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Summary

1.

 

Species distribution models could bring manifold benefits across ecology, but require
careful testing to prove their reliability and guide users. Shortcomings in testing are
often evident, failing to reflect recent methodological developments and changes in the
way models are applied. We considered some of the fundamental issues.

 

2.

 

Generalizability is a basic requirement for predictive models, describing their capacity
to produce accurate predictions with new data, i.e. in real applications beyond model
training. Tests of generalizability should be as rigorous as possible: ideally using a large
number of independent test sites (

 

≥

 

 200–300) that represent anticipated applications.
Bootstrapping identifies the role of overfitting of the training data in limiting a model’s
generalizability.

 

3.

 

Predictions from most distribution models are continuous variables. Their accuracy
may be described by discrimination and calibration components. Discriminatory ability
describes how well a model separates occupied from unoccupied sites. It is independent
of species prevalence and is readily comparable between models. Rank correlation co-
efficients, such as the concordance index, are effective measures.

 

4.

 

Calibration describes the numerical accuracy of predictions (e.g. whether 40% of
sites with predicted probabilities of 0·40 are occupied) but is frequently overlooked in
model testing. Poor calibration could mislead any conservation efforts utilizing models
to estimate the ‘value’ of different sites for a given species. Effective assessments can be
made using smoothed calibration plots.

 

5.

 

The effects of  species prevalence on nominal presence–absence predictions are
well known. The currently preferred accuracy measure, Cohen’s 

 

κ

 

, has weaknesses. We
argue that mutual information measures, based in information theory, may be more
appropriate.

 

6.

 

Synthesis and applications

 

. Model evaluation must be informative and should
ideally: (i) define generalizability in detail; (ii) separate the discrimination and calibration
components of accuracy and test both; (iii) adopt assessment techniques that permit
more valid intermodel comparisons; (iv) avoid nominal presence–absence evaluation
where possible and consider information-theoretic measures; and (v) utilize the full
range of techniques to help diagnose the causes of prediction problems. Few modellers
in applied ecology and conservation biology satisfy these needs, making it difficult for
others to evaluate models and identify potential misuses. The problems are real, and if
uncorrected will damage conservation efforts through the inaccurate assessment of dis-
tribution and habitat preferences of important organisms.
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Introduction

 

Species distribution models are proposed with increas-
ing frequency throughout ecology and conservation
biology. Some are focused on improved understanding
of  species’ habitat requirements, whereas many are
intended as applied predictive tools (Rushton, Ormerod
& Kerby 2004). The potential benefits are manifold
(Manel, Williams & Ormerod 2001, table 1), and as a
consequence distribution modelling is frequent in applied
ecological journals. In the 

 

Journal of Applied Ecology

 

,
around 10% of  papers over the 5 years 1999–2003
incorporated distribution modelling. Methodological
developments are a frequent theme amongst the 

 

Journal
of Applied Ecology’s

 

 papers (Buckland & Elston 1993;
Manel, Williams & Ormerod 2001; Suárez-Seoane,
Osborne & Alonso 2002; McPherson, Jetz & Rogers
2004), culminating in a recent special profile (Volume
41, issue 2; Rushton, Ormerod & Kerby 2004; Frair 

 

et al

 

.
2004; Gibson 

 

et al

 

. 2004; Jeganathan 

 

et al

 

. 2004; Johnson,
Seip & Boyce 2004; Cabeza 

 

et al

 

. 2004; Engler, Guisan
& Rechsteiner 2004). Across ecology more generally,
the testing of models developed from presence–absence
data has been a recurrent focus (Fielding & Bell 1997;
Pearce & Ferrier 2000; Manel, Williams & Ormerod 2001;
Boyce 

 

et al

 

. 2002) and this forum represents a further
contribution.

Estimates of predictive performance may be used
during model development and to assess final model
quality (Hastie, Tibshirani & Friedman 2001). The former
is illustrated by measures such as Akaike’s information
criterion, which facilitate model selection by estimating
the relative error rates for alternative models built using
the same data set (Hastie, Tibshirani & Friedman 2001).
Our focus is on the latter: estimating the predictive abil-
ity expected from a model in subsequent predictive
applications. Such testing involves comparing a sample
of a model’s predictions against the observed species’
distributions. Conceptually this is very simple and rep-
resents an effective and universal basis for testing appli-
cable to all types of distribution model. It can provide
meaningful estimates of model accuracy and describe
how it varies according to the conditions under which
the model is applied, providing essential guidance to
both the developers and users of a model. Analyses of
test performance may help to diagnose problems
(Miller, Hui & Tierney 1991). Moreover, testing pro-
vides an opportunity to convince ecologists and end
users of a model’s value by demonstrating its efficacy
(Pearce, Ferrier & Scotts 2001).

Whilst conceptually simple, model testing incor-
porates a range of technical issues regarding which inten-
sive study has been carried out over the last 20 years.
Much of this has occurred in medical statistics, and is
spread across a wide range of sources, making overall
syntheses in ecology important. Even in the short time
since some of the seminal ecological model evaluation
papers were published (Fielding & Bell 1997; Pearce &
Ferrier 2000), important developments have occurred.

