e.
three-way and above interactions) is difficult given the
sizes of data sets and species prevalence typically avail-
able in many studies (100–1000 observations), because
the number of parameters is prohibitive given the
sparseness of the data.

Different techniques approach the problem of trying
to estimate a complex surface with limited data in dif-
ferent ways, but all try to approximate the surface by
simple components. In climate envelope approaches,
the shape of the response surface is mostly ignored. The
use of percentiles implies a belief  in core and non-core
habitat, and presupposes unimodality of  response
pattern to a gradient. Envelope approaches seek to
delineate the non-zero components of  the response
along each gradient. The BIOCLIM model assumes
that this region is rectilinear and orientated with the
environmental axes. Distance-based approaches use
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observations close to the point that is being predicted
to assess suitability. Thus they attempt to model the
response surface as a local smoothing. This non-
parametric element of their construction is one of their
attractions.

Regression approaches model the response surface
parametrically in GLM, via smooth terms in GAM and
via step functions with regression trees. With limited
data, the number of  parameters that can be estimated
is limited, so the problem becomes one of finding a
parameterization that produces a reasonable approxi-
mation to reality. This can be a complicated undertak-
ing. Ecological theory supports several beliefs about
the nature of species’ response to gradients. The idea
that species may have optima along environmental gra-
dients is well accepted (Austin, Nicholls & Margules
1990; Austin 2002). It is plausible that in many circum-
stances a species’ response to a continuous covariate is
typically smooth (i.e. a small change in the covariate
produces a small change in the response). Often, sig-
nificant interactions will exist between variables for
physiological reasons.

Unfortunately, this simple analysis of the nature of
response curves is not particularly useful in practice.
Errors in data complicate the picture. Missing covariates
can produce discontinuities in the apparent surface.
They can also produce multimodalities and other
unexpected effects. To understand this, consider a miss-
ing covariate that has a strong impact on a species’ dis-
tribution. For example, the missing covariate may be a
soil classification, and the species may not survive if  the
soil is a particular type. If  this unsuitable soil type is
correlated with a certain range of the available covari-
ates, the species may exhibit a multimodal response. In
the most extreme case, when the species cannot grow
within a restricted range of the covariate space, a dis-
continuity may result. The result is that the response
surface that we have to model with the available
covariates is more complex than the simple surfaces
implied by abstract vegetation theory.

These observations give an interpretation for why
flexible regression-based techniques that can fit complex
surfaces, for example GAM and boosted regression
trees (Friedman, Hastie & Tibshirani 2000), gener-
ally give improved model performance. A range of
information–theoretic (Burnham & Anderson 2002) and
resampling (Hastie, Tibshirani & Friedman 2001)
approaches can be used to control overfitting and to
balance effectively the trade-off  between model com-
plexity and predictive power. Even so, errors in model
specification are essentially ubiquitous and the majority
of models are typically simpler than the real-world
complexities they seek to describe. The impact of this
simplification will of course depend on the extent and
magnitude of the discrepancies. If  a species is in equi-
librium with the environment and all ‘significant’ vari-
ables are included in the analysis, then the failure of the
specification leads to over- and underestimation of the
response at different points in the covariate space. This

Fig. 1. A response surface (top) showing the response of the
species to rainfall (rf) and temperature (temp). The lower two
panels show its marginal relationships (y axis = probability of
presence, p).
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is the same as fitting a line to a quadratic response.
Assessment of the magnitude of these errors can be
achieved by graphical display of the distribution of model
residuals in both environmental and geographical space.

Techniques vary widely in their ability to model non-
linearities and interactions (Moisen & Frescino 2002;
Leathwick et al. 2006) but use of flexible techniques
does not guarantee robust model fitting. Unfortunately
this also requires a level of judgement that is generally
only obtained through familiarity with a technique and
with the ecology of  the species (Austin, Nicholls &
Margules 1990). Burgman, Lindenmayer & Elith (2005)
call this modelling frame uncertainty.

     
 -

Interactions between data and model errors can be
illustrated through the impacts of missing covariates
on model robustness. In this context a missing covariate
is a variable that would provide additional predictive
power if  it was known and observed, for example soil
attributes, which can have a major impact on vegeta-
tion but which are often poorly described. More subtly,
the covariates in most models are typically coarse

correlates with the more proximate factors that control
distributions (Austin 2002). The use of such a correlated
variable assumes that the correlation structure between
the fitted predictor and its more proximate components
is stable throughout the sampling domain. Departures
from this will result in spatially correlated errors and,
given the difficulties in assessing errors with binary
point data, there is a danger that small global errors
may lead the analyst to overlook the magnitude of local
errors. Significant spatial patterning in the residuals,
i.e. large local errors, are also likely if  missing covariates
have a non-random spatial distribution, a feature com-
monly observed, for example, in the distributions of
soil attributes. A simple indicative example is shown in
Fig. 2 and we summarize the impacts in Table 1.

This spatial patterning effect has been noted by
numerous authors and is typically described in terms of
spatial autocorrelation in the regression residuals. Miss-
ing covariates are only one source of spatially autocor-
related residuals (Legendre 1993). Typical solutions to
the presence of spatially autocorrelated residuals include
the use of more complicated models, such as autologistic
regression (Augustin, Mugglestone & Buckland 1996)
with geographical space as a covariate, or use of
techniques such as geographically weighted regression

Table 1. Summary of types of model error and impact of missing covariates
 

 

Model Model form error Impact of missing covariates Modelling recommendation

BIOCLIM High. Assumes independent 
rectilinear bounds and that 
all variables are known 
Will cause overprediction 
with few variables and 
underprediction with 
many variables 

Increase area predicted 
introducing spurious 
predictions

Distance-based Medium. Estimates model 
non-parametrically 
but difficulties arise with 
data density and 
the definition of distance 

Algorithm will not choose 
the appropriate data points 
as being ‘close’ and biases 
will result 

Work needs to be performed 
to assess best distance measure. 
Cross validation?

