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For many applications the continuous prediction afforded by species distribution modeling

must be converted to a map of presence or absence, so a threshold probability indicative of

species presence must be fixed. Because of the bias in probability outputs due to frequency

of presences (prevalence), a fixed threshold value, such as 0.5, does not usually correspond

to the threshold above which the species is more likely to be present. In this paper four

threshold criteria are compared for a wide range of sample sizes and prevalences, modeling

a virtual species in order to avoid the omnipresent error sources that the use of real species

data implies. In general, sensitivity–specificity difference minimizer and sensitivity–

specificity sum maximizer criteria produced the most accurate predictions. The widely-

used 0.5 fixed threshold and Kappa-maximizer criteria are the worst ones in almost all

situations. Nevertheless, whatever the criteria used, the threshold value chosen and the

research goals that determined its choice must be stated.

ª 2007 Elsevier Masson SAS. All rights reserved.
1. Introduction

Species distributions are increasingly being modeled in ecol-

ogy and conservation research. Prediction of species geo-

graphic distribution, based on known occurrences, is now

possible due to both Geographic Information Systems (GIS)

and statistical quantification of species–environment relation-

ships (Guisan and Zimmermann, 2000; Lehmann et al., 2002;

Rushton et al., 2004). Species distribution model predictions

help to delve into questions of biogeography and evolution

(Peterson et al., 1999; Anderson et al., 2002a,b; Hugall et al.,

2002; Peterson and Holt, 2003; Wiens and Graham, 2005), to

search for biological indicators (Bonn and Schröder, 2001), to
study the effect of climate warming on species distribution

(Teixeira and Arntzen, 2002; Thuiller et al., 2005; Araújo et al.,

2006), and to develop management decisions and conservation

strategies (Godown and Peterson, 2000; Schadt et al., 2002;

Barbosa et al., 2003; Meggs et al., 2004; Russell et al., 2004;

Chefaoui et al., 2005).

Prediction methods currently available to scientists can be

divided, roughly, into those that use only presence data (profile

techniques, e.g. environmental envelopes, see Elith et al., 2006

for an updated review) and those that also incorporate absence

data (group discrimination techniques, e.g. generalized regres-

sion, see Guisan and Zimmermann, 2000; Scott et al., 2002). Pro-

file techniques tend, in general, to overestimate distributions
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due to the lack of absence data, which would otherwise restrict

predictions where needed (Ferrier and Watson, 1997; Zaniewski

et al., 2002; Engler et al., 2004). However, these methods are

useful because reliable absence data are seldom available

(MacKenzie et al., 2002; Wintle et al., 2005; but see, for example,

Engler et al., 2004; Lobo et al., 2006, for ways of generating

probable absences). When available, reliable absence data

should be treated with group discrimination techniques,

capable of accounting for more real relationships between

species and environmental and historical factors (Hirzel et al.,

2001; Brotons et al., 2004; Segurado and Araújo, 2004).

Although the continuous map of the probability of pres-

ence produced by distribution models is itself useful for

many conservation applications (e.g., Araújo et al., 2002;

Wilson et al., 2005), it is often converted into an either–or pres-

ence/absence map. The resulting categorical map is used for

practical applications (e.g., Araújo et al., 2004, 2006; Luoto

et al., 2006), as well as for evaluating model prediction reliabil-

ity, involving comparison with the inherently either–or pres-

ence/absence data using a confusion matrix (Fielding and

Bell, 1997). Although threshold-independent accuracy mea-

sures are now widely preferred, such as the area under the

Receiver Operating Characteristic curve (AUC; Swets, 1988;

Fielding and Bell, 1997), these techniques have started to be

seriously criticized (Austin, in press; Termansen et al., 2006).

The conversion of the continuous map into a categorical one

involves adopting a threshold probability indicative of species

presence (Fielding and Bell, 1997) which will determine model

output, as it will condition the cases assigned to each category

(Fielding and Bell, 1997; Manel et al., 1999b; Pearce and Ferrier,

2000). However, logistic regression probabilities are biased

toward the highest number of either presences or absences,

where they differ (Hosmer and Lemeshow, 1989; Cramer,

1999). Because of this bias, due to prevalence (the proportion

of presence cases), the intuitive threshold value of 0.5 (e.g. Li

et al., 1997) may not actually correspond to the threshold

above which the species is more likely to be present. For

example, where a large number of target-species absence ob-

servations bias probabilities toward zero, a threshold of 0.5

will lead to absence predictions for sites with known presences

(high omission error rate), reduce sensitivity (true predicted

presences) and increase specificity (true predicted absences).