For example, a recent discussion in medicine has clar-
ified key concepts in testing the wider applicability of
distribution models (Justice, Covinsky & Berlin 1999),
whilst the recent paper of McPherson, Jetz & Rogers
(2004) necessitates a reconsideration of the use of the 

 

κ

 

statistic in ecology, an issue that was widely thought to
be resolved. In addition, there have been subtle shifts in
the way species distribution models are used. Predictions
of the probability of species occurrence are increasingly
favoured over nominal presence–absence predictions,
and this has implications for model evaluation. In this
forum we provide an up-to-date discussion of both
general concepts and technical issues in the evaluation
of species distribution models. Our aims were to raise
awareness of  important issues that may have made
limited inroads into ecology, and provide recommendations
regarding what appears to be current best practice.

 

Generalizability, test data and the role of 
resampling methods

 

Generalizability is a model’s capacity to predict a species’
distribution as accurately with new data as it does with
its own training data (Justice, Covinsky & Berlin 1999).
Equally, if  quantifying species’ habitat preferences is
the primary aim of a model (cf. prediction), generaliz-
ability describes the broader applicability of the corre-
lations modelled in the training data. It is a vital property
for all predictive species distribution models, as their
basic purpose is to be applied to new data. Whilst test-
ing cannot provide absolute proof that a model will
generalize to a subsequent application, it should be
possible to obtain good evidence of its likely efficacy.
The strength of such evidence relies directly upon the
test data that are collected.

 

 

 

Independent data are the only rigorous test of a model’s
generalizability (Chatfield 1995). Surprisingly little
work has been carried out to identify the basic require-
ments for an independent test set (Altman & Royston
2000), but two issues can be highlighted. The first is to
maximize the data’s representativeness of the applica-
tions anticipated for a model. Such applications may
differ from the training data in a range of ways (Table 1)
and, because the effects of such differences cannot be
predicted 

 

a priori

 

, representative test data are required.
For models quantifying habitat preferences, these appli-
cations are the range of conditions over which there is
a desire to draw inference from the model. The second
requirement from a test set is a sufficient sample size to
provide precise estimates of performance.

 

Representativeness of test data

 

The ideal way to measure a model’s generalizability is
to collect test data from each of its proposed applica-
tions, thereby simulating its use. For example, a sample
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of test sites could be collected from every island to which
a model might be applied (Marsden & Fielding 1999).
Successful prediction would provide a high degree of
confidence in the model’s subsequent applicability and/
or the generality of its conclusions. To make testing more
informative it may be valuable to sample some areas
densely, ideally blocks of contiguous sites, to identify
any ‘biotic’ errors (Fielding & Bell 1997). Processes
such as territoriality may affect species’ occurrences at
neighbouring sites, despite equally suitable physical
habitat, leading to characteristic spatial error patterns
(Fielding & Bell 1997). Relatively dense sampling would
be required to characterize such phenomena and to
provide appropriate guidance to the model’s users.

Unfortunately, models are often required for situa-
tions where they cannot be tested directly, presenting a
major challenge. Common examples are the prediction
of future distribution patterns, such as species’ responses
to climate change, and predictions in very remote areas,
for which resources are insufficient to allow test data
collection. In such situations it will never be possible
to attain the same level of confidence as sampling the
actual applications. Nevertheless, if  a model is shown
to generalize successfully to test data collected under a
wide range of conditions, greater confidence may be
obtained in its generalizability to situations that cannot
be sampled (Justice, Covinsky & Berlin 1999). Even
testing that seems to be a poor surrogate for subsequent
model applications can often identify weaknesses in a
model that are later confirmed when representative
data are obtained (Charlson 

 

et al

 

. 1987).
On this basis, we recommend a two-stage approach

to testing generalizability when actual applications can-
not be sampled. The first stage is to test the model as
widely as possible, incorporating situations that resemble
future applications as closely as possible. The second
stage is to state clearly the conditions under which the
model was tested, compared with its anticipated appli-
cations. This should indicate the rigour of testing and
make limitations to generalizability testing explicit.

Resampling methods (e.g. bootstrapping; Verbyla &
Litvaitis 1989) may be the only feasible option for model
testing where resources would otherwise have to be
diverted from collecting training data, or when very few
independent data could be collected such that accuracy
estimates would be unreliable (see below). Resampling
can also be useful when models are built primarily to
investigate species–environment correlations (cf. pre-
diction) if  a data set covers the full range of conditions
over which inference is of interest (e.g. samples taken
across the UK; Gates & Donald 2000). Resampling’s
weakness is that it only examines model performance
under identical conditions to the training data (cf. Table 1).

Independent test data should focus upon aspects of
generalizability that can be tested. For example, if  a
model is intended to predict future distributions in a
different region from the training data set, test data
collected from that region would allow geographical
generalizability to be tested, even though combined
spatiotemporal effects could not be tested. Alterna-
tively, an analogue of the application could be tested,
such as using historical data to demonstrate temporal
generalizability, albeit not to the required time period,
on a model required to predict future distributions.
Cheddadi, Guiot & Jolly (2001) illustrate this principle,
using data from the pollen record to test a model relating
Mediterranean vegetation to climate, prior to making
predictions of future distributions.