Regression High–low. Flexible 
techniques exists such as GAM 
and boosting. Simple model 
may suffer from considerable 
specification bias

Spatial correlation 
in residuals

Use flexible models unless clear 
theoretical reasons to ignore. 
Consider spatial patterns of errors 
to diagnose models problems. 
Truncate response range

Fig. 2. An illustration of the impact of a missing covariate on modelled predictions of species abundance. The x axis is in
geographical space and circles represent the observations. When the covariate is missing, predictions are averaged across both soil
types.
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(Fotheringham, Brunsdon & Charlton 2002). While
these approaches are designed to detect spatial vari-
ation in the relationship between response and predictor
variables, the danger is that such variation may be fitted
to compensate for a missing predictor with strong spa-
tial pattern. Use of these techniques therefore requires
a clear understanding of the ecological processes that
are being modelled, i.e. the effectiveness of these tech-
niques must be assessed in the light of the ecological
plausibility of  the model that they are used to fit. In
particular, while the incorporation of geographical space
in the regression may be justified, it may also represent
an ad hoc solution that lacks theoretical justification,
which may therefore introduce more model error than
it removes. Finally, the lack of common elements in the
effects of missing variables makes the prescription of
any general solutions difficult.

Discussion

We have outlined common sources of error. Modelling
data have frequent limitations: comprehensive, purpo-
sive sampling is rare; conservation often has to deal with
data sets compiled from sources collected for other
purposes; it is difficult to get good data for rare species;
key environmental variables may be undescribed or
even unknown. Further, there are inherent limitations
to our ability to model species’ distributions because
they are so complex. Environment is clearly important
in many settings, but species’ responses to environment
depend on the competitive context, and this in turn varies
given the dynamic nature of species’ distributions, the
effects of natural and human disturbance, and the com-
plicating effects of variation in the speed with which
different species re-occupy sites from which they have
been displaced.

The combined effect is that we are usually trying to
model a complex response surface. This helps us under-
stand why regression-based techniques such as GAM,
MARS, boosted regression trees (Hastie, Tibshirani &
Friedman 2001) and maximum entropy modelling
(Phillips, Anderson & Schapire 2006) have, on average,
improved performance compared with simpler meth-
ods. These techniques are more flexible and can better
approximate the complex patterns seen in practice. For
example, GAM can much more robustly describe the
non-linear and/or skewed ecological responses that are
typical of species distributions, compared with GLM
(Yee & Mitchell 1991). MARS also has the flexibility
to fit complex response shapes but does so efficiently
with respect to the number of parameters used to fit the
model, and is also capable of fitting local interactions
(Leathwick et al. 2006). Boosted trees and other
emerging methods are able to fit complex response
surfaces and have improved ability to fit interactions in
an efficient manner (Friedman & Meulman 2003). The
simpler methods, such as climate envelopes, do not
have the capacity to fit complex response surfaces and
are not suitable for this task.

Perhaps the most challenging aspect is that distri-
butions are affected by processes operating both in en-
vironmental and geographical space. Consistent responses
can be observed in particular environments and these
may occur repeatedly in many geographical locations.
In contrast, other processes linked to disturbance and
dispersal operate relatively independently of environ-
ment and may be strongly clustered geographically.
This leads to our distinction between global error and
local error. It emphasizes two issues. First, model evalu-
ation needs to explore the spatial pattern of errors, and
research on efficient methods to achieve this would be
particularly useful. Some could be simple, for example
mapping regression residuals or calculating ROC areas
separately for different geographical areas within a
study region. Secondly, the major modelling challenge
is that apparent geographical patchiness may reflect
either the effect of disturbance-related processes that
are independent of environment, or missing environ-
mental effects that are geographically patchy.

Given these complexities, the most robust modelling
approaches are likely to be those in which care is taken
to match the model with knowledge of ecology, and in
which each is allowed to inform the other, i.e. models
should be constrained to be congruent with ecological
knowledge, with successive improvement in model
specification that is driven by increasing knowledge of
the ecology of the system (Leathwick & Whitehead 2001).
Ecological understanding must also be able to be informed
by the modelling outcome, recognizing the ability of
models to raise new questions about ecology by elucidat-
ing subtle and/or complex relationships. In this latter
respect, model misfit may be as informative as model fit.

When species distribution models are used in con-
servation and planning, an understanding of error can
inform two broad paths of action (Edwards & Fortin
2001). The first views uncertainty as an obstacle that
needs to be reduced or removed. This leads to actions
directed at improving the data (removing errors,
collecting more samples, refining the variable set) or
changing the model structure (seeking more powerful
modelling techniques). The second views uncer-
tainty as a fact of life, a phenomenon that needs to be
understood, characterized and sensibly factored into
decision-making. Typical outcomes of this view include
explorations of error, sensitivity analyses and decision
strategies that aim to be robust to likely errors (Burgman,
Lindenmayer & Elith 2005). Both perspectives are
valid and not necessarily mutually exclusive, and in this
paper we have given examples from each of them.

The practical implications of this paper are clear. If
limited data are available, only simple models can be
considered, but while these models avoid problems
associated with overspecification they will almost always
involve significant spatial error. If  sufficient data are
available, flexible regression-based techniques capable
of fitting non-linear relationships should be used, as
these allow for the complicated response surfaces that
are frequently observed in distributional data. Careful
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evaluation of the geographical and environmental devi-
ations of a model from validation data will contribute
substantially to the evaluation of ecological ideas and
respecification of models.
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