Lowering the threshold from 0.5 would increase sensitivity,

at the expense of decreased specificity. What is the best

threshold for binary data with a dissimilar number of pres-

ences and absences?

The choice of threshold criteria can depend on the role

of commission (false positive) and omission (false negative)

errors (Fielding and Bell, 1997; Fielding, 2002; Pearson et al.,

2004). The degree to which these errors are minimized

depends on how the model will be used (Loiselle et al., 2003;

Rondinini et al., 2006). However, models usually are designed

to discriminate as reliably as possible between presence and

absence sites. There has been little effort aim at comparing

model results applying different threshold criteria, and the

0.5 point threshold or the one which maximized the Kappa

statistic (Monserud and Leemans, 1992) are actually widely

used in order to generate binary distribution maps (see, for ex-

ample, Li et al., 1997; Guisan et al., 1998; Manel et al., 1999a;

Fleishman et al., 2001; Thuiller, 2003; Berg et al., 2004; Meggs
et al., 2004; Segurado and Araújo, 2004; Araújo et al., 2005;

Luoto et al., 2005). Manel et al. (2001) examined a large set of

species and concluded that results from a threshold which

maximized the sensitivity–specificity sum (following Zweig

and Campbell, 1993) were superior to results from a threshold

of 0.5. Liu et al. (2005) compared 12 threshold decision criteria

using data of two plant species in Europe modeled with neural

networks. They concluded that fixed thresholds and those

based on the Kappa statistic work worse that those account-

ing, directly or indirectly, for prevalence.

The present study compares model outputs obtained from

varying prevalence data, modeled with logistic regression

(LR), a widely-used modeling technique (Guisan et al., 2002;

Lehmann et al., 2002), and four threshold criteria: the widely-

used 0.5 and Kappa maximization thresholds, and the sensitiv-

ity–specificity difference minimizer (e. g. Bonn and Schröder,

2001; Barbosa et al., 2003) and sensitivity–specificity sum max-

imizer (e. g. Manel et al., 2001), two of the best criteria found by

Liu et al. (2005). The general aim of this paper is to find the

optimum threshold criteria for a wide range of model specifica-

tions. In order to achieve this objective real data are not used to

avoid the frequently error sources that their use implies;

instead, a distribution of a virtual species was postulated.

2. Methods

2.1. The virtual species

As has been recommended (Allredge and Ratti, 1986; Austin,

in press), predictions derived from four threshold criteria

were compared using a postulated species distribution with

known environmental influence. This procedure has been

employed by other researchers (Hirzel et al., 2001; Reese

et al., 2005) to avoid complications from natural variation.

Specifically, we have used this approach in order to:

(i) Avoid misclassification error associated with real pres-

ence–absence data.

(ii) Be sure that the modeling technique (LR) can correctly pre-

dict species distribution while avoiding the bias due to

contingent unaccounted-for or unknown factors. Both vir-

tual species and distribution model predictions are based

on the same environmental variables.

(iii) Be completely confident about models accuracy.

The virtual species distribution was mapped at a spatial

resolution of 0.04� for the European region (�13� to 35� longi-

tude, and 34� to 72� latitude). The total area of the region stud-

ied measured 6,576,424 km2 (510,440 squares). For this region,

four environmental variables were extracted from WORLD-

CLIM interpolated map database (version 1.3; see http://

biogeo.berkeley.edu/worldclim/worldclim.htm and Hijmans

et al., 2005): monthly total precipitation, precipitation of the

warmest quarter, monthly mean maximum temperature

and monthly mean minimum temperature. Box-Cox normal-

ized environmental variables were standardized to 0 mean

and 1 standard deviation to eliminate measurement-scale

effects. Principal Component Analysis (PCA; see Legendre

http://biogeo.berkeley.edu/worldclim/worldclim.htm
http://biogeo.berkeley.edu/worldclim/worldclim.htm
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and Legendre, 1998) was performed to obtain two reduced