 

Size of the test set

 

The size of a test set is critical in ensuring that reliable
estimates of model accuracy are obtained and differences
in performance between models can be identified. Large
sample sizes are often required to obtain precise estimates
of the accuracy statistics used with species distribution
models. For example, differences of 0·05 in the area under
the receiver operating characteristic (ROC) curve (AUC)
statistic may reflect major differences in the predictive
ability of two models, yet several hundred sites may be

Table 1. Potential differences between training data and the subsequent applications for a distribution model. Partly adapted
from Justice, Covinsky & Berlin (1999)
 

Temporal separation
Repeat use of a model at subsequent intervals (e.g. different breeding seasons; Boyce et al. 2002) or the prediction of historical or 
future distributions (e.g. under alternative climate change scenarios; Berry et al. 2002)

Geographical separation
Extrapolation to new regions (e.g. different islands; Fielding & Haworth 1995) rather than interpolation between training sites 
(e.g. Suárez-Seoane, Osborne & Alonso 2002)

Different regions of environmental space
Often related to differences in geographical space. Different ranges of individual environmental gradients or more complex suites 
of changes (e.g. separate streams with different fluvial characteristics; D’Angelo et al. 1995)

Deployment factors
Miscellaneous factors that may affect the performance of a model, such as different users (e.g. the  system; Wright 1995) 
or different data sources/collection methods (e.g. survey data collected for other purposes; Pearce, Ferrier & Scotts 2001)
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required to identify this statistically (Cumming 2000;
Steyerberg 

 

et al

 

. 2003). Similar sample sizes may be
required to separate 

 

κ

 

 statistics (Donner 1998). For both,
the precision of estimates increases with the overall
sample size, as species prevalence approaches 50%
and as the accuracy of the model increases (Hanley &
McNeil 1982; Donner 1998; McPherson, Jetz & Rogers
2004). These relationships make sample size guidelines
difficult to formulate, but suggest that 200–300 sites or
more are desirable for a test set. Harrell (2001) suggests
that a test set should contain at least 100 sites of the less
common event (present/absent). Test set size also relates
to the generalizability desired from the model. Greater
numbers of test sites are likely to be necessary where
wider generalizability is needed from a model. This
makes daunting demands on field data collection, yet
may be essential to provide robust assessments of pre-
dictive performance.

 

    


 

Where limits to generalizability are identified during
model testing, it is important to analyse these further,
both to diagnose the causes and facilitate improve-
ments to the model, and to guide users about when and
where it is safe to apply the model. Two basic factors
may be implicated in poor generalizability: overfitting
and a failure to transport to the differing conditions
experienced in new data (Justice, Covinsky & Berlin 1999).

 

Overfitting

 

Overfitting is a model development issue, occurring
when idiosyncrasies in the training set are modelled in
addition to the underlying species–environment rela-
tionships (Harrell, Lee & Mark 1996). This results in a
misleadingly good fit to the data. In statistical terms,
the modelled relationships will not accurately represent
those in the population from which the training data
were sampled. The potential for overfitting increases
when more flexible modelling methods are used (e.g.
generalized additive models compared with their gen-
eralized linear equivalents), when a greater degree of

variable selection is employed (e.g. all subsets regres-
sion) or when fewer training data are available (Harrell,
Lee & Mark 1996).

Independent test data, where conditions differ from
training (Table 1), measure overall generalizability rather
than addressing overfitting specifically. Resampling
methods, in contrast, derive estimates of model per-
formance from the training data, measuring perform-
ance under the training conditions. As a consequence,
resampling methods solely address overfitting. Fre-
quently, overfitting is a major cause of limited generaliz-
ability, enabling resampling to identify problems prior
to the expense of collecting specific test data (Charlson

 

et al

 

. 1987; Harrell, Lee & Mark 1996). Equally, good
resampling performance may provide the necessary
justification to pursue model development further,
including the expense of test data collection (Verbyla &
Litvaitis 1989).

A review of different resampling methods is provided
by Verbyla & Litvaitis (1989). In general, jack-knifing
and bootstrapping are the most useful methods, espe-
cially when the training set is relatively small (Efron &
Gong 1983; Efron 1983). Bootstrapping has the advan-
tage over jack-knifing of producing large ‘training’ and
‘test’ data sets at every iteration, making it easier to cal-
culate many model accuracy statistics. Several boot-
strapping methods are available, ranging in complexity.
Work in medicine using models analogous to those in
ecology suggests that one of the simplest approaches
(Table 2) performs as well as more complicated ones
(Steyerberg 

 

et al

 

. 2001).