non-correlated environmental variables, able to explain

92.6% of the environmental variation across the European re-

gion. The first axis was positively correlated with temperature

variables, while the second was correlated with precipitation

variables. The mean scores of these two environmental fac-

tors were calculated. The environment range inhabited by

the species was set to the mean � S.D. of each factor. All cells

falling within these intervals for both factors were selected as

the true distribution range of the virtual species in Europe

(presences; n ¼ 91,144), while the remaining cells were consid-

ered as true absences (n ¼ 419,296). All geographic analysis

were done with IDRISI Kilimanjaro software (Clark Labs,

2003). The geographical distribution of this ‘‘central’’ Euro-

pean virtual species is completely determined by well-known

environmental factors.

2.2. The modeling process

Previous analysis showed that a sample size lower than

around 70 observations decreases model performance

(A. Jiménez-Valverde, J.M. Lobo, J. Hortal, submitted; see also

Kadmon et al., 2003). So, in order to explore a possible effect

of sample size on threshold selection, we created a series of

datasets with sample sizes greater than 70 observations.

Nine categories of presence numbers (n ¼ 91, 456, 911, 4557,

9114, 22,786, 45,572, 68,358 and 91,144) were randomly selected

from the distribution. Absences were also randomly selected

in the same number categories as presences. Thus 81 models

(9 categories of presences � 9 categories of absences) were

designed, which vary both in the number of observations

(minor value ¼ 182, major value ¼ 182,288, based on the 9

categories above) and in the prevalence or proportion of pres-

ences (minor value ¼ 0.001, major value ¼ 0.999, based on the

9 categories above). All models were designed using logistic re-

gression analysis (Generalized Linear Models with binomial

distribution and logit-link function; McCullagh and Nelder,

1997). The linear, quadratic and cubic functions of the two

environmental factors, together with their interaction, were

used as explanatory variables; models were selected by a back-

ward stepwise procedure (Harrell, 2001). Models were fitted

using the STATISTICA program (StatSoft Inc, 2001).

Statistics to compare the accuracy of two binary maps are

derived from a cross-tabulated matrix of the number of

observed presence and absence cases against the predicted

presences and absences (confusion matrix). Commission er-

rors (model predictions of species presence where not actually

observed, i.e. the false positive fraction) and omission errors

(model predictions of species absence where actually

observed; i.e. the false negative fraction) are determined by

the number of cases correctly and incorrectly assigned to pres-

ences and absences. Specificity is calculated as the ratio of cor-

rectly predicted absences to the total number of absences, and

sensitivity as the ratio of correctly predicted presences to their

total number. The confusion matrix was calculated for the

training data. The models were then projected onto the whole

European territory and their probability scores converted into

a binary variable (presence/absence) by applying the threshold

criteria explained in the next section, based on the confusion

matrix. Predicted and real virtual maps were compared by
calculating the sensitivity and specificity as well as the

frequently-used Kappa statistic (Monserud and Leemans,

1992; Fielding and Bell, 1997; Pontius, 2000) that takes into

consideration both commission and omission errors.

2.3. Threshold criteria

Model extrapolations were converted into presence/absence

maps by selecting threshold probabilities above which pres-

ence was established, according to the following criteria:

– 0.5T criteria: a value of 0.5 was the threshold above which

presence was assigned (Li et al., 1997; Manel et al., 1999a).

– KMT criteria (Kappa-maximized threshold): Kappa scores

were calculated for 100 threshold values (in 0.01 increments)

and the one which provides maximum Kappa became the

accepted threshold (Guisan et al., 1998; Thuiller, 2003).

When multiple thresholds had the same Kappa value, the

mean threshold value was selected.

– MDT criteria (minimized difference threshold): difference

between sensitivity and specificity was calculated for the

same 100 threshold values and the one which minimized

that difference was selected (Rojas et al., 2001).

– MST criteria (maximized sum threshold): sum of sensitivity

and specificity was calculated for the same 100 threshold

values and the one which maximized that sum was selected

(Manel et al., 2001).

3. Results

Sample size was uncorrelated with the thresholds selected by

MDT, MST and KMT criteria (Spearman rank correlation coef-

ficients, Rs ¼ �0.03, �0.02 and 0.04, respectively). On the con-

trary, prevalence was significantly and positively correlated

with the thresholds selected by those three criteria. Both

MDT and MST thresholds were linearly related with preva-

lence (Fig. 1), so frequency of presence data alone could be

used to select the most appropriate threshold. KMT thresholds

increased rapidly with either low or high prevalence values,

remaining relatively constant (around 0.5) for a wide range

of prevalence values. The thresholds from the KMT, MDT

and MST criteria were also correlated with each other, espe-

cially those of the two latter criteria (see Fig. 1).

The four threshold criteria produced significantly different

mean values of sensitivity, specificity and Kappa (Table 1).

Mean sensitivity and Kappa values were significantly higher

for MST and MDT, while they were significantly lower for

0.5T and KMT. Mean specificity values were significantly

higher only for MDT (Table 1).

Kappa and specificity values obtained across all sample

size and prevalence treatments with MST and MDT were sig-

nificantly correlated, as were those obtained with 0.5T and

KMT thresholds; the latter producing the highest correlation

scores (Table 2). Sensitivity values were also positively corre-

lated for the pairs MST/KMT and MST/0.5T, although again

0.5T and KMT producing the highest correlation score. Sensi-

tivity scores from 0.5T and KMT, which were linearly related

(Fig. 2), were extremely variable in comparison with those

from MST and MDT, which, while correlated, were always
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Fig. 1 – Relationship between prevalence of occurrence and threshold scores for the three non-fixed threshold criteria.

In the table, Spearman correlation scores are shown between prevalence and threshold values and between threshold

scores of the three criteria.
higher than 0.8. The pattern for the Kappa statistic was quite

similar, while specificity values were high for the four criteria.

Kappa, sensitivity and specificity score differences derived

from the various threshold criteria (relative performance)

could not be explained by variation in sample size, but could

be explained by variation in prevalence (Table 3), which

explained (with the exception of MDT/MST) 41% to 98% of their

deviance. The reliability of MDT- or MST-criteria designed

presence–absence maps proved to be independent of the fre-

quency of presence points. However, 0.5T and KMT predicted

presences were relatively reliably in cases of high prevalence

scores, and absences were relatively reliably at low prevalence

scores (Fig. 3). In such cases 0.5T and KMT criteria superiority

over MDT and MST was negligible. It is interesting to highlight

the MDT- and MST-criteria significant superiority over the

other two in predicting presences when the prevalence was

low (Fig. 3B); no such pattern was observed in the prediction

of absences.

4. Discussion

Prediction reliability from models is particularly sensitive to

threshold criteria applied in model derivation. Our results,

Table 1 – Mean values of the three accuracy measures
(Kappa statistic, sensitivity and specificity) ± SE for the
four threshold criteria, and ANOVA results (***P < 0.001,
*P < 0.005). Pairwise significant differences were
determined using a Tukey test (HDS; P < 0.05) and are
shown with superscript letters

Kappa Sensitivity Specificity

F(3,320) 29.09*** 10.97*** 4.48*
aMST 0.734 � 0.003b,d 0.956 � 0.002b,d 0.898 � 0.002c

b0.5T 0.599 � 0.024a,c 0.799 � 0.035a,c 0.894 � 0.009c

cMDT 0.766 � 0.002b,d 0.926 � 0.002b,d 0.923 � 0.001a,b,d

dKMT 0.644 � 0.016a,c 0.833 � 0.028a,c 0.898 � 0.008c
derived from a wide range of conditions, provide some guid-

ance to the choice of threshold criteria. Above all, threshold

criteria should be dependent on prevalence. For the same geo-

graphical extent, mean LR probability magnitudes, biased by

prevalence, tend toward zero for rare species (narrow geo-

graphic range, i.e. low occurrence rate and, so, low prevalence

scores) and toward one for common species (widespread, i.e.

high occurrence rate and high prevalence scores). Thus, as

shown in the present work, a threshold fixed a priori yields

a binary model that is not biologically meaningful. Of the

KMT, MDT and MST criteria tested, the ones which maximize

the sensitivity–specificity sum or minimize their difference

(MST and MDT, respectively) are the most linearly related

with prevalence, a desirable property since the meaningful-

ness of model probabilities depends on the maximum value

obtained (Pontius and Batchu, 2003). The strong correlation

between the threshold values from these two criteria and

prevalence obtained by us supports the recent proposal of

using prevalence values themselves as threshold decision

criteria (Liu et al., 2005; Jiménez-Valverde and Lobo, 2006), as

previously recognized by statisticians (Cramer, 1999).