 

Transportability of the model

 

Transportability relates to the consistency of the under-
lying species–environment relationships from the con-
ditions under which a model was trained to those under
which the model will be applied. It therefore considers
whether a model can maintain its accuracy when the
prevailing conditions change, compared with over-
fitting, which only considers whether the model provides
an unbiased fit under the training conditions (Justice,
Covinsky & Berlin 1999). In terms of quantifying species–
environment relationships, transportability describes

Table 2. A simple bootstrapping method, compatible with a wide range of accuracy measures, for estimating the predictive
performance of distribution models. In contrast to other bootstrap methods, which make direct estimates of model accuracy,
overfitting in the model development process is estimated and then used to correct the biased accuracy estimate made with the
training data. After Efron (1983); Harrell, Lee & Mark (1996); Steyerberg et al. (2001)
 

1. Estimate accuracy statistic in the training data
2. Generate a bootstrap of equal size to the training set by sampling training data with replacement
3. Fit the model in the bootstrap using the same methods as employed to fit it in the original training data; this includes the 

same variable selection strategy, where applicable
4. Estimate the accuracy statistic within the bootstrap resample. This simulates an accuracy estimate made with the training data
5. Using the same model as in step 4, predict the species distribution in the original training set and estimate the accuracy 

statistic. This simulates the use of independent test data
6. Overfitting = (training data estimate in step 4) – (test data estimate in step 5)
7. Repeat steps 2–6 for 100–200 bootstraps. Average the values calculated in step 6 to provide the overall estimate of overfitting
8. Subtract overfitting estimate from the training data estimate in step 1 to provide an optimism-corrected value



 

724

 

I. P. Vaughan & 
S. J. Ormerod

 

© 2005 British 
Ecological Society, 

 

Journal of Applied 
Ecology

 

, 

 

42

 

, 
720–730

 

the range of conditions over which conclusions are valid.
Failure to transport, and consequently to generalize, to
a new application could, for example, result from the
presence of novel factors influencing distribution (e.g.
different predators or competitors) or ecotypic variation
between regions of interest (Oostermeijer & van Swaay
1998).

Unlike overfitting, problems with transportability
cannot be diagnosed directly. Instead they are derived
by comparing the accuracy of  a model when applied
to both its training and test data, and when tested by
resampling (Justice, Covinsky & Berlin 1999). If  the
performance of a model decreases from its training data
to independent test data by a greater amount than can be
accounted for by overfitting, transportability problems
are implied.

As a further stage in analysing generalizability, test
data should be used to produce a detailed summary
regarding the conditions under which it is ‘safe’ to
apply a model and what degree of accuracy might be
expected. These aims can be furthered by the methods
used to assess model fit (Miller, Hui & Tierney 1991).
Nicholls (1989) used regression residuals in the training
data to identify environmental conditions under which
a predictive model performed poorly. For probabilistic
models, such methods may be generalized to a test set
by fitting a logistic regression model to relate predic-
tions to the observed presence–absence (see measuring
calibration below) and then calculating regression
diagnostics (Miller, Hui & Tierney 1991). Alternatively,
the accuracy of individual predictions may be quanti-
fied by the squared difference between each prediction
and its observation (Brier 1950). Groups of sites for
which the accuracy is low, or specific conditions under
which accuracy is degraded, may help to diagnose
transportability problems.

 

Selection of accuracy statistics: probabilistic 
predictions

 

Many accuracy statistics of varying utility have been
applied to species distribution models and much has
been published about their desirable properties (Forbes
1995; Fielding & Bell 1997; Fielding 2002). Two pro-
perties in particular are worth highlighting. The first is
the ability to describe model accuracy in terms of the
observed predictive performance. A statistic measuring
the probability of making the correct prediction at a
site, for example, is more useful than many goodness-
of-fit measures (e.g. 

 

R

 

2

 

). The latter statistics describe
overall prediction–observation agreement yet are diffi-
cult to equate to the observed predictive performance.
The second, and perhaps most important, property for
accuracy measures is generality: the ability to compare
accuracy meaningfully between the same model in dif-
ferent applications or between models developed for
different species or with different training and test data.
Such comparisons require accuracy statistics either
largely independent of, or possibly corrected for, poten-

tially confounding properties of the particular data
used to test a model, such as species prevalence (Miller,
Hui & Tierney 1991; Manel, Williams & Ormerod 2001;
Fielding 2002). Minimizing the reliance upon test set
properties represents a substantial challenge and most
accuracy measures used to evaluate species distribution
models are deficient in this respect. Flawed measures
may result in attempts to compare models for different
species, or from different data sets, being confounded
by statistical artefacts (McPherson, Jetz & Rogers 2004).

Many distribution modelling methods produce pro-
babilistic, or other types of quantitative, predictions, at
least as their initial outputs prior to dichotomization
either by software or the user (Fielding 2002). Such
predictions are often considered as estimates of habitat
suitability or quality (Buckland & Elston 1993). They
convey more information of conservation value than
nominal presence–absence predictions, indicating the
suitability of individual sites, rather than dividing all
sites crudely into two opposing categories that are likely
to disguise a wide range of habitat variation. Critically
for model testing, it is straightforward to describe the
accuracy of quantitative predictions in a way that can
be interpreted generally (cf. nominal presence–absence
predictions): by distinguishing two components of
accuracy, discriminatory ability and calibration, the
role of a species’ prevalence can be separated from the
underlying predictive ability of a model. The measure-
ment of these two components will be considered in turn.