These two prevalence-dependent thresholds are strongly

correlated and always score high in accuracy. KMT criteria

produce quite variable accuracy scores that are highly corre-

lated with 0.5T scores, a consequence of the stability of the

Table 2 – Spearman correlation scores between threshold
criteria for the three accuracy measures, applying
Bonferroni correction for multiple comparison test.
Significant pairwise are marked in bold (P £ 0.003)

Kappa Sensitivity Specificity

MST/0.5T 0.06 0.42 0.16

MST/MDT 0.52 0.40 0.35

MST/KMT 0.02 0.46 0.18

0.5T/MDT 0.33 0.24 �0.04

0.5T/KMT 0.93 0.98 0.98

MDT/KMT 0.21 0.27 �0.07
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Fig. 2 – Sensitivity scores obtained using different threshold criteria. While those with 0.5T and KMT criteria are highly

variable, sensitivity values obtained with MDT and MST criteria show always quite high values.
Table 3 – The relative difference in accuracy using
different threshold criteria was modeled using
Generalized Linear Models (GLMs) with a log-link
function and a normal distribution. The independent
variables (sample size and prevalence of presence data)
were included in the model considering their cubic,
quadratic and linear functions, and the adequacy of the
models was tested by means of the change in explained
deviance (% Expl. Dev.) from a null model in which the
difference in relative performance is modeled with no
explanatory variables

Sample-size Prevalence

% Exp. Dev. % Exp. Dev. Function

Kappa

MDT-0.5T 0.05 95.94 Cubic

MDT-KMT 0.24 82.21 Cubic

MST-0.5T 0.03 95.97 Cubic

MST-KMT 0.26 85.54 Cubic

MDT-MST 0.46 7.30 Cubic

Sensitivity

MDT-0.5T 0.08 96.38 Cubic

MDT-KMT 0.01 93.31 Cubic

MST-0.5T 0.09 97.75 Cubic

MST-KMT 0.01 95.19 Cubic

MDT-MST <0.01 12.94 Quadratic

Specificity

MDT-0.5T <0.01 74.46 Linear

MDT-KMT <0.01 69.44 Quadratic

MST-0.5T <0.01 54.93 Linear

MST-KMT 0.02 40.68 Linear

MDT-MST 0.38 8.75 Cubic
threshold value around 0.5 in a wide range of prevalence con-

ditions. Although MDT- and MST-criteria model predictions

are, in general, significantly more accurate, KMT and 0.5T

can be used in some circumstances: (i) when accurateness in

predicting presences is the objective and the prevalence is

high, and (ii) when we want to predict absences but the prev-

alence is low. However, we must consider that, in the first

case, the distribution of the species will be overestimated

while, in the second case, it will be underestimated. If the

Kappa statistic is used to measure model accuracy, then

KMT and 0.5T criteria outperform in a prevalence interval of

0.1–0.5, approximately. Nevertheless, their performance dif-

fers only negligibly with respect to MDT and MST.

The measurement and meaningfulness of accuracy esti-

mations depends on the purpose of the research, leading to

varying concerns about accuracy. For example, a threshold

optimizing species absences may lead to a suboptimal clas-

sification when omission errors are undesirable. While it is

frequently assumed that commission and omission errors

are equal costwise, in conservation it is probably more costly

to classify a recognized presence site as absence than vice

versa (Fielding, 2002; but see Loiselle et al., 2003). Omission

errors should therefore be avoided and sensitivity favored; in

this situation, MDT and MST are the threshold criteria that

should be employed. On the contrary, if commission errors

are considered more costly, MDT is the only criteria which pro-

duce higher specificity values. Hence, we recommend the MDT

threshold criteria as the one of more general use (see also Liu

et al., 2005; Jiménez-Valverde and Lobo, 2006).

It is important to highlight MDT- and MST-criteria superi-

ority over the other two in predicting presences when the

prevalence of presences is low. Low prevalence scores usually
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characterize cases in which the distribution area of the spe-

cies is significantly narrower than the whole spatial extent

under study. This situation is a common pattern in real situa-

tions. However, MDT- and MST-criteria apparently do not

show such superiority when predicting absences at high prev-

alence scores. Our virtual species has 4.6 times more absences

than presences and, so, there are many absences far from the

mean environmental conditions of the species. This implies

that many absences will have very low logistic probability

scores. Consequently, any threshold will be able to correctly

classify a great proportion of absences. We suggest than in

more balanced situations between the extent analyzed and

the species distribution, MDT and MST criteria would consid-

erably outperformed 0.5T and KMT when predicting absences

at high prevalence scores.

Manel et al. (2001) questioned the reliability of predictions

when the MST criterion is used. They extrapolated their

models for aquatic invertebrates to Himalayan regions differ-

ent from those where the models were trained and observed

that potential distributions of rare species were overesti-

mated. However, we think such overestimation is probably

not due to the threshold criteria chosen, but to the loss of

accuracy of models extrapolated to areas different from those

used in model design (Fielding and Haworth, 1995; Marsden

and Fielding, 1999).

As reliable absence data are scarcely available, presence-

only modeling is now deserving special attention (Elith et al.,

2006). In such cases, background data are used for absence,

randomly selecting absences from all the locations lacking

presence data (see Elith et al., 2006). When this method is

used, false absences will likely be included in the dependent

variable. If the true distribution of the focus species is directly

or indirectly related with the predictors chosen, and if the

amount of false absences is low, these false absences will

have a mean logistic probability higher that the one assigned

to the true absences. Then, the application of a threshold

such as MDT will correctly classify most of those false absences

as presences when randomly distributed (J.M. Lobo,

A. Jiménez-Valverde, J. Hortal, submitted). However, if the

amount of false data is high or if the predictors are able to

account for those false absences, no threshold will be able

to correctly classify them as presences (J.M. Lobo, A. Jiménez-

Valverde, J. Hortal, submitted).

On occasion, some authors have failed to point out the

threshold used (e.g. Teixeira and Arntzen, 2002), a practice

which should be avoided. The criteria employed for deciding

the threshold, whatever it is, as well as the threshold value

itself, should be specified so that readers can reach their

own conclusions.
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Brotons, L., Thuiller, W., Araújo, M.B., Hirzel, A.H., 2004.
Presence–absence versus presence-only modelling methods
for predicting bird habitat suitability. Ecography 27, 437–448.

Chefaoui, R.M., Hortal, J., Lobo, J.M., 2005. Potential distribution
modelling, niche characterization and conservation status
assessment using GIS tools: a case study of Iberian Copris
species. Biological Conservation 122, 327–338.

Clark Labs, 2003. Idrisi Kilimanjaro. GIS software package. Clark
Labs, Worcester, MA.

Cramer, J.S., 1999. Predictive performance of binary logit model in
unbalanced samples. Journal of the Royal Statistical Society: Series
D (The Statistician) 48, 85–94.

Elith, J., Graham, C.H., Anderson, R.P., Dudı́k, M., Ferrier, S.,
Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R.,
Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G.,
Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M.,
Peterson, A.T., Phillips, S.J., Richardson, K., Scachetti-
Pereira, R., Schapire, R.E., Soberón, J., Williams, S., Wisz, M.S.,
Zimmermann, N.E., 2006. Novel methods improve prediction
of species’ distributions from occurrence data. Ecography 29,
129–151.

Engler, R., Guisan, A., Rechsteiner, L., 2004. An improved
approach for predicting the distribution of rare and
endangered species from occurrence and pseudo-absence
data. Journal of Applied Ecology 41, 263–274.

Ferrier, S., Watson, G., 1997. An evaluation of the effectiveness of
environmental surrogates and modeling techniques in



a c t a o e c o l o g i c a 3 1 ( 2 0 0 7 ) 3 6 1 – 3 6 9368
predicting the distribution of biological diversity. Environment
Australia, Canberra, Australia.

Fielding, A.H., 2002. What are the appropriate characteristics of an
accuracy measure? In: Scott, J.M., Heglund, P.J., Haufler, J.B.,
Morrison, M., Raphael, M.G., Wall, W.B., Samson, F. (Eds.),
Predicting Species Occurrences. Issues of Accuracy and Scale.
Island Press, Covelo, CA, pp. 271–280.

Fielding, A.H., Bell, J.F., 1997. A review of methods for the
assessment of prediction errors in conservation presence/
absence models. Environmental Conservation 24, 38–49.

Fielding, A.H., Haworth, P.F., 1995. Testing the generality of bird-
habitat models. Conservation Biology 9, 1466–1481.

Fleishman, E., Mac Nally, R., Fay, J.P., Murphy, D.D., 2001.
Modeling and predicting species occurrence using broad scale
environmental variables: an example with butterflies of the
Great Basin. Conservation Biology 15, 1674–1685.

Guisan, A., Zimmermann, N.E., 2000. Predictive habitat
distribution models in ecology. Ecological Modelling 135,
147–186.

Guisan, A., Theurillat, J.-P., Kienast, F., 1998. Predicting the
potential distribution of plant species in an alpine
environment. Journal of Vegetation Science 9, 65–74.

Guisan, A., Edwards, T.C., Hastie, T., 2002. Generalized linear and
generalized additive models in studies of species
distributions: setting the scene. Ecological Modelling 157,
89–100.

Godown, M., Peterson, A.T., 2000. Preliminary distributional
analysis of US endangered bird species. Biodiversity and
Conservation 9, 1313–1322.

Harrell, F.E.J., 2001. Regression modelling strategies: with
applications to linear models, logistic regression, and survival
analysis. Springer, New York.

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005.
Very high resolution interpolated climate surfaces for global
land areas. International Journal of Climatology 25, 1965–1978.

Hirzel, A.H., Helfer, V., Metral, F., 2001. Assessing habitat-
suitability models with a virtual species. Ecological Modelling
145, 111–121.

Hosmer, D.W., Lemeshow, S., 1989. Applied Logistic Regression.
Wiley, New York.

Hugall, A., Moritz, C., Moussalli, A., Stanisic, J., 2002. Reconciling
paleodistribution models and comparative phylogeography in
the Wet Tropics rainforest land snail Gnarosophia
bellendenkerensis (Brazier 1875). Proceedings of the National
Academy of Sciences, USA 99, 6112–6117.
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Thuiller, W., Lavorel, S., Araújo, M.B., Sykes, M.T., Prentice, I.C.,
2005. Climate change threats to plant diversity in Europe.
Proceedings of the National Academy of Sciences, USA 102,
8245–8250.

Wiens, J.J., Graham, C.H., 2005. Niche conservatism:
integrating Evolution, Ecology and conservation Biology.
Annual Review of Ecology. Evolution and Systematics 36,
519–539.

Wilson, K.A., Westphal, M.I., Possingham, H.P., Elith, J., 2005.
Sensitivity of conservation planning to different approaches
to using predicted species distribution data. Biological
Conservation 122, 99–112.

Wintle, B.A., Kavanagh, R.P., McCarthy, M.A., Burgman, M.A.,
2005. Estimating and dealing with detectability in occupancy
surveys for forest owls and arboreal marsupials. Journal of
Wildlife Management 69, 905–917.

Zaniewski, A.E., Lehmann, A., Overton, J.McC., 2002. Predicting
species spatial distributions using presence-only data: a case
study of native New Zealand ferns. Ecological Modelling 157,
261–280.

Zweig, M.H., Campbell, G., 1993. Receiver-operating
characteristics (ROC) plots: a fundamental evaluation tool in
clinical medicine. Clinical Chemistry 39, 561–577.

http://www.statsoft.com

	Threshold criteria for conversion of probability of species presence to either-or presence-absence
	Introduction
	Methods
	The virtual species
	The modeling process
	Threshold criteria

	Results
	Discussion
	Acknowledgments
	REFERENCES