 

 

 

Discriminatory ability is the capacity of a model to dis-
tinguish occupied from unoccupied sites (Harrell, Lee
& Mark 1996), manifested ultimately as the ability to
place sites in rank order of probability of occupancy or
suitability for a species. Discrimination is therefore the
fundamental component of prediction accuracy, equat-
ing to ‘ecological skill’ in detecting differences between
sites that correlate with species’ distributions. It is readily
comparable between studies, being an intrinsic property
of a model that is independent of species’ prevalences
and other characteristics of particular data sets.

Non-parametric correlation coefficients are effective
measures of  discriminatory ability for probabilistic
models (Miller, Hui & Tierney 1991). By comparing
the rank orders of predictions with observed presence–
absence, they focus solely upon discrimination. Para-
metric correlation coefficients, in contrast, incorporate
the size of the discrepancies between individual predic-
tions and observed presence–absence (Miller, Hui &
Tierney 1991). This makes them heavily reliant upon
the particular data set used to test a model. For example,
if  the habitats in one data set are polarized between
highly suitable and highly unsuitable, and in another
are all of low to moderate suitability, a model that
ranks sites equally well in both cases could have a very
different average prediction–observation discrepancy.
Consequently, whilst a rank correlation coefficient would
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be the same in both cases, a parametric one could be very
different, erroneously suggesting different discrimina-
tory ability and confounding intermodel comparisons.

A range of rank correlation coefficients could be used
to assess discriminatory ability, including Somers’ 

 

D

 

XY

 

,
Goodman and Kruskal’s 

 

γ

 

 and Kendall’s 

 

τ

 

 (Harrell,
Lee & Mark 1996; SAS Institute 1999). The concordance
index (

 

c

 

-index; Harrell 

 

et al

 

. 1982) is probably the most
useful for distribution modelling because it is equi-
valent to the Wilcoxon statistic and the non-parametric
AUC statistic used increasingly in ecology (Hanley &
McNeil 1982). Models developed for their quantitative
predictions can thus be readily compared with those
whose predictions will be dichotomized, and so for
which ROC methods may be useful in selecting a clas-
sification threshold. Concordance is an intuitive meas-
ure, indicating the probability that a model will place
two sites (one occupied, the other unoccupied) selected
at random in the correct rank order of likelihood of
occupancy (Harrell 

 

et al

 

. 1982). This means that chance/
random performance has a clear definition, 0·5, and
perfect discrimination is unity.

The major weakness of non-parametric correlation
coefficients is the poor efficiency of relying upon rank
orders, necessitating large test sample sizes. A particular
problem arises when the prevalence is very low (« 50%),
as with the rarer species often emphasized in conserva-
tion biology. Only paired occupied–unoccupied sites
are used to calculate 

 

c

 

, with the result that large increases
in the size of a test set may be required to increase the
effective sample size for calculating the statistic. The
strength of this effect is demonstrated by the large impact
that small changes in prevalence have near the extremes
for a fixed sample size (McPherson, Jetz & Rogers 2004).

 



 

In contrast to discriminatory ability, calibration is
concerned directly with species prevalence, both for a
complete application (or test set) and for subsets of sites.
It describes the numerical accuracy of the predictions
(Harrell, Lee & Mark 1996): whether, for example, sites
given predicted probabilities of 0·60 have a 60% chance
of being occupied and whether this is twice as likely as
for sites given labels of 0·30. If  the predictions are not
scaled between zero and one, some analogous property
could be considered: whether the habitat suitability
scores are proportional to prevalence, for example.

The importance of testing calibration varies accord-
ing to a model’s intended uses. Often, a model may only
be required to rank sites according to their relative suit-
ability/probability of being occupied: treating its pre-
dictions as being ordinal, rather than quantitative. A
typical example is the selection of the ‘best’ 

 

n

 

% of sites
within an area for wildlife reserve location or targeting
management activities (Pearce, Ferrier & Scotts 2001).
In such instances, a test of discrimination may be deemed
sufficient. If a model is to be used in such a way, however,
the lack of calibration testing should be stated clearly,

and we strongly recommend that predictions be dis-
played as ranked categories to reflect the ordinal nature
of model testing (discrimination). If  values between
zero and one are given, even with a clear statement of
their use solely for ranking sites, there is a risk that in-
experienced users of the predictions could attempt to
interpret them quantitatively.

In recent years, predictions have been used increas-
ingly in a quantitative manner. The clearest example of
this trend is the increasing use of spatial maps to show
the probability of species occurrence/habitat suitability
generated by the proposed model (e.g. Franco, Brito
& Almeida 2000; Suárez-Seoane, Osborne & Alonso
2002; Johnson, Seip & Boyce 2004; Venier 

 

et al

 

. 2004).
Apart from their visual impact, such maps illustrate the
information that quantitative predictions of occurrence
can convey. Aside from using predictions as absolute
estimates of probability of occurrence, sites can be
compared quantitatively, suggesting how much more
likely to be occupied, or suitable for a species, one site
is than another. This should increase the value of
models, allowing sites of similar suitability/probability of
occupancy to be identified and management strategies
to be formulated according to the suitability of different
sites. Probabilities also provide estimates of confidence
in predicted occurrences/absences. It is rare, however,
to see evidence that the calibration of predictions has
been tested (Carroll, Zielinski & Noss 1999). It seems
remarkable that after the repeated emphasis upon careful
model testing, predictions are often used quantitatively
with apparently no attempt to check their numerical
accuracy first. Part of  the problem may stem from
a limited recognition of the distinction between dis-
crimination and calibration, as good discrimination
(e.g. high AUC) need not imply good calibration. Unfor-
tunately, without prior tests of calibration, model predic-
tions could mislead conservation efforts. It is virtually
impossible to estimate what damage may already have
been done to conservation through the use of poorly
calibrated predictions that were considered accurate
following tests that examined only discrimination.

The calibration plot is the basic tool for assessing the
calibration of probabilistic predictions and serves to
illustrate the two major types of calibration error. At its
simplest, a plot of average predicted probability (

 

x

 

-axis)
vs. species prevalence (

 

y

 

-axis) can be drawn for discrete
groups of sites across the probability scale (Fig. 1).
Groups may be formed at regular probability intervals
(e.g. deciles) or for fixed group sizes across the prob-
ability range. Problems with calibration are evident as
deviations in the agreement between predictions and
observations from the 45

 

°

 

 diagonal (Fig. 1).
The first type of calibration error is a consistent

under- or overestimation of a species’ prevalence (Fig. 1).
Such overall bias typically results when a species’ pre-
valence differs from the training data (Pearce & Ferrier
2000). If  predictions are to be subsequently dichot-
omized, such bias will inflate either the false positive or
false negative rate. Fortunately, comparing the mean
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predicted probability to the observed prevalence is an
easy test of overall calibration. Similarly, overall calibra-
tion is easily adjusted to match the species’ prevalence
(Poses 

 

et al

 

. 1986).
The second type of calibration problem is more com-

plicated and may involve probabilities being over- or
underestimated at some sites, well calibrated at others
or a combination of the different types over the prob-
ability scale. These problems may still exist when the
overall calibration is accurate. They often result from
problems in the development of the model but fortu-
nately the pattern of calibration problems may be char-
acteristic. For example, at least in a regression context,
overfitting is indicated by a slope shallower than 45

 

°

 

,
with predictions at the lower end of the probability
scale tending to underestimate prevalence and those at
the upper end of the scale overestimating prevalence
(Fig. 1). This pattern develops because the coefficients
of overfitted models tend to be biased towards more
extreme values (Miller, Hui & Tierney 1991). Calibration
testing can therefore perform an important diagnostic
role.

Harrell, Lee & Mark (1996) suggested the use
of scatterplot smoothers, such as 

 



 

, on the raw
predictions–observations as an improved approach to
producing calibration plots. Such plots are very versa-
tile, because by altering the degree of smoothing used
they can reveal either the overall calibration pattern or
localized problems within the probability range. Over-
all, though, calibration plots are largely subjective,
both in requiring an arbitrary choice of group size or
smoothing neighbourhood, and in judging what con-
stitutes an important calibration problem.

Cox (1958) proposed an objective method for assess-
ing calibration, which includes a basis for testing the
significance of calibration problems. Pearce & Ferrier

(2000) describe the method in detail. It relates the pro-
babilistic predictions (logit-transformed) made by a
model to the observed species presence–absence using
logistic regression. The intercept in the resulting regres-
sion equation addresses the overall calibration, whilst
the slope coefficient considers the pattern of calibra-
tion across the probability scale. A perfectly calibrated
model has an intercept of zero and a slope of one, and
deviations can be tested using likelihood ratio tests
(Miller, Hui & Tierney 1991; Pearce & Ferrier 2000).
The slope is the more useful coefficient, as values between
zero and one are indicative of overfitting (Steyerberg

 

et al

 

. 2000). Minor overfitting in regression models
may be corrected by multiplying their coefficients by
the calibration slope coefficient to ‘shrink’ them back
towards their true values (Steyerberg 

 

et al

 

. 2000).
The use of logistic regression to assess calibration

has some weaknesses. With relatively small sets of test
data, the estimation of regression coefficients may be
unreliable, affecting both the identification and correction
of calibration problems. This again argues for a large test
set. Estimation of the slope and intercept coefficients is
interrelated, making their interpretation difficult
(Seillier-Moiseiwitsch 1996). For example, if  the slope
is different from one, the intercept describes calibration
at a probability of 0·50 rather than overall (Miller, Hui
& Tierney 1991). Finally, the Cox approach cannot
describe non-linear calibration problems (Harrell 2001).

For most applications, calibration plots are more
useful, combining simplicity, ease of interpretation,
flexibility and diagnostic power, such as the ability
to characterize non-linear calibration problems and
identify characteristic patterns (e.g. overfitting). The
exception is where the focus is on assessing the impact
of  overfitting upon calibration and potentially
attempting simple corrections (shrinkage), for which the
Cox approach is more useful.

 

Selection of accuracy statistics: nominal presence–
absence predictions

 

Nominal presence–absence predictions are made in
a range of  ecological situations: where a dedicated
classifier is used to predict presence–absence (e.g. a
classification tree), if a particular application demands
presence–absence predictions (e.g. predicted species lists
for sites) or where a simple approach to the integration
of the costs associated with different prediction errors
is required (Guisan & Zimmermann 2000). Attempts
to test such predictions are intrinsically problematic
especially if, as in most instances, the predictions
result from dichotomizing a quantitative output. Once
dichotomized, it is impossible to separate discrimina-
tion from calibration, making model evaluation dependent
upon the particular test data and confounding inter-
model comparisons. The selection of  a particular
threshold means that accuracy is tested under only one
scenario out of the full range between zero and one
(Pearce & Ferrier 2000) and the less informative nature

Fig. 1. Example of a calibration plot, comparing the predicted
and observed species prevalence within decile probability
intervals. The 45° diagonal (fine dashed line) indicates perfect
calibration. The other two lines represent calibration problems:
overfitting (circular symbols), characterized by a slope < 45°,
and an overall underestimation of a species’ prevalence across
the habitats in the test set (triangular symbols).
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of threshold-dependent testing limits the capacity to
describe generalizability and identify the causes of
prediction errors. We therefore recommend that prob-
abilistic predictions be used whenever possible and, if
nominal predictions need to be derived from quantita-
tive ones, that both threshold independent and depend-
ent measures for a model are given, to provide both a
general assessment of performance and one specific to
the particular application (and threshold).

The inability to separate discrimination from cali-
bration means that accuracy measures for nominal
presence–absence predictions have to compensate for
the influence of species’ prevalences and the associated
problem of  ‘chance’ agreement (Manel, Williams &
Ormerod 2001). Without such compensation, accuracy
estimates can be severely misleading. High overall pre-
diction success (correct classification rate), for example,
can be achieved by a model with little or no predictive
ability if  the prevalence is extreme, e.g. always predict-
ing that a rare species will be absent (Fielding & Bell
1997). This problem appeared to have been overcome
with the adoption of Cohen’s 

 

κ

 

 statistic, which measures
the chance-corrected agreement between predictions
and observations (Fielding & Bell 1997). In a recent
paper, however, McPherson, Jetz & Rogers (2004)
questioned the value of 

 

κ

 

 for distribution modelling.
Two concerns with 

 

κ

 

 are, first, the interpretation of
chance-corrected agreement, and secondly the way in
which ‘chance’ is defined.

Agreement beyond chance is a combined property of
a model’s accuracy and a species’ prevalence in the test
data, making it difficult to compare between studies where
prevalence differs. Such agreement does not describe
how often a model’s predictions are correct and, indeed,
may mislead potential users. At the extremes of preva-
lence the potential for chance agreement is large, mak-
ing it virtually impossible even for an accurate model to
demonstrate much agreement 

 

beyond

 

 chance. This is
evident in the unimodal relationship observed between
prevalence and Cohen’s 

 

κ

 

 (e.g. McPherson, Jetz & Rogers
2004). One consequence is that widely used standard-
ized scales for the interpretation of 

 

κ

 

 (e.g. Landis &
Koch 1977) have little meaning. A second consequence
is that accurate and valuable models for rare species,
recorded at low prevalence, may achieve only moderate

 

κ

 

 values and be disregarded. The only way to make
meaningful intermodel comparisons based upon 

 

κ

 

would be to standardize species’ prevalences across
studies (McPherson, Jetz & Rogers 2004). Where 

 

κ

 

 is
used, a second statistic, such as overall prediction suc-
cess, is required to indicate the overall level of accuracy.

The definition of ‘chance’ also causes problems. The
model of chance selected can strongly influence the
value of 

 

κ

 

 and therefore the assessment made of a
model (Brennan & Prediger 1981). Different models of
chance define different formulations of 

 

κ

 

, and there has
been debate in the social and medical sciences concern-
ing which is most useful (Brennan & Prediger 1981;
Feinstein & Cicchetti 1990). This debate has surfaced

in ecology with a consideration of a form of 

 

κ

 

 some-
times called the 

 

τ

 

 coefficient, in place of Cohen’s 

 

κ

 

(Fielding & Bell 1997; Couto 2003). An alternative,
and perhaps better, approach is to simulate ‘chance’
agreement directly using randomization testing (Olden,
Jackson & Peres-Neto 2002).

Given these potentially serious limitations, measures
other than 

 

κ

 

 may be preferable. Paired sensitivity and
specificity measures are often used to summarize med-
ical test performance, are independent of prevalence
and can be calculated with and without correction for
chance agreement (Brenner & Gefeller 1994). The use
of two measures to describe performance may further
complicate intermodel comparisons, however. If  both
sensitivity and specificity vary between models it can be
difficult to say which models are better (Glas 

 

et al

 

. 2003),
especially as the relative importance of sensitivity and
specificity may vary between applications. Another
measure widely used in medicine is the odds ratio. It has
seen little application in ecology, largely because of the
problems associated with its calculation when the con-
fusion matrix contains zero values (Manel, Williams &
Ormerod 2001). This can be overcome with a simple
continuity correction, adding 0·5 to each of the cells in
the matrix (Forbes 1995). The odds ratio provides a
definition of chance performance (unity), rather than
attempting to correct for it. Unfortunately, at extremes
of prevalence, commonly encountered with rare species,
small changes in accuracy can have large effects upon
the odds ratio, exaggerating agreement and making it
difficult to interpret (Kraemer 2004).

A more productive line of research may be to invest-
igate information-theoretic methods which, by provid-
ing an alternative paradigm for model evaluation, may
allow more general model comparisons. Rather than
attempting to describe classification accuracy directly,
information-theoretic measures aim to quantify the
amount of information that a set of predictions pro-
vides about their matched observations (Finn 1993;
Forbes 1995). This information can also be considered
as the information that the observations provide about
the predictions, and so is denoted mutual information
(Forbes 1995). If  a model’s predictions are totally un-
related to the observed presence–absence, mutual infor-
mation is zero. Mutual information becomes maximal
when knowledge of predictions allows perfect classifi-
cation (Forbes 1995). This need not be perfect classifi-
cation of predictions, however, because a model that
always predicts the reverse of what is observed can be
used to infer perfect classification. This is the non-
monotonic behaviour of mutual information measures
upon which information-theoretic criteria have been
criticized (Fielding & Bell 1997). It is analogous to an
AUC < 0·5, indicating that a model has predictive abil-
ity but that it is in the opposite direction from that
expected, i.e. predicting absence in place of presence. A
cursory examination of the confusion matrix immediately
reveals whether this is happening, allowing the mutual
information statistic to be qualified (Forbes 1995).
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The normalized mutual information (NMI) has seen
some application in ecology (Manel, Williams & Ormerod
2001; Wright & Fielding 2002). It is the difference between
the overall information contained in the confusion matrix
and that in the predictions, divided by the information
contained in the observed presence–absence, all taken
from one (Forbes 1995). The formula based on the con-
fusion matrix is given in table 4 of Manel, Williams &
Ormerod (2001), except that the quantity defined should
be subtracted from one. The NMI is scaled so that it
ranges from zero (no predictive ability) to one (com-
plete information). Its derivation means that it does not
correct for chance agreement or provide a clear defini-
tion of it (Forbes 1995). However, data sets with extreme
prevalence contain little information and, critically,
models that purely predict the most common class pro-
vide virtually no information about the classification
problem; low NMI results even with a high level of
prediction–observation agreement. Empirical demon-
strations of  the NMI indicate that it does not vary
systematically with prevalence (Manel, Williams &
Ormerod 2001).

Finn (1993) and Couto (2003) describe a measure
closely related to the NMI: the average mutual informa-
tion (AMI). Mutual information may prove to be very
useful in ecology, summarizing the most fundamental
concern about predictions – how much they reveal
about the actual distribution – whilst circumventing
the problems associated with chance correction. More
work to assess its potential would be valuable.

 

Conclusions

 

Testing is a vital stage in developing predictive dis-
tribution models (Rushton, Ormerod & Kerby 2004).
Yet, because adequate testing is still scarce and errors
seldom diagnosed, the true value of species distribu-
tion modelling in ecology cannot yet be appraised.
Many published examples could have serious limitations.
Ideally, testing should have three aims, to: (i) provide
an overall assessment of a model’s predictive perform-
ance, including its generalizability, that can be used
to assess its overall potential and allow comparison
with other models; (ii) provide clear guidance for
the use of a model and/or its predictions to the planners
and practitioners dependent on its outputs; (iii) per-
form a diagnostic function, identifying weaknesses in
predictive performance, possible causes and identify-
ing priorities for future model development.

To optimize the testing of  species distribution
models, we make the following recommendations.

 

1.

 

Wherever possible, use quantitative (e.g. probabilistic)
predictions in preference to nominal presence–absence.

 

2.

 

Perform the most rigorous possible tests of general-
izability. The ‘gold standard’ is to test a model with
samples of data from its actual applications, ideally
including 200 or more sites to ensure precise accuracy
estimates. Where this is not possible, aim to demonstrate
the widest possible generalizability, encompassing the

closest possible analogues to anticipated applications.

 

3.

 

Utilize resampling methods, such as bootstrapping,
to diagnose the causes of limited generalizability. Boot-
strapping can also provide a convenient basis for
making unbiased estimates of model performance prior
to the expense of collecting test data.

 

4.

 

Separate the discrimination and calibration com-
ponents of accuracy to maximize the generality of model
testing. The 

 

c

 

-index/non-parametric AUC is an excellent
statistic for measuring discriminatory ability.

 

5.

 

Calibration should be tested whenever quantitative
predictions will be interpreted directly. Calibration plots
are a simple and effective method. Cox’s regression
method can be useful if  overfitting and shrinkage are
particular concerns.

 

6.

 

Cohen’s 

 

κ

 

 for testing nominal presence–absence pre-
dictions has limitations. Information-theoretic measures
such as the NMI may be more profitable.
